

Lecture Notes in Computer Science 3719
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Michael Hobbs Andrzej M. Goscinski
Wanlei Zhou (Eds.)

Distributed
and
Parallel Computing

6th International Conference on Algorithms and
Architectures for Parallel Processing, ICA3PP
Melbourne, Australia, October 2-3, 2005
Proceedings

13

Volume Editors

Michael Hobbs
Andrzej M. Goscinski
Wanlei Zhou
Deakin University
School of Information Technology
Geelong, Victoria 3217
Australia
E-mail:{mick,ang,wanlei}@deakin.edu.au

Library of Congress Control Number: 2005933043

CR Subject Classification (1998): D, F.1-3. C, I.6

ISSN 0302-9743
ISBN-10 3-540-29235-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29235-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11564621 06/3142 5 4 3 2 1 0

Preface

There are many applications that require parallel and distributed processing to allow
complicated engineering, business and research problems to be solved in a reasonable
time. Parallel and distributed processing is able to improve company profit, lower
costs of design, production, and deployment of new technologies, and create better
business environments. The major lesson learned by car and aircraft engineers, drug
manufacturers, genome researchers and other specialist is that a computer system is a
very powerful tool that is able to help them solving even more complicated problems.
That has led computing specialists to new computer system architecture and
exploiting parallel computers, clusters of clusters, and distributed systems in the form
of grids. There are also institutions that do not have so complicated problems but
would like to improve profit, lower costs of design and production by using parallel
and distributed processing on clusters.

In general to achieve these goals, parallel and distributed processing must become
the computing mainstream. This implies a need for new architectures of parallel and
distributed systems, new system management facilities, and new application
algorithms. This also implies a need for better understanding of grids and clusters,
and in particular their operating systems, scheduling algorithms, load balancing,
heterogeneity, transparency, application deployment, which is of the most critical
importance for their development and taking them by industry and business.

ICA3PP has been a premier conference that has brought together researchers and
practitioners from academia, industry and governments around the world to advance
the theories and technologies of parallel and distributed computing. Previously,
ICA3PP conferences have been held successfully in Brisbane, Singapore, Melbourne,
Hong Kong and Beijing.

ICA3PP 2005 returned to Melbourne with the main focus on the most critical areas
of parallel and distributed computing: operating systems and middleware, fault-
tolerant systems, scheduling and load balancing, algorithms, tools and environments,
and communication and networks.

In total, the conference received 98 papers from researchers and practitioners from
15 countries. Each paper was reviewed by at least three internationally renowned
referees and selected based on their originality, significance, correctness, relevance,
and clarity of presentation. Among the high quality submissions, 27 long papers and
25 short papers were accepted. All of the selected papers are included in the
proceedings. After the conference, the proceedings editors will recommend some
high quality papers from the conference to be published in a special issue of an
international journal.

We are delighted to be able to host two well-known international scholars,
Professor Ian Foster and Professor Zhiwei Xu, who delivered the keynote speeches.

Preface VI

We would like to take this opportunity to thank all the authors for their
submissions to the conference. Many of them have traveled some distance to
participate in the conference. We also thank the Program Committee members and
additional reviewers for their efforts in reviewing the large number of papers. Thanks
also go to the local conference organizers for their great support.

Last but not least, we would like to express our gratitude to all of the organizations
who have supported our efforts to bring the conference to fruition. We are grateful to
the IEEE Technical Committee on Scalable Computing for the cooperation; and to
Deakin University, NICTA and Alexander Technology for their sponsorships and
assistance.

October 2005 Michael Hobbs, Andrzej Goscinski and Wanlei Zhou
 Melbourne,

Organization

This conference was organized by the School of IT, Deakin University, Australia; and
Martin Lack & Associates, Australia. Sponsorship was provided by the School of IT,
Deakin University, Australia; the Faculty of Science and Technology, Deakin
University, Australia; National ICT Australia (NICTA); and Alexander Technology,
Australia.

Conference Chairs

Andrzej M. Goscinski (Deakin University, Australia)
Wanlei Zhou (Deakin University, Australia)

Program Chair

Michael J. Hobbs (Deakin University, Australia)

Program Committee

Jemal Abawajy (Deakin University, Australia)
David Abromson (Monash University, Australia)
Akkihebbal Ananda (National University of Singapore, Singapore)
Bill Appelbe (RMIT University, Australia)
Mark Baker (Portsmouth University, UK)
Amnon Barak (Hebrew University of Jerusalem, Israel)
Arndt Bode (Technical University of Munich, Germany)
Peter Brezany (University of Vienna, Austria)
Marian Bubak (AGH University of Science and Technology., Cracow, Poland)
Raj Buyya (University of Melbourne, Australia)
Jianning Cao (Hong Kong Polytechnic University, Hong Kong)
Samuel Chanson (Hong Kong University of Science and Technology, Hong Kong)
Jianer Chen (Texas A&M University, USA)
Francis Chin (University of Hong Kong, Hong Kong)
Toni Cortes (University of Politecnica de Catalunya, Spain)
Brian d'Auriol (University of Texas at El Paso, USA)
Xiaote Deng (City University of Hong Kong, Hong Kong)
Robert Dew (Deakin University, Australia)
Jack Dongarra (University of Tennessee, USA)
Ding-Zhu Du (University of Minnesota, USA)
Wen Gao (Inst. of Computing Technology, China)
Al Giest (Oak Ridge Nation Labs, USA)
Minyi Guo (University of Aizu, Japan)

VIII Organization

Salim Hariri (Syracuse University, USA)
Louis Hertzberger (University of Amsterdam, The Netherland)
Shi-Jinn Horng (National Taiwan University of Science and Technology, Taiwan)
Ali Hurson (Pennsylvania State University, USA)
Weijia Jia (City University of Hong Kong, Hong Kong)
Xiaohua Jia (City University of Hong Kong, Hong Kong)
Hai Jin (Huazhong University of Science and Technology, China)
Peter Kacsuk (MTA SZTAKI Research Inst., Hungry)
Krishna Kavi (The University of North Texas, USA)
Zvi Kedem (New York University, USA)
Wayne Kelly (Queensland University of Tech., Australia)
Tohru Kikuno (Osaka University, Japan)
Jacek Kitowski (University of Mining and Metallurgy, Poland)
Domenico Laforenza (ISTI-CNR, Italy)
Laurent Leferve (INRIA, Lyon, France)
Keqin Li (State University of New York at New Paltz, USA)
Zhi Yong Liu (National Natural Science Foundation, China)
Thomas Ludwig (University of Heidelberg, Germany)
George Mohay (Queensland University of Tech., Australia)
Christine Morin (IRISA/INRIA, France)
Edgar Nett (Otto-von-Guericke University, Germany)
Yi Pan (Georgia State University USA)
Marcin Paprzycki (Oklahoma State University)
Sushil K. Prasad (Georgia State University USA)
Rajeev Raje (Purdue University, USA)
Michel Raynal (IRISA, France)
Justin Rough (Deakin University, Australia)
Srinivas Sampalli (Dalhousie University, Canada)
Edwin Sha (University of Texas at Dallas, USA)
Behrooz Shirazi (University of Texas Arlington, USA)
Jackie Silcock (Deakin University, Australia)
Beth Simon (University of San Diego, USA)
Chengzheng Sun (Griffith University, Australia)
Jiachang Sun (Institute of Software, China)
Vaidy Sunderam (Emory University, Atlanta, USA)
Yong-Meng Teo (National University of Singapore, Singapore)
Alistair Veitch (Hewlett Packard Labs, California, USA)
Greg Wickham (GrangeNet, Australia)
Jie Wu (Florida Atlantic University, USA)
Yue Wu (University of Electronic Science and Technology, China)
Roman Wyrzykowski (Czestochowa University of Technology, Poland)
Jingling Xue (University of New South Wales, Australia)
Zhiwei Xu (Inst. of Computing Technology, China)
Laurence T. Yang (St. Francis Xavier University, Canada)
Chung-Kwong Yuen (National University of Singapore, Singapore)
Si Q Zheng (University of Texas Dallas, USA)
Weimin Zheng (Tsinghua University, China)
Wei Zhao (Texas A&M University, USA)
Jun Zou (Chinese University of Hong Kong, China)
Albert Zoymaya (University of Sydney, Australia)

Table of Contents

Improving Concurrent Write Scheme in File Server Group
Fengjung Liu, Chu-sing Yang . 1

A Comparative Performance Study of Distributed Mutual Exclusion
Algorithms with a Class of Extended Petri Nets

Alexander Kostin, Ljudmila Ilushechkina, Erhan Basri 11

A Practical Comparison of Cluster Operating Systems Implementing
Sequential and Transactional Consistency

Stefan Frenz, Renaud Lottiaux, Michael Schoettner, Christine Morin,
Ralph Goeckelmann, Peter Schulthess . 23

Clock Synchronization State Graphs Based on Clock Precision Difference
Ying Zhao, Wanlei Zhou, Yingying Zhang, E.J. Lanham,
Jiumei Huang . 34

A Recursive-Adjustment Co-allocation Scheme in Data Grid
Environments

Chao-Tung Yang, I-Hsien Yang, Kuan-Ching Li,
Ching-Hsien Hsu . 40

Reducing the Bandwidth Requirements of P2P Keyword Indexing
John Casey, Wanlei Zhou . 50

A Deadline and Budget Constrained Scheduling Algorithm for eScience
Applications on Data Grids

Srikumar Venugopal, Rajkumar Buyya . 60

A Survivability Model for Cluster System
Khin Mi Mi Aung, Kiejin Park, Jong Sou Park 73

Localization Techniques for Cluster-Based Data Grid
Ching-Hsien Hsu, Guan-Hao Lin, Kuan-Ching Li,
Chao-Tung Yang . 83

GridFTP and Parallel TCP Support in NaradaBrokering
Sang Boem Lim, Geoffrey Fox, Ali Kaplan, Shrideep Pallickara,
Marlon Pierce . 93

2-Layered Metadata Service Model in Grid Environment
Muzhou Xiong, Hai Jin, Song Wu . 103

X Table of Contents

pKSS: An Efficient Keyword Search System in DHT Peer-to-Peer
Network

Yin Li, Fanyuan Ma, Liang Zhang . 112

A Comparative Study at the Logical Level of Centralised and
Distributed Recovery in Clusters

Andrew Maloney, Andrzej Goscinski . 118

Toward Self Discovery for an Autonomic Cluster
Eric Dines, Andrzej Goscinski . 125

Mining Traces of Large Scale Systems
Christophe Cérin, Michel Koskas . 132

Setup Algorithm of Web Service Composition
YanPing Yang, QingPing Tan, Yong Xiao . 139

Self Healing and Self Configuration in a WSRF Grid Environment
Michael Messig, Andrzej Goscinski . 149

Study on Life Cycle Model of Dynamic Composed Web Services
Chen Yanping, Li Zengzhi, Jin Qinxue, Wang Chuang 159

Fault-Tolerant Dynamic Job Scheduling Policy
J.H. Abawajy . 165

An Efficient Dynamic Load-Balancing Algorithm in a Large-Scale
Cluster

Bao-Yin Zhang, Ze-Yao Mo, Guang-Wen Yang,
Wei-Min Zheng . 174

Job Scheduling Policy for High Throughput Grid Computing
J.H. Abawajy . 184

High Performance Task Scheduling Algorithm for Heterogeneous
Computing System

E. Ilavarasan, P. Thambidurai, R. Mahilmannan 193

Execution Environments and Benchmarks for the Study of Applications’
Scheduling on Clusters

Adam K.L. Wong, Andrzej M. Goscinski . 204

Data Distribution Strategies for Domain Decomposition Applications
in Grid Environments

Beatriz Otero, José M. Cela, Rosa M. Badia, Jesús Labarta 214

Table of Contents XI

Inter-round Scheduling for Divisible Workload Applications
DongWoo Lee, R.S. Ramakrishna . 225

Scheduling Divisible Workloads Using the Adaptive Time Factoring
Algorithm

Tiago Ferreto, César De Rose . 232

Adaptive Policy Triggering for Load Balancing
Dan Feng, Lingfang Zeng . 240

Parallel Algorithms for Fault-Tolerant Mobile Agent Execution
Jin Yang, Jiannong Cao, Weigang Wu, Cheng-Zhong Xu 246

Design and Multithreading Implementation of the Wave-Front
Algorithm for Constructing Voronoi Diagrams

Grace J. Hwang, Joseph M. Arul, Eric Lin, Chung-Yun Hung 257

A Proposal of Parallel Strategy for Global Wavelet-Based Registration
of Remote-Sensing Images

Haifang Zhou, Yu Tang, Xuejun Yang, Hengzhu Liu 267

Performance Analysis of a Parallel Sort Merge Join on Cluster
Architectures

Erich Schikuta . 277

Parallel Clustering on the Star Graph
M. Fazeli, H. Sarbazi-Azad, R. Farivar . 287

Hierarchical Parallel Simulated Annealing and Its Applications
Shiming Xu, Wenguang Chen, Weimin Zheng, Tao Wang,
Yimin Zhang . 293

Multi-color Difference Schemes of Helmholtz Equation and Its Parallel
Fast Solver over 3-D Dodecahedron Partitions

Jiachang Sun . 301

GridMD: Program Architecture for Distributed Molecular Simulation
Ilya Valuev . 309

Visuel: A Novel Performance Monitoring and Analysis Toolkit for
Cluster and Grid Environments

Kuan-Ching Li, Hsiang-Yao Cheng, Chao-Tung Yang,
Ching-Hsien Hsu, Hsiao-Hsi Wang, Chia-Wen Hsu,
Sheng-Shiang Hung, Chia-Fu Chang, Chun-Chieh Liu,
Yu-Hwa Pan . 315

XII Table of Contents

Introduction to a New Tariff Mechanism for Charging for Computer
Power in the Grid

Sena Seneviratne, David Levy . 326

Host Load Prediction for Grid Computing Using Free Load Profiles
Sena Seneviratne, David Levy . 336

Active Link: Status Detection Mechanism for Distributed Service Based
on Active Networks

Zhan Tao, Zhou Xingshe, Liao Zhigang, Chen Yan 345

Performance Monitoring for Distributed Service Oriented Grid
Architecture

Liang Peng, Melvin Koh, Jie Song, Simon See . 351

Distributed Defense Against Distributed Denial-of-Service Attacks
Wei Shi, Yang Xiang, Wanlei Zhou . 357

Security and Safety Assurance Architecture: Model and Implementation
(Supporting Multiple Levels of Criticality)

Li Zhongwen . 363

Modeling and Analysis of Worm and Killer-Worm Propagation Using
the Divide-and-Conquer Strategy

Dan Wu, Dongyang Long, Changji Wang, Zhanpeng Guan 370

An Efficient Reliable Architecture for Application Layer Anycast Service
Shui Yu, Wanlei Zhou . 376

A Distributed Approach to Estimate Link-Level Loss Rates
Weiping Zhu . 386

Evaluation of Interconnection Network Performance Under Heavy
Non-uniform Loads

C. Izu, J. Miguel-Alonso, J.A. Gregorio . 396

Analytical Models of Probability Distributions for MPI Point-to-Point
Communication Times on Distributed Memory Parallel Computers

D.A. Grove, P.D. Coddington . 406

Communication Data Multiplexing in Distributed Simulation
Jong Sik Lee . 416

Novel Adaptive Subcarrier Power and Bit Allocation Using Wavelet
Packet Parallel Architecture

Ren Ren, Shihua Zhu . 422

Table of Contents XIII

A Low–Level Communication Library for Java HPC
Sang Boem Lim, Bryan Carpenter, Geoffrey Fox, Han-Ku Lee 429

Object-Oriented Design and Implementations of 3G-324M Protocol
Stack

Weijia Jia, Haohuan Fu, Ji Shen . 435

Efficient Techniques and Hardware Analysis for Mesh-Connected
Processors

Wu Jigang, Thambipillai Srikanthan, Schröder Heiko 442

Author Index . 447

Author Index

Abawajy, J.H. 165, 184
Arul, Joseph M. 257
Aung, Khin Mi Mi 73

Badia, Rosa M. 214
Basri, Erhan 11
Buyya, Rajkumar 60

Cao, Jiannong 246
Carpenter, Bryan 429
Casey, John 50
Cela, José M. 214
Cérin, Christophe 132
Chang, Chia-Fu 315
Cheng, Hsiang-Yao 315
Chen, Wenguang 293
Chuang, Wang 159
Coddington, P.D. 406

Dines, Eric 125

Farivar, R. 287
Fazeli, M. 287
Feng, Dan 240
Ferreto, Tiago 232
Fox, Geoffrey 93, 429
Frenz, Stefan 23
Fu, Haohuan 435

Goeckelmann, Ralph 23
Goscinski, Andrzej 118, 125, 149, 204
Gregorio, J.A. 396
Grove, D.A. 406
Guan, Zhanpeng 370

Heiko, Schröder 442
Hsu, Chia-Wen 315
Hsu, Ching-Hsien 40, 83, 315
Huang, Jiumei 34
Hung, Chung-Yun 257
Hung, Sheng-Shiang 315
Hwang, Grace J. 257

Ilavarasan, E. 193
Ilushechkina, Ljudmila 11
Izu, C. 396

Jia, Weijia 435
Jigang, Wu 442
Jin, Hai 103

Kaplan, Ali 93
Koh, Melvin 351
Koskas, Michel 132
Kostin, Alexander 11

Labarta, Jesús 214
Lanham, E.J. 34
Lee, DongWoo 225
Lee, Han-Ku 429
Lee, Jong Sik 416
Levy, David 326, 336
Li, Kuan-Ching 40, 83, 315
Lim, Sang Boem 93, 429
Lin, Eric 257
Lin, Guan-Hao 83
Liu, Chun-Chieh 315
Liu, Fengjung 1
Liu, Hengzhu 267
Li, Yin 112
Long, Dongyang 370
Lottiaux, Renaud 23

Ma, Fanyuan 112
Mahilmannan, R. 193
Maloney, Andrew 118
Messig, Michael 149
Miguel-Alonso, J. 396
Morin, Christine 23
Mo, Ze-Yao 174

Otero, Beatriz 214

Pallickara, Shrideep 93
Pan, Yu-Hwa 315
Park, Jong Sou 73
Park, Kiejin 73
Peng, Liang 351
Pierce, Marlon 93

Qinxue, Jin 159

448 Author Index

Ramakrishna, R.S. 225
Ren, Ren 422
Rose, César De 232

Sarbazi-Azad, H. 287
Schikuta, Erich 277
Schoettner, Michael 23
Schulthess, Peter 23
See, Simon 351
Seneviratne, Sena 326, 336
Shen, Ji 435
Shi, Wei 357
Song, Jie 351
Srikanthan, Thambipillai 442
Sun, Jiachang 301

Tang, Yu 267
Tan, QingPing 139
Tao, Zhan 345
Thambidurai, P. 193

Valuev, Ilya 309
Venugopal, Srikumar 60

Wang, Changji 370
Wang, Hsiao-Hsi 315
Wang, Tao 293
Wong, Adam K.L. 204
Wu, Dan 370
Wu, Song 103
Wu, Weigang 246

Xiang, Yang 357
Xiao, Yong 139
Xingshe, Zhou 345
Xiong, Muzhou 103
Xu, Cheng-Zhong 246
Xu, Shiming 293

Yan, Chen 345
Yang, Chao-Tung 40, 83, 315
Yang, Chu-sing 1
Yang, Guang-Wen 174
Yang, I-Hsien 40
Yang, Jin 246
Yang, Xuejun 267
Yang, YanPing 139
Yanping, Chen 159
Yu, Shui 376

Zeng, Lingfang 240
Zengzhi, Li 159
Zhang, Bao-Yin 174
Zhang, Liang 112
Zhang, Yimin 293
Zhang, Yingying 34
Zhao, Ying 34
Zheng, Wei-Min 174
Zheng, Weimin 293
Zhigang, Liao 345
Zhongwen, Li 363
Zhou, Haifang 267
Zhou, Wanlei 34, 50, 357, 376
Zhu, Shihua 422
Zhu, Weiping 386

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 1 – 10, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Improving Concurrent Write Scheme in
File Server Group

Fengjung Liu1 and Chu-sing Yang2

1 Department of Management Information Systems, Tajen University,
Pingtung, 907, Taiwan

fjliu@mail.tajen.edu.tw
2 Department of Computer Science and Engineering, National Sun Yat-sen University,

Kaohsiung, 80424, Taiwan
csyang@cse.nsysu.edu.tw

Abstract. The explosive growth of the Web contents has led to increasing at-
tention on scalability and availability of file system. Hence, the ways to im-
prove the reliability and availability of system, to achieve the expected reduc-
tion in operational expenses and to reduce the operations of management of sys-
tem have become essential issues. A basic technique for improving reliability of
a file system is to mask the effects of failures through replication. Consistency
control protocols are implemented to ensure the consistency among replicas. In
this paper, we leveraged the concept of intermediate file handle to cover the
heterogeneity of file system and proposed an efficient data consistency control
scheme supporting dependence checking among writes and management of out-
of-ordered requests for file server group. Finally, the results of experiments
proved the efficiency of the proposed consistency control mechanism. Above
all, easy to implement is our main design consideration.

1 Introduction

The explosive growth of the Web contents has led to increasing attention on scalabil-
ity and availability of file system. A basic technique for improving reliability of file
system is to mask the effects of failures by replication. There are two major ap-
proaches of building a highly reliable file system: hardware replication approach and
software replication approach. In a distributed environment, it is not always necessary
to use special hardware for improved reliability. The computers connected by the
high-speed network are a natural resource of duplicates. The software replication
approach replicates file systems on workstations in the network. Consistency control
protocols are designed to ensure the consistency among replicas.

2 Related Works

Many Distributed File systems, such as intermezzo[1], Coda[2], Deceit[3], Ficus [4],
RNFS[5] and Pangaea[6], implemented reliable file system services through software

2 F. Liu and C.-s. Yang

replication approach. In particular, FSG[7,9,10], RNFS and Deceit are NFS-based
systems. JetFile[8] and Coda are the instances of multicast-based file systems.

2.1 Overviews of Network File System

The Network File System, NFS, is the most popular distributed file system developed
by SUN Microsystems. Each server computer can serve an arbitrary number of the
sub-tree in its local file system. Clients are able to mount the exported sub-trees, link-
ing then to its own file system, using the same semantics valid while mounting physi-
cal local devices. Its main features are

I. It is a "stateless" protocol. A server does not need to maintain any proto-
col state information about any of its clients to function correctly.

II. The NFS protocol is idempotent. Because of this and the statelessness
property of NFS, what a client has to do for recovery from the crashed
server is simply trying the failed RPC until the server reappears.

III. A client accesses a file using a handle, called fHandle, obtained from the
server as a result of a LOOKUP operation.

IV. Updates are synchronous with respect to failures. If a write RPC com-
pletes, the client is assumed that data has been written. Again, this is a
property not met by all NFS implementations.

Because of the stateless property of NFS, it could reduce the overhead of recovery
after system crashing and make our implementation easier.

2.2 Multicast

In IP multicast [11] there are 228 (2112 in IPv6) distinct multicast channels. Channels
are named with IP addresses from a subnet of the IP address space. IP packets are
only delivered with best effort. To multicast a packet, the sender uses the name of the
multicast channel as the IP destination address.

Scalable Reliable Multicast, SRM, [12] is designed to meet only the minimal defi-
nition of reliable multicast, i.e., eventual delivery of all data to all group members. As
opposed to ISIS [13], SRM does not enforce any particular delivery order. Delivery
order is to some extent orthogonal to reliable delivery and can instead be enforced on
top of SRM. SRM is logically layered above IP multicast and also relies on the same
lightweight delivery model. To be scalable, it does not make use of any negative or
positive packet acknowledgements, nor does it keep any knowledge of receiver group
membership. Applications will often be able to recover after a period pf packet loss
by only requesting to current data. Thus, it is not always necessary to catch up on
every missed application data packets.

3 System Design

In system design, we assumed the fail-stop property be approximated by the kernel
and the hardware. Additionally, we also assumed that the servers are connected by a
Local Area Network and the network is not subject to partitions.

 Improving Concurrent Write Scheme in File Server Group 3

3.1 Overview of File Server Group, FSG

In designing system, the collection of replicated servers is treated as a group, assigned
a group IP address. The IP address will be used by the underlying multicast protocol
to deliver messages to all servers in this group. The system model is shown in Fig. 1.
The nodes in this model are not limited to be homogeneous processors.

Web Server
(w3)

NFS Client

File server group 1 File server group 2

Web Server
(w2)

NFS Client

Web Server
(w1)

NFS Client

Fig. 1. System Model

In FSG system, a user on the client machines uses the "mount" command to con-
nect to the sever group. The main difference from the traditional UNIX mount com-
mand is that the "server:pathname" parameter is replaced by "multicast IP ad-
dress:pathname". An example is made below, which [aa.bb.cc.dd] is broadcast IP
address, /usr1 is an exported directory in server group and /mnt is the mount
directory.

Syntax :
#mount [-F nfs] [-mrO] [-o suboptions] server:pathname mount_point
Example :
 #mount aa.bb.cc.dd:/usr1 /mnt

After the client is connected the server group, the user can read/write files in the
replicated servers just like normal UNIX local files. In UNIX system, users perform
read/write operations through file handles, fhandle. Each opened file is assigned a
fHandle which is a unique file index assigned by the server to identify an opened file.
Since files are replicated in the FSG system, each replicated server will generate its
own fHandle for that opened file. However, each client can only recognize one. To
solve this problem, we leveraged the concept of intermediate file handle, I_fHandle,
proposed previously in papers [7,9]. The illustration of the scenario of the new mount
procedure is not repeated here for the space limitation.

3.2 The Structure of Mapping Table

The traditional content of a file handle is composed of device number, the inode num-
ber, and a generation number for the inode. Obviously, it is machine-dependent. So,
we proposed the intermediate file handles to mask the heterogeneity of file systems.
An I_fHandle consists of 4 items, client's IP address, a mount number, a sequence

4 F. Liu and C.-s. Yang

number and an incremental number. The Client_IP_addr is used to distinguish differ-
ent clients. The Seq_number and the Mount_number respectively represent different
files in the mount directory and the order of different mount. The Inc_number item is
to represent different components in the multi-component LOOKUP request
[14,20,21].

Each replicated server maintains a mapping table to map I_fHandle into corre-
sponding fHandle. While a client tries to mount a remote directory, it has to issue
firstly a mount command to the server group. As receiving the mount request from a
client, the server creates an Entry Table for the client as shown at the most left hand
side of Fig. 2. Within the Entry Table, the LOOKUP column is used to keep the
latest token for LOOKUP requests. To ensure that the unique and consistent
I_fHandle be generated in each server, the LOOKUP operations must be performed
sequentially.

In the mapping table for each client, it contains two items, I_fhandle and fhandle.
In general, a file server uses the fhandle to locate the corresponding information in the
target table. A file server used the Out_Token field in the target table to keep the latest
updated tokens of each files and the name field to represent the file/directory name.
The Done_Token field is deployed to record the maximum token of completed re-
quests for the implementation of consistency control scheme.

Intermediate

I_fh1

I_fh2

I_fh3

Real

fh1

fh2

fh3

Intermediate

I_fh1

I_fh2

I_fh3

Real

fh4

fh5

fh6

Intermediate

I_fh1

I_fh2

I_fh3

Real

fh1

fh2

fh4

A Target Table for real file handle

A Mapping Table for each Client

Clients

140.117.58.1

140.117.58.2

140.117.58.3

Lookup

7

8

4

Pointer

0

1

2

An Entry Table

fhandle

fh1

fh2

fh3

fh4

fh5

fh6

name

/

#1/home

#2/joo

#3/text1.dat

#3/text2.dat

#3/text3.dat

Out_Token

1

2

3

18

15

7

Done_Token

1

2

3

16

15

7

Fig. 2. The structure of a Mapping Table

3.3 The Process of a GETTOKEN Request

In this section, we illustrated how the sequencer constructs the tokens for
GETTOKEN requests. Since NFS is an UDP-based protocol, timeout and retransmis-
sions are used to take care of lost messages and transient network failure. However,
retransmissions can cause the same request to be executed twice on the server and this
is unacceptable for non-idempotent requests. A skill to detect duplicate requests is to
package token numbers into all request messages.

 Improving Concurrent Write Scheme in File Server Group 5

Table 1. RPC request list of a File Server Group

RPC request Action Nature Idempotent
GETATTR To get file attributes Unicast Yes
SETATTR To set file attributes Multicast Yes
LOOKUP To look up file name Multicast No
READLINK To read from symbolic link Unicast Yes
READ To read from file Unicast Yes
WRITE To write to file Multicast Yes
CREATE To create file Multicast Yes
REMOVE To remove file Multicast No
RENAME To rename file Multicast No
LINK To create link to file Multicast No
SYMLINK To create symbolic link Multicast Yes
MKDIR To create directory Multicast No
RMDIR To remove directory Multicast No
READDIR To read from directory Unicast Yes
STATFS To get file system attributes Unicast Yes
GETTOKEN To get a token for write Multicast No
SYNC To sync. Server group. Multicast Yes

Rq∈CRITICAL

Rq==LOOKUP

Last_Token>
Last_critical_T

Cur_T.Maj_seq=O_counter++;
Cur_T.Dep=Last_critical_T;
Last_critical_T=Cur_T.Maj_seq;

Cur_T.Maj_seq=O_counter++;

Last_Token=Entry[Client].Lookup;
Cur_T.Min_seq=0;

Entry[Client].Lookup++;

Cur_T.Min_seq=upper(S/Block);
Last_Token=SeekDep(I_fh);

Cur_T.Dep=Last_Token;Cur_T.Dep=Last_critical_T;

Update_Dep(I_fh,O_counter);

GETTOKEN(Proc_type Rq, I_fhandle I_fh,int S)

Received by Sequencer

Yes

Yes

Yes

No

No

No

Return Cur_T;

Fig. 3. Flow Chart of a GETTOKEN procedure of Mode 2 in the Sequencer

In Table 1, these RPC calls are classified into 2 types, idempotent and non-
idempotent. Before all of update requests including LOOKUP request are performed,
they must issue a GETTOKEN request to ensure these requests be executed in the
same order. For simplicity, these are restricted to be executed sequentially. However,

6 F. Liu and C.-s. Yang

such a simple scheme causes the poor performance. Therefore, based on the token-
based mechanism, we proposed an efficient consistency control scheme. We classi-
fied these update requests in Table 1, into two sets, CRITICAL and DEPENDENCY.
The servers cannot decide efficiently the dependency of requests in the CRITICAL
set with merely message header. But, the target files of requests in the
DEPENDENCY set are determinate. These sets are listed below.

Set CRITICAL ={REMOVE, RENAME, LINK, MKDIR, RMDIR, GETTOKEN}
Set DEPENDENCY ={SETATTR, LOOKUP, WRITE, CREATE, SYMLINK}

typedef struct Token {
 int Gen_Number;

 int Maj_Seq;
 int Min_Seq;

} Token;

typedef struct Out_Token {
 Token Out;
 Token Dep;

} Out_Token;

int Block; //file system ‘s Block Size or MTU considered
int SeekDep(I_fhandle I_fh); //To return the out_token in Target Table with

I_fh.
Update_Dep(I_fhandle I_fh, Token T); //Update the Out_token in Target Table
Out_Token GETTOKEN(Proc_type Rq,I_fhandle I_fh, int S);
 // Proc_type R : NFS operation type;
 //I_fhandle I_fh : which file a client want to access.
 // int S: Data Size
Token Last_critical_T; // The last token assigned to CRITICAL requests.
Out_Token Cur_T; // GETTOKEN() procedure return to caller
Token Last_Token;
Entry[clients]; // Entry table for the client’s state as shown in Fig. 3

The processing of a GETTOKEN procedure in the sequencer is shown in Fig. 3.
When receiving a GETTOKEN request, the sequencer will firstly check if Proc_type
parameter, Rq, is a CRITICAL request. If true, the O_counter increases one, the
Cur_T.Out. Maj_Seq is assigned with the O_counter, the Cur_T.Dep is set to the
Last_critical_T, assigned to last CRITICAL request and the Last_critical_T is set to
the O_counter. At last, the Cur_T is returned. Otherwise, if Proc_type parameter, Rq,
is a LOOKUP request, the Cur_T.Dep is set to the last token, which the sequencer
ever dispatched for LOOKUP request, and update the lookup field of the client’s entry
table in Fig. 3 with the new token, Cur_T.Out. Else, the Out_Token counter, the last
token ever assigned for accessing the I_fh, will be found out in the target table and the
Cur_T.Dep is assigned with the maximum of the Out_Token and Last_critical_T.
Then, if the required data size is greater than 0, the sequencer will set the minor se-
quence number, Cur_T.Min_seq, to upper(Required Size/Block). Finally, the Cur_T
is returned to the caller.

3.4 Consistency Control Mechanism

Concurrent write sharing is achieved in some variants of NFS [15,16,17,18]. The
monolithic server system [7] suffered from the poor system utilization due to the lack

 Improving Concurrent Write Scheme in File Server Group 7

of dependence checking among writes and management of out-of-ordered requests.
Based on the deployment of control window [10], there are 3 modes designed to keep
the data consistency among replicas and illustrated below:

Mode 1: Strictly global sequential write scheme
In this mode, proposed previously in [7], the Sequencer generates tokens for
each GETTOKEN requests without considering which file or directory is ac-
cessed. And, each server executes sequentially each WRITE requests. Such a
scheme is simple and easy to implement but gets poor performance.

Mode 2: Sequential write scheme
 In Mode 2, proposed in [10], the Sequencer considers which file or directory to
be accessed to generate one Out_token for each GETTOKEN requests. In Fig.
4, it describes the executions of multiple writes with Mode 2. Client 1 acquires
an Out_Token (5,4) which means the request with Token (5) is executed only
when I_Counter is greater than Token(4). Thus, the Out_Token(6,2) can be exe-
cuted before Out_Token(5,4).

Server 1 Server 2
Sequencer

Client 1

At least
One reply

GETTOKEN()

Client 2

GETTOKEN()

Reply TOKEN(5,4)

At least
One reply

I_Counter=4
O_Counter=4

I_Counter=4
O_Counter=5

Reply TOKEN(6,2)

Write with Token(5,4) Write with Token(6,2)

I_Counter=4

I_Counter=4

I_Counter=4
O_Counter=6

Execute& Reply
I_Counter=6

Execute&Reply
I_Counter=4

Fig. 4. The executions of multiple WRITE requests. (Mode 2)

Mode 3: Concurrent write scheme
The new consistency control scheme in Fig. 5 is designed to support “concur-
rent write” on the server side. It mainly utilized the idempotent property of NFS
write operations. While an idempotent write request comes, the server will
check if the Dep token is completed or not. If done, the server will execute this
request ahead and check if any executed ahead requests with the greater tokens
exist, which updated the same blocks as the current request did. If exists, the
status of these requests are set to Dirty. That is, if the Done_token field in Tar-
get Table is greater than the current token, it means the current update request
may be conflict with the executed ahead update requests. The executed ahead

8 F. Liu and C.-s. Yang

Updates are set to Dirty. In this mode, its main difference of the GETTOKEN
processing from Mode 2 is the Dep token is set to the latest token, ever assigned
to last CRITICAL requests, not the token acquired for the same file.

I_counter= 0

Idempotent Request

Executed

Dirty

Exe Token: (Dep token, Seq token)
$file handle
#block_number

I_counter= 1

(0,8)$1#2(0,1)$1#1

I_counter= 1

(5,8)$1#2(0,8)$1#2(0,5)$1#2(0,1)$1#1

(0,1)$1#1 (0,5)$1#2 (0,8)$1#2

(a)

(b)

(c)

(a). Two WRITEs with (0,1) and (0,8) tokens arrive and attempt to write different blocks at same file.

They are independent, so they can be executed individually

(b). One WRITE with (0,5) token arrives and attempts to write block 2 in a file whose handle is 1.

(c). The server will look forward to check if the assess area is same and set the status of request to dirty.

Fig. 5. Examples of concurrent write

4 Experimental Results for Consistency Control Schemes

Due to the synchronization property of RPC calls, each client needs to send-and-wait
for each requests processing. On our experimental programs, the average time for
writing a 200K-byte file and the averaged RPS, a client contributing to a server, are
shown in Table 2.

Table 2. The averaged time and RPS for a client contributing to a server on writing a 200K-
byte file. (Timeout=200ms)

File Size (byte) Avg. RPS Time (sec)
200K 66.7 3.0

In this experiment, there are five Pentium-4 computers which are all homogenous,
running on Win2K server OS and connected with Fast Ethernet Switch. Within them,
two act as the clients, two as servers and one as the sequencer respectively. Each
client host is assigned separately with 2 and 4 processes as NFS Clients. Each client
writes sequentially 5 files, chosen randomly from 4 files. Additionally, the data size is
set to 1K bytes and the timeout value is 200 ms.

 Improving Concurrent Write Scheme in File Server Group 9

Table 3. The average time to write 5 200K and 400K bytes files using different consistency
control Modes. (Timeout=200ms)

Size (byte) No of Clients Mode 1(sec) Mode 2 (sec) Mode 3 (sec)
1 3.0 3.0 3.0
2 5.1 3.8 3.8

4 12.0 7.8 7.1
200k

8 68.7 12.8 10.6

1 6.0 6.0 5.9

2 9.1 8.2 7.3

4 25.1 15.4 14.1
400k

8 181.2 24.0 22.9

The average time to write 5 200K/400K bytes files using different consistency con-
trol modes are shown in Table 3. The 5 files are randomly selected from previously
installed 10 files in client hosts. It explains that the more the number of clients in-
crease, the worse the access time using strictly global sequential write scheme, Mode
1, gets. But, the Mode 2 and Mode 3, which support dependence checking, have much
better performance than Mode 1.

5 Conclusion

In this paper, we had leveraged the concept of intermediate file handle to cover the
heterogeneity of replicated file system. Based on this concept, a decentralized consis-
tency control scheme is designed to achieve concurrent writing and improvement of
utilization in File Server Group. The results of experiment revealed that the new con-
sistency control schemes, Mode 2 and Mode 3, are able to improve the system effi-
ciency. As illustrated in the paper [19], most instances of write sharing can be pre-
dicted easily, and they demand consistency only within a window of minutes. Thus, in
FSG system, the SYNC request is deployed to keep the consistency among duplica-
tion when an out-of-ordered request comes. Above all, easy to implement is our main
design consideration.

References

1. Peter J. Braam, “File Systems for Clusters from a Protocol Perspective”, http://www.inter-
mezzo.org

2. M. Satyanarayanan, J.J. Kistler, P.Kumar, M.E. Okasaki, E.H. Siegel and D.C.Steere
"Coda: A highly available file system for a distributed workstation environment" IEEE
Transactions on Computers, 39(4), pp.447-459, April 1990

3. A. Siegel, K. Birman and K. Marzullo. "Deceit: A flexible distributed file systems" In
Summer 1990 USENIX Conference, pages 51-61, Anaheim, CA, June 1990

10 F. Liu and C.-s. Yang

4. R.G. Guy, J.S. Heidemann, W. Mak, W. Page and G.J. Popek "Implementation of the Fi-
cus replicated file system". In Proceedings of Summer 1990 USENIX Conference, June
1990, Pages 63-71

5. M.M. Leboute and Taicy Weber, “A reliable distributed file system for UNIX based on
NFS“, UFRGS, Brazil, IFIP International Workshop on Dependable Computing and Its
Applications (DCIA 98) January 12 - 14, 1998, Johannesburg, South Africa

6. Yasushi Saito and Christos Karamanolis, “Pangaea: a symbiotic wide-area file system,”
ACM SIGOPS European Workshop, Sep 2002.

7. C. S. Yang, S. S. B. Shi and F. J. Liu, “The Design and Implementation of a Reliable File
Server”, Newsletter of the Technical Committee on Distributed Processing, summer 1997.

8. Bjorn Gronvall, Assar Westerlund, and Stephen Pink. “The design of a multicast-based
distributed file system”. In Proc. of Operating Systems Design and Implementation, pages
251-264, 1999.

9. F.J.Liu and C.S.Yang, “THE DESIGN AND ANALYSIS OF A HIGHLY-AVAILABLE
FILE SERVER GROUP”, IEICE Transactions on Information and System, Vol.86-E,
No.11, pp. 2291-2299, 2003.

10. F.J.Liu, C.S.Yang and Y.K.Lee, "The Design of An Efficient and Fault-tolerant Consis-
tency Control Scheme in File Server Group", IEICE Transactions on Information and Sys-
tem, Vol.E87-D No.12, pp.2697-2705, 2004.

11. S.Deering, Host Extensions for IP Multicasting, RFC 1112, Internet Engineering Task
Force, 1989.

12. S.Floyd, V. Jacobson, C.Liu, S. McCanne, L.Zhang, A Reliable Multicast Framework for
Light-weigh Sessions and Application Level Framing, IEEE/ACM Transactions on Net-
working, 5(6), Dec. 1997.

13. K.Birman, A.Schiper, P.Stephenson, Light-weight Causal and Atomic Group Multicast,
ACM Transactions on Computer Systems, 9(3), Aug. 1991.

14. The NFS Version 4 Protocol.
15. M.Nelson, B.Welch, and J.Ousterhout. Caching in the Sprite Network File System. ACM

Transactions on Computer Systems, 6(1):pp.134-154,Feb.1988.
16. V. Srinivasan and J. Mogul. Spritely NFS: Experiments with Cache Consistency Protocols.

In Proceedings of the Twelfth ACM Symposium on Operating Systems Principles, pp. 45-
-57, Dec. 1989

17. J. Mogul, Recovery in Spritely NFS, Computing Systems, 7(2): pp. 201-262, 1994
18. Macklem, Rick, "Not Quite NFS, Soft Cache Consistency for NFS," Winter USENIX

Conference Proceedings, USENIX Association, Berkeley, CA, Jan. 1994.
19. Susan Spence, Erik Riedal and magnus Karlsson, “Adaptive consistency –patterns of shar-

ing in a networked world,” Technical Report HPL-SSP-2002-10, HP labs, Feb. 2002.
20. Callaghan, B., “WebNFS Client Specification,” RFC 2054, October 1996.

http://www.ietf.org/rfc/rfc2054.txt
21. Callaghan, B., “WebNFS Server Specification,” RFC 2055, October 1996.

http://www.ietf.org/rfc/rfc2055.txt

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 11 – 22, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Comparative Performance Study of Distributed
Mutual Exclusion Algorithms with a Class of

Extended Petri Nets

Alexander Kostin1, Ljudmila Ilushechkina2, and Erhan Basri1

1 Department of Computer Engineering, Eastern Mediterranean University,
Magusa, via Mersin 10, Turkey

{Alexander.Kostin, Erhan.Basri}@emu.edu.tr
2 Department of Software Engineering, Moscow Institute of Electronic Technology,

Zelenograd, Moscow, Russia
Ljuda_il@fromru.com

Abstract: A few algorithms of distributed mutual exclusion are discussed, their
unified model in terms of a finite-population queuing system is proposed, and
their simulation performance study is presented with the assumption that they
use multicast communication if possible. To formally represent the algorithms
for simulation, a class of extended Petri nets is used. The simulation was done
in the simulation system Winsim based on this class of Petri nets.

1 Introduction

Distributed mutual exclusion serializes the access of a group of processes, running in
different nodes of a distributed system, to a shared resource (SR), with the exclusive
use of SR by no more than one process at a time. The part of the process program
which deals with SR is usually called a critical section.

During more than past 20 years, a number of approaches and solutions to the
problem have been proposed. One of the first solutions is due to Lamport [1]. In
subsequent works of Ricart and Agrawala [2], Maekawa [3], Suzuki and Kasami [4],
Sanders [5], Trehel and Naimi [6], Raymond [17], Agrawal and Abbadi [7], and
Singhal [8], new schemes and algorithms for distributed mutual exclusion were
described, and the theoretical foundations of the problem were laid down. Different
classification frameworks and comparative analysis of distributed mutual exclusion
algorithms proposed up to the beginning of 1990’s can be found in [9], [10] and [11].

Since the middle of 1990’s, more distributed mutual exclusion algorithms have
been developed. Some of them are extensions or modifications of the previously
designed algorithms [12], [13], while others represent new proposals and schemes
[14], [15].

Since the theoretical analysis of distributed mutual exclusion algorithms often does
not yield exact comparative information, much attention of researchers was paid to
simulation studies [11], [16]. As a rule, in analytical and simulation models of
distributed mutual exclusion algorithms, the unicast (point-to-point) mode of
communication between processes was assumed. The use of this mode was dictated

12 A. Kostin, L. Ilushechkina, and E. Basri

by the state of the network communication technology of the past. The progress in
this area opens new possibilities for construction of distributed mutual exclusion
algorithms. In particular, the use of multicast communication [19], [20] gives the
possibility to make many previously developed mutual exclusion algorithms much
more efficient with respect to communication traffic.

In this paper, four often cited distributed mutual exclusion algorithms are analyzed
and simulated with the assumption that they use multicast communication between
involved processes where possible, instead of unicast communication as was assumed
by the authors. For the study, the algorithms of Ricart and Agrawala [2], Suzuki and
Kasami [4], Singhal [8], and Naimi, Trehel and Arnold [12] were chosen. In addition,
a novel distributed mutual algorithm is described and compared with the above listed
algorithms. All the algorithms are considered in terms of a finite-population queuing
system. For the description of simulation models, a class of extended Petri nets was
used, and simulation was carried out in a simulation system based on this class of
Petri nets.

The rest of the paper is structured in the following way. Section 2 presents a system
model and assumptions used in the analysis and simulation of algorithms of
distributed mutual exclusion. Section 3 outlines four published algorithms of
distributed mutual exclusion. In Section 4, a novel distributed mutual exclusion
algorithm is described in some detail. Finally, Section 5 contains the results of
simulation study of all the algorithms and the discussion of these results.

2 System Model and Assumptions

When a group of N processes competes for the mutually exclusive use of some shared
resource (SR), the whole system can be logically modeled as a finite-population
queuing system with N clients and one non-preempted SR server. According to this
model, each client process performs some application-specific task as a sequence of
steps (steps of main work or thinking). At the end of each step of main work, the
process generates a request for SR, sends it to the SR server for subsequent handling,
and goes to sleep. Handling of the request by the SR server can be viewed as the use
of SR by the process. The SR server extracts requests from its input queue for
servicing according to the FIFO order or based on some priority scheme that depends
on the concrete algorithm. After the servicing of the request has been completed, the
SR server sends its response back to the client to awake it and to force it to proceed
with the next step of main work. It should be noted that, in the distributed mutual
exclusion system, there is actually no explicit SR server. The functionality of the
server is carried out by a client process every time its request for SR is granted.

The model of distributed mutual exclusion in terms of a finite-population queuing
system simplifies analysis and comparison of different algorithms, because well
known performance measures of a queuing system can be used to characterize them.
However, having the same general model in terms of a queuing system, distributed
mutual exclusion algorithms differ in the way the clients’ requests are actually
communicated to the SR server in the underlying network and how the server informs
the clients about the completion of the service. Therefore, a queuing system can be
considered as an idealized model of distributed mutual exclusion algorithms. Since, in

 A Comparative Performance Study of Distributed Mutual Exclusion Algorithms 13

theory, queuing systems are considered as centralized objects, they do not take into
account communication overheads. This means, that distributed mutual exclusion
algorithms will always have longer response time than the corresponding centralized
queuing system.

In this study, it is assumed that processes in a distributed system are identical in that
the probability distributions for a step of main work (or thinking step) and for a step
of using SR are the same for all processes. Without loss of generality, we assume also
that these probability distributions are exponential, with mean values chosen to get the
desired load of the SR server. With these assumptions, the idealized model of
distributed mutual exclusion is an M/M/1/N/N queuing system [18]. The assumption
of exponential probability distributions is necessary only to validate the simulation
models. The mutual exclusion algorithms under study do not rely on this assumption
in their work.

Finally, it is implicitly assumed in all algorithms under study that processes use
reliable multicast for communication [19], [20]. Semantics of reliable multicast is
defined in [21].

3 Distributed Mutual Exclusion Algorithms Chosen for the Study

This section outlines distributed mutual exclusion algorithms of Ricart and Agrawala,
Suzuki and Kasami, Singhal, and Naimi, Trehel and Arnold chosen for the study in this
paper. These algorithms were chosen, first of all, because they are frequently cited in
literature and often used for comparative purposes. The second reason is that they have
been described by their authors in full detail which is essential for the development of
their correct simulation models. One more reason is that these algorithms have been
carefully simulated in [11] with the use of unicast communication, so that it would be
interesting to see the difference in the performance of these algorithms when they use
multicast communication where possible.

The permission-based algorithm of Ricart and Agrawala [2] is probably the most
often cited distributed mutual exclusion algorithm. It assumes that each involved
process knows the number N of all processes in the group. When a process i wants to
access an SR, it sends a REQUEST message to other N – 1 processes. The message
contains the identifier of the sending process and a sequence number constructed
according to the Lamport’s timestamp [1] that is used, together with the process
identifier, in a priority resolution scheme. Every other process j i, after receiving a
REQUEST message, immediately sends a REPLY message to process i or stores the
received message in its queue for the deferred reply. Process i may access SR only
after it has received N – 1 replies from other processes. If the REQUEST message
can be sent in the multicast mode, then the algorithm will need exactly N messages
per use of SR: one multicast REQUEST message and N – 1 unicast REPLY messages.

The algorithm of Suzuki and Kasami [4] belongs to the class of token-based
algorithms. A token is represented by a PRIVILEGE message. A message of type
REQUEST is used to inform all processes in the group about the desire of this process
to access SR. In addition to these two types of messages, the algorithm uses, in each
involved process, two one-dimensional integer arrays RN and LN of size N each.
These two arrays are necessary to order requests from different processes and to keep
the ordered requests in a system-wide queue passed in each PRIVILEGE message. If

14 A. Kostin, L. Ilushechkina, and E. Basri

it happens that the process, wanting to access SR, keeps the PRIVILEGE token
already, then no request message is sent in the network, and the process can
immediately start using SR. With the use of unicast communication, the algorithm
requires approximately N messages per use of SR. But when the REQUEST message
is sent in the multicast mode (as was done in our simulation experiments), the
algorithm will require less than two messages per use of SR.

The permission-based algorithm of Singhal [8] uses, in each involved process, a
dynamic information structure that evolves with time as processes learn about the
state of the whole system. The information structure in each process i is actually a
particular implementation of a general information structure proposed in [5]. It
consists of the request set Ri and the inform set Ii, with the first set of identifiers of the
processes from whom process i must get permission before accessing SR, and with
the second set of identifiers to which process i must send its permission to access SR.
The algorithm works with two types of messages – a request for SR and a reply. The
number of messages sent in the network depends on the load of SR and varies from N
– 1 for low load to 3(N – 1)/2 for high load, with N processes. Since request and reply
messages are sent selectively according to the request set and inform set, the
algorithm cannot benefit from multicast mode of communication.

Finally, the token-based algorithm of Naimi, Trehel and Arnold [12] uses a
dynamic rooted tree to pass a token between processes. Its first version was published
in [6]. Initially, all involved processes are structured in a simple tree, with process 1
as father in the root and all other processes as children, with a pointer to the root.
During the work of the algorithm, the configuration of the tree of processes will vary,
but every time each process knows its new father process. The algorithm keeps the
distributed queue of requests and uses two types of messages – the REQUEST for SR
and TOKEN. Every time a process finishes the use of SR, it will send the TOKEN
message to its next process in the distributed queue. It is claimed that the algorithm
requires O(log N) messages per use of SR. However, it cannot exploit multicast
communication to decrease the network traffic.

4 A Novel Algorithm of Distributed Mutual Exclusion

As all the algorithms outlined in the previous section, the proposed algorithm assumes
a reliable communication between involved processes. All its messages are
transmitted in the multicast mode. This means that communication between processes
is anonymous, so that each process needs to know only the group address. In contrast
with the above described algorithms, the proposed algorithm does not need to know
the number of processes in the group, although the knowledge of an approximate size
of the group can be used by the algorithm to improve its performance. It is assumed
also that each process in the group knows the approximate duration of its intended use
of SR and includes this information in its request. Further, each process uses a few
time-outs and delays and is capable to measure the passage of its time-outs and delays
with some accuracy.

The proposed algorithm uses three types of messages: a request for the SR
(message of type R), the SR is free (message of type F), and the SR is being used
(message of type E). Each process is either performing a step of main work, or
accessing the SR, or waiting for the SR to become free.

 A Comparative Performance Study of Distributed Mutual Exclusion Algorithms 15

Consider the behavior of some process P informally. After finishing a step of main
work, process P tests the current state of SR by the use of its local state variable
RSTA. If, from the point of view of process P, SR is not free or is being already
negotiated for the access by some other processes, process P will enter its waiting
state until SR becomes free.

If SR is free then the process multicasts, with some probability, a message R to
inform all other processes in the group about its desire to access SR and starts its time-
out T1. Probability of multicasting a message R is not fixed, it depends on the
approximate size of the group of processes and on the load of the SR server. Message R
includes the estimated duration of the intended use of SR. If, according to the calculated
probability, the process makes decision not to request SR, then it delays for some time
(slot time) and, after elapsing this time, can make a new attempt if SR is free. The
probabilistic decision helps reduce the competition for SR between processes and makes
the algorithm more scalable with respect to the number of processes in the group.

If, after transmission of the request message, process P did not receive any
conflicting message R from any other process during time-out T1, it deduces that no
other process intends to access SR and starts using SR. In this case, due to reliable
multicast, all other processes in the group receive the message R from P, learn the
estimated duration of the use of SR by P from this message, and set the corresponding
state of SR in their local variable RSTA accordingly. The duration of the use of SR
will be used by all other processes to calculate the upper limit of a crash-recovery
time-out T2. Process P, after finishing the use of SR, multicasts a message of type F
which forces all other processes in the group to set the free state of SR.

On the other hand, if process P receives at least one message R from some other
process during time-out T1, it understands that there is a conflict with another process,
and starts a random back-off delay T3. The same action will be done by each
conflicting process. After elapsing of T3, the behavior of process P and of all other
processes involved in the conflict, is determined by the state of SR as seen by each
conflicting process.

The detailed specification of the algorithm is presented in the form of a state
diagram in Fig. 1. States of the diagram have the following meaning: 0 – process is
performing a step of its main work (or thinking step); 1 – process is running time-out
T2; 2 – process is delaying during a slot time; 3 – process is delaying during time-out
T1; 4 – process is using SR (is in its critical section); 5 – process is delaying during a
random back-off interval T3.

In the diagram, expressions over transition arcs are predicates in terms of events,
logical statements, and logical variables. Expressions under transition arcs represent
actions performed by the algorithm if the corresponding logical expression over this
transition arc is true. There are three self-loops in states 0, 2 and 5 which are not
shown to save space for the figure. The first self-loop takes place when message of
type R or E is received, in this case the reaction is RSTA 2 and calc(T2). The
second self-loop corresponds to receiving of message F in the situation RSTA = 2,
with the reaction RSTA 0. Finally, the third self-loop is receiving message F in the
situation RSTA = 0, with the reaction warn(SR).

The events, predicates and logical variables have the following meaning: X – a
message of type X is received from some other process; elapsed (T) – delay or time-
out T elapsed; finished(main) – the process completed a step of its main work and
estimated the duration of the intended use of SR; finished (SR) – the process completed

16 A. Kostin, L. Ilushechkina, and E. Basri

the use of SR; SR – the process probabilistically decided to request SR; ~SR – the
process decided not to request SR; RSTA = s – state variable RSTA has value s.

Fig. 1. State diagram of the proposed distributed mutual exclusion algorithm

elapsed(T1) &
no msg R

 0 3 4
finished(main) & RSTA=0

↓R, start(T1) RSTA←1,

finished(SR)

RSTA←0, ↓F, start(main)

finished(main) &
RSTA=0 & ~SR

start(slot)

elapsed(slot) &
RSTA=0 & SR

↓R, start(T1)

elapsed(slot) &
RSTA=0 & ~SR

start(slot)

 1

finished(main)
& RSTA=2

start(T2)

↑R | ↑E

interrupt(T2),
RSTA←2,
calc(T2),

elapsed(slot)
& RSTA=2

↑F | elapsed(T2)
& ~SR

RSTA←0,
start(slot)

 2

↑F & ~SR

interrupt(T1),
start(slot)

↑E

interrupt(T1),
RSTA←2,
calc(T2), start(T2)

↑F & SR

interrupt(T1),
↓R, start(T1)

↑F | elapsed(T2) & SR

RSTA←0, ↓R, start(T1)

 ↑R

 remtime(SR), ↓E

 F

 error()

5

elapsed(T1) & msg R received

start(T3)

elapsed(T3) & RSTA=0 & SR

↓R, start(T1)

elapsed(T3) & RSTA=0 & ~SR

 start(slot)

elapsed(T3) & RSTA=2

start(T2)

R

count (R)

 E

error()

 A Comparative Performance Study of Distributed Mutual Exclusion Algorithms 17

The algorithm can perform the following actions when it transits from one state to
another: X – sending a message of type X (in messages of types R and E, the
protocol includes the estimated duration of use of SR and the remaining time of use of
SR, respectively); start (T) – starting a delay or time-out T; start (main) – calculating
the duration of a step of main work and starting the step; start (SR) – starting the use
of SR; interrupt (T) – interrupting time-out T; calc (T) – calculating the value of delay
or time-out T; remtime (SR) – calculating the remaining time of use of SR; count (X)
– counting received messages of type X; warn (SR) – outputting a warning message
“SR is free already”; error () – outputting an error message “Protocol error” and
exiting. Actions warn(SR) and error() are included for completeness. In the correct
behavior of the algorithm, these actions should never appear.

The state variable RSTA represents the process’s knowledge of the state of SR.
The variable can have the following values: 0 – SR is free ; 1 – SR is being used by
this process; 2 – SR is being negotiated by some other processes or it is being used by
some other process.

The algorithm uses two time-outs and two random delays: T1 – conflict-detection
time-out, T2 – deadlock-resolution and crash-handling time-out, T3 – back-off delay,
and T4 – so called p-persistence delay.

The choice of the values for these time-outs and delays is important for the correct
operation of the algorithm. The use of these time-outs and delays could be understood
from the informal description of the algorithm and from its state diagram. Due to
space limitation, a more detailed discussion of the time-outs and delays of the
proposed algorithm is omitted.

5 Performance Study

The performance study of the described algorithms was carried out with the use of
simulation in the system Winsim, based on a class of extended Petri nets [22], [23],
[25]. Being a universal algorithmic system, these nets support attributed tokens,
timing, control functions and data transformation. With these Petri nets, the model is
structured as a collection of interconnected elementary nets, each of which is
represented by a single transition with incident places. There are five different types
of elementary nets T, X, Y, G, and I, each type having strictly defined properties and
a graphical form of the involved transition. In particular, the elementary net of the
type T performs data transformation and delaying functions when its transition fires.
The elementary net of the type X is used to route a token from some input place to a
selected output place. The net of the type Y performs multiplexing of input tokens to
output places. The net of the type G combines the properties of nets of types X and Y.
Finally, the net of the type I implements the interruption of the fired transition. The
detailed description of this class of Petri nets is given in [23].

For simulation, each distributed mutual exclusion algorithm was represented in
Winsim as a collection of segments, with each segment expressing activity of one
process. All these segments were connected to a model of network of Ethernet type.
For all the algorithms under study, the simulation model of the network was the same.
According to this model, the time to transmit a message in the network was assumed
to be random, with the uniform probability distribution in the range (2, 4) ms. This is

18 A. Kostin, L. Ilushechkina, and E. Basri

in agreement with actual delivery time of frames of size about 500 bytes in a LAN of
Ethernet type [24].

As an example, the user manual of Winsim [23] contains the complete description
of a Petri-net-based simulation model of the Ricart and Agrawala algorithm. This
description includes the Petri net schemes of a process segment and a network
segment, their texts in the Model Description Language of Winsim, for three
involved processes, and a file of simulation parameters. Section 8 of the manual [23]
explains all the steps in the preparation of the model and presents the numerical
results of its running.

In the models of all algorithms, mean time of using SR 1/μ was fixed at 500 ms,
while mean time of a step of main work (or mean thinking time of a process) 1/ was

0.0

5.0

10.0

15.0

20.0

25.0

3 6 9 12 15 18 21

Number of processes

N
um

be
r

of
 m

es
sa

ge
s

pe
r

us
e

of
 S

R

Ricart & Agrawala
Singhal
Naimi et al
Suzuki & Kasami
Novel algorithm

0.0

5.0

10.0

15.0

20.0

25.0

30.0

3 6 9 12 15 18 21

Number of processes

N
um

be
r

of
 m

es
sa

ge
s

pe
r

us
e

of
 S

R

Ricart & Agrawala
Singhal
Naimi et al
Suzuki & Kasami
Novel algorithm

Fig. 2. Average number of messages per use of SR for low (a) and high (b) load

 (a)

 (b)

 A Comparative Performance Study of Distributed Mutual Exclusion Algorithms 19

varied to get three different loads of SR server – low (0.1), medium (0.5) and high
(0.9). To get the desired load of SR server, the value of 1/ was set using the known
expressions for a finite-population queuing system M/M/1/N/N [18]. For example,
with N = 3 processes and high load of 0.9, 1/ = 635 ms.

The following values of time-outs and random delays were fixed in simulation
experiments with the proposed novel algorithm: T1 = 20 ms, T2 is uniformly
distributed between 2T1 and 100 ms, T3 is uniformly distributed between T1/2 and
100 ms, and T4 is uniformly distributed between T1/2 and T1.

As performance measures of each algorithm, the average number of messages per
use of SR and the relative unfairness in the access of SR were used. The first
performance measure reflects the communication complexity of the protocol.

The second performance measure is intended to evaluate how the algorithm is
unfair to processes. Let r1, r2, .., rN be the numbers of the use of SR by N processes in
a simulation run of an algorithm. As a measure of relative unfairness of the algorithm,
the expression u = (rmax – rmin)/r* was used, where rmax and rmin are maximal and
minimal values among ri, and r* is the total average over all ri, i = 1, 2, …, N.

For each load, the number of involved processes N was varied as 3, 6, 9, …, 21.
The value Nmax = 21 was chosen to compare our simulation results with the published
results of simulation [11] where the algorithms outlined in Section 3 used only
unicast communication.

Since, from a simulation point of view, each algorithm under study can be considered
as a non-terminating system, only steady-state performance measures are of interest. To
neutralize the effect of the transient state, each simulation run was done long enough to
ensure that each process accesses SR about 5000 times. This corresponds to quite
narrow 95% confidence intervals (not shown in the presented results).

Graphs in Fig. 2 show, for each algorithm under study, the average number of
messages per use of SR versus the number of processes, for low and high loads.
Table 1 summarizes the average number of messages per use of SR, for N = 21
processes and three different loads – low, medium, and high. Table 2 contains
information on the relative unfairness of the algorithms, for the high load of an SR
server, with varying number of processes.

From the results of simulation, the following observations and conclusions can be
drawn:

1. Among the algorithms, outlined in Section 3, those of Ricart & Agrawala and
Suzuki & Kasami benefited most of all from the use of multicast communication.
With unicast communication, the number of messages per use of SR in the Ricart &
Agrawala algorithm is 2 (N – 1) [2], while with multicast communication this number
reduces to N.

2. Among the investigated algorithms, the algorithm of Suzuki & Kasami has the
lowest multicast communication traffic that is less than two messages per use of SR,
instead of N with unicast communication.

3. The algorithms of Singhal and Naimi et al. actually cannot exploit multicast
communication. With high load, the Singhal’s algorithm has higher communication
complexity than the algorithm of Ricart & Agrawala (see Fig. 2, b).

4. Although the algorithm of Naimi et al. does not benefit from multicast
communication, its average number of messages per use of SR grows very slowly
with the number of processes.

20 A. Kostin, L. Ilushechkina, and E. Basri

Table 1. Average number of messages per use of SR, for 21 processe

Load Algorithm
0.1 0.5 0.9

Ricart & Agrawala 21 21 21
Singhal 20.14 21.30 26.48
Naimi, Trehel & Arnold 3.62 3.72 3.96
Suzuki & Kasami 1.92 1.95 1.99
Novel algorithm 2.01 2.05 2.12

Table 2. Relative unfairness in the use of SR by processes, for high load (0.9)

Number of processes Algorithm
3 6 9 12 15 18 21

Ricart & Agrawala 0.007 0.015 0.017 0.046 0.043 0.079 0.068
Singhal 0.026 0.056 0.054 0.040 0.046 0.046 0.042
Naimi et al. 0.013 0.026 0.012 0.037 0.031 0.047 0.060
Suzuki & Kasami 0.100 0.128 0.114 0.084 0.081 0.085 0.089
Novel algorithm 0.018 0.012 0.013 0.032 0.023 0.033 0.034

5. With respect to communication complexity, the proposed novel algorithm is the
second best after the algorithm of Suzuki & Kasami. However, as Table 2 shows, the
relative unfairness of the use of SR is much higher in the Suzuki & Kasami’s
algorithm than in the proposed one since, in the former algorithm, processes with low
identifiers have a priority over processes with high identifiers. One more drawback of
the Suzuki & Kasami’s algorithm is that each its PRIVILEGE message carries varied-
size queue and array depending on the number of processes, so that this algorithm
does not scale well. In addition, the crash of a process that holds a PRIVILEGE will
result in the complete failure of this algorithm.

6. According to Table 2, relative unfairness depends on the number of processes,
but this dependence has no clear tendency. It was found that the algorithms, which
use process identifiers to resolve conflicting requests, give a preference to processes
with low identifiers. This is especially true for the algorithm of Suzuki and Kasami.

6 Conclusion

A few algorithms of distributed mutual exclusion were represented in terms of a
finite-population queuing system and their performance study was carried out with the
assumption that they use the multicast communication where possible. The algorithms
in the study are those of Ricart and Agrawala, Singhal, Naimi et al., Suzuki and
Kasami and a novel algorithm proposed in this paper. The models of these algorithms,
in the exact correspondence with their original description, were presented in terms
of a class of extended Petri nets. The models were run in the simulation system
Winsim based on these nets. The results of simulation provide detailed information

 A Comparative Performance Study of Distributed Mutual Exclusion Algorithms 21

for evaluation of performance of these algorithms and for their comparison when they
use multicast communication, instead of unicast communication.

References

1. Lamport, L.: Time, Clocks, and Ordering of Events in a Distributed System.
Communications of the ACM, vol.21, no.7 (1978) 558 – 565

2. Ricart, G. and Agrawala, A.K.: An Optimal Algorithm for Mutual Exclusion in Computer
Networks. Communications of the ACM, vol. 24, no. 1 (1981) 9 – 17

3. Maekawa, M.A.: N Algorithm for Mutual Exclusion in Decentralized Systems. ACM
Transactions on Computer Systems, vol. 3, no. 2 (1985) 145 – 159

4. Suzuki, I. and Kasami, T.: A Distributed Mutual Exclusion Algorithm. ACM Trans. on
Computer Systems, vol. 3, no. 4 (1985) 344 – 349

5. Sanders, B.A.: The Information Structure of Distributed Mutual Exclusion Algorithms.
ACM Transactions on Computer System, vol. 5, no. 3 (1987) 284 – 299

6. Trehel, M. and Naimi, M.: A Distributed Algorithm for Mutual Exclusion Based on Data
Structures and Fault Tolerance. Proc. 1987 Phoenix Conference on Computer and
Communications, IEEE Computer Society Phoenix (1987) 35 – 39

7. Agrawal, D and El Abbadi, A.: An Efficient and Fault-Tolerant Solution for Distributed
Mutual Exclusion Algorithm. ACM Trans. on Computer Systems, vol. 9, no. 1 (1991)
1 – 20

8. Singhal, M.: A Dynamic Information Structure Mutual Exclusion Algorithm for
Distributed Systems. IEEE Trans. on Parallel and Distributed Systems, vol. 3, no. 1 (1992)
121 – 125.

9. Raynal, M.: A Simple Taxonomy for Distributed Mutual Exclusion. ACM Operating
Systems Review, vol. 25, no. 2 (1991) 47 – 51

10. Singhal, M.: A Taxonomy of Distributed Mutual Exclusion. Journal of Parallel and
Distributed Computing, vol. 18, no. 1 (1993) 94 – 101

11. Chang, Y.-I.: A Simulation Study on Distributed Mutual Exclusion. Journal of Parallel and
Distributed Computing, vol. 33, no. 2 (1996) 107 – 121

12. Naimi, M., Trehel, M., and Arnold, A.: A Log (N) Distributed Mutual Exclusion
Algorithm Based on the Path Reversal. Journal of Parallel and Distributed Computing, vol.
34, no. 1 (1996) 1 – 13

13. Lodha, S. and Kshemkalyani, A.: A Fair Distributed Mutual Exclusion Algorithm. IEEE
Trans. on Parallel and Distributed Systems, vol. 11, no. 6 (2000) 537 – 549

14. Jayaprakash. S. and Muthukrishnan, C.R.: Permission-based Fault-tolerant Distributed
Mutual Exclusion Algorithm. International Journal of Computer Systems Science and
Engineering, vol. 14, no. 1 (1999) 51 – 56

15. Attiya, H. and Bortnikov, V.: Adaptive and Efficient Mutual Exclusion. Distributed
Computing, vol. 15, no. 3 (2002) 177 – 189

16. Makki, K., Been, K. and Pissinou, P.: A Simulation Study of Token-Based Mutual
Exclusion Algorithms in Distributed Systems. Int’l Journal in Computer Simulation, vol.
4, no. 1 (1994) 65 – 88

17. Raymond, K.: A Tree-based Algorithm for Distributed Mutual Exclusion. ACM
Transactions on Computer Systems, vol. 7, no. 1 (1989) 61 – 77

18. Banks, J., Carson, J.S., Nelson, B.L. and Nicol, D.M.: Discrete-Event System
Simulation, 3rd ed., Prentice-Hall (2001)

22 A. Kostin, L. Ilushechkina, and E. Basri

19. Hamad, A.M. and Kamal, A.E.: A survey of Multicasting Protocols for Broadcast-and-
Select Single-Hop Networks. IEEE Network, vol. 16, no. 4 (2002) 36 – 48

20. Maxemchuk, N.F.: Reliable Multicast with Delay Guarantees. IEEE Communications
Magazine, vol. 40, no. 9 (2002) 96 – 102

21. Hadzilacos, V. and Tueg, S.: Fault-Tolerant Broadcasts and Related Problems. In:
Mullender, S. (Ed.), Distributed Systems, 2nd ed., Addison-Wesley (1993) 97 - 145

22. Kostin, A.E. and Savchenko, L.V.: Modified E-Nets for Distributed Information
Processing System Performance Analysis. Automatic Control and Computer Sciences, vol.
22, no. 6 (1988) 27 – 35

23. Simulation System Winsim Based on Extended Petri Nets: User Manual, http:
//www.daimi.au.dk/PetriNets/tools/db/winsim.html

24. Held, G.: Local Area Network Performance: Issues and Answers, John Wiley & Sons
(1994)

25. Kostin, A. and Ilushechkina, L.: Winsim: A Tool for Performance Evaluation of Parallel
and Distributed Systems. LNCS, vol. 3261, (2004) 312 – 321

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 23 – 33, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Practical Comparison of Cluster Operating Systems
Implementing Sequential and Transactional Consistency

Stefan Frenz1, Renaud Lottiaux2, Michael Schoettner1,
Christine Morin2, Ralph Goeckelmann1, and Peter Schulthess1

1 Ulm University, 89069 Ulm, Germany
frenz@vs.informatik.uni-ulm.de

2 IRISA/INRIA, 35042 Rennes, France
renaud.lottiaux@irisa.fr

Abstract. Shared Memory is an interesting communication paradigm for SMP
machines and clusters. Weak consistency models have been proposed to
improve efficiency of shared memory applications. In a programming
environment offering weak consistency it is a necessity to worry about
individual load and store operations and about proper synchronization. In
contrast to this explicit style of distributed programming hared memory systems
implementing strong consistency models are easy to program and consistency is
implicit. In this paper we compare two representatives: Kerrighed and Plurix
implementing sequential and transactional consistency respectively. Kerrighed
is a single system image operating system (OS) based on Linux whereas Plurix
is a native OS for PC clusters designed for shared memory operation. The
measurements presented in this paper show that strong consistency models
implemented at the OS level are competitive.

1 Introduction

Many projects in the distributed systems area have aimed at simplifying the
development of applications. The proposed systems typically fall into two main
categories: message passing and shared memory approaches. Message passing
systems typically use explicit data distribution, exchange and synchronization, e.g.
MPI, RMI, .NET.

Shared memory libraries implement implicit communication and can automatically
guarantee consistency for all objects stored within the distributed shared memory
(DSM). For the latter numerous weak memory consistency models have been
proposed to minimize synchronization and improve efficiency [3]. Unfortunately,
these consistency models put an additional burden on the programmer. Explicit
synchronization primitives, like acquire and release, must be used very carefully and
the programmer has to reason about single load and store operations.

In this paper we describe and compare two Operating Systems (OS) implementing
a page-based DSM at the kernel level [1], [2], [5], [7]. Kerrighed is a single system
image OS based on Linux whereas Plurix is a native OS for PC clusters designed for
shared memory operation. Both OSs implement a strong consistency model.

24 S. Frenz et al.

Kerrighed implements sequential and Plurix transactional consistency. The
measurements discussed in this paper show that strong shared memory consistency
models can be efficient and convenient when implemented at the kernel level.

2 The Kerrighed DSM

Kerrighed is a single system image (SSI) operating system based on Linux for high
performance computing on clusters. For the users and programmers it creates the
illusion that a cluster is a single shared memory multiprocessor machine. The
Kerrighed DSM is based on a global memory management service implementing the
concept of containers.

The key idea is that a container creates the illusion to system services that the
cluster physical memory is shared as in an SMP machine. In a cluster, each node
executes its own operating system (OS) kernel, which can be coarsely divided into
two parts: (1) system services and (2) device managers. We propose a generic service
inserted between the system services and the device manager layers called container
[7]. Containers are integrated in the core kernel thanks to linkers, which are software
pieces inserted between existing device managers and system services and containers.

Several services, such as the virtual memory service, in a core kernel rely on the
handling of physical pages. Linkers divert some functions of these services to ensure
data sharing through containers. To each container is associated one or several high
level linkers called interface linkers and a low level linker called input/output linker.
The role of interface linkers is to divert device accesses of system services to
containers while an I/O linker allows a container to access a device manager.

A container is a software object storing and sharing data between stations. A
container is a kernel level mechanism and it is completely transparent to user level
software. Data is stored in a container at the request of the host OS of one node and
can be shared and accessed by the host OS of other cluster nodes. Pages handled by a
container are stored in page frames and can be used by the host kernel as any other
page frame. Container pages can for instance be mapped in a process address space.

By integrating this generic sharing mechanism into each host system, it is possible
to give the illusion to the kernel that it is managing and using physically shared
memory. On top of this virtual physically shared memory the traditional services
offered by a standard operating system can be extended to the cluster scale. The
existing OS interface is preserved while taking advantage of the low level local
resource management mechanisms implemented by the standard node OS.

The containers implement a sequentially consistent memory model using a write
invalidation protocol. The memory I/O linker ensures input and output of physical
memory pages in and out of containers.

When a container is linked to a memory I/O linker, it becomes a memory container.
The memory I/O linker is very simple since it consists in allocating and releasing page
frames like the host kernel does for the management of memory segments.

Everything together provides the sight of a single SMP machine, even though the
processors are distributed on several nodes in a cluster. The nodes are connected by
standard hardware, which is Fast Ethernet for the measurements presented in this paper.

More details on Kerrighed DSM can be found in [8].

 A Practical Comparison of Cluster Operating Systems 25

3 The Plurix DSM

The Plurix project implements a native distributed OS for PC clusters customized for
DSM operation. Instead of using special functions for allocating data in DSM
memory the Plurix DSM is managed as a heap and accessed like local memory. The
benefits of a heap organization have also been identified in other systems but Plurix
goes one step beyond by also storing code and runtime structures in the DSM. Thus
we extend the SSI concept by storing OS, kernel, and all drivers in the DSM.

Distributed garbage collection relieves programmers from explicit memory
management. Unreferenced objects can be collected very easily using the compiler-
supported bookkeeping of references [4].

Because weaker consistency models are hard to program and because weak
consistency might jeopardize OS integrity we have introduced a strong model called
transactional consistency. Memory pages are distributed and read-only copies are
replicated in the cluster. When writing to a memory page all read-only copies are
invalidated and the writing node becomes the new owner of that page. Inconsistencies
are avoided by synchronizing memory accesses from different nodes using our
transactional consistency model [5].

In contrast to existing memory consistency models we do not synchronize memory
after each write access but bundle several operations within a transaction (TA). In
case of a conflict between two transactions we rely on the ability to reset changes
made by a TA. This conflict resolution scheme is known in the database world as
optimistic concurrency control. Optimistic concurrency control occurs in three steps:
the first step is to monitor the memory access pattern of a TA. For this purpose we use
the built-in facilities of the memory management unit (MMU) of the processor.

The next step is to preserve the old state of memory pages before modifications.
Shadow images are created, saving the original page state before the first write
operation within a TA. These shadow pages are used to restore the memory in case of
a collision, as described in the next step.

During the validation phase of a terminating TA the access patterns of all
concurrent TAs in the cluster are compared. In case of a conflict at least one TA is
rolled back using the shadow pages otherwise the latter are discarded.

Currently, we have implemented “first-wins” collision resolution using on a
circulating token. Only the current owner of the token is allowed to commit. During a
commit the write-set of the TA is broadcast to all nodes in the Fast-Ethernet LAN. All
nodes in the cluster compare the write set with their running TA to detect conflicts
and to abort voluntarily. In future we plan to integrate other conflict resolution
strategies to improve fairness.

Instead of having traditional processes and threads the scheduler in Plurix works
with transactions. We have adopted the cooperative multitasking model from the
Oberon system, [6]. In each station there is a central loop (the scheduler) executing a
number of registered transactions with different priorities. Any TA can register
further transactions. System TAs, e.g. the garbage collector, are automatically
registered by the OS. Furthermore, the OS automatically encapsulates all user
commands within a transaction.

26 S. Frenz et al.

Transactions should be short to minimize collision probability. For long running
transactions like the tested calculations, the programmer has to split the calculation in
multiple steps appropriate to transactions.

4 Comparison of Sequential and Transactional Consistency

In this section, we present a performance evaluation of Kerrighed and Plurix. To
evaluate performance of both systems, we used two parallel applications: SOR and
ray tracer, programmed using a shared memory paradigm.

4.1 Experimental Platform

The measurements for both systems have been carried out using 12 nodes:

- Single AthlonXP 2500+ 1833 MHz
- Asus A7V8X-X mainboard with KT400A chipset
- 512 MB DDR-333-RAM
- 3Com 905 B and C Fast Ethernet network cards
- Allied Telesyn AT-8024 switch

The Plurix cluster doesn't require any cluster-outside connection, but Kerrighed
needs an additional NFS-server for the shared file system, which is connected in the
same manner. In both settings there was no additional traffic on the cluster-network
during measurements.

4.2 Succesive-Over Relaxation (SOR)

A single n,n-matrix with randomized shared data is transmitted at the start of
calculation and then changed during iterated calculation, where border elements are
not changed. The matrix is red-white-coloured, and the calculation of the next
iteration is done in two phases, where first all white and then all red elements are
iterated. The calculation of an element (see figure 1) requires the four bordering
neighbours, so all source-values are derived from the same iteration-step:

i+1 i

i i+1

i+1 i

i i+1

i i

i ii i

i i i

i+1 i

i

i

i

i

i

i+1 i+1 i

i i+1

i+1 i

i i+1

calc i

i ii i

i i i

i+1 i

i

i

i

i

i

i+1 i+1 i

i i+1

i+1 i

i i+1

i+1 i

i ii i

i i i

i+1 i

i

i

i

i

i

i+1

c c+2 c+4c+1 c+3

r

r+2

r+4

r+1

r+3

c c+2 c+4c+1 c+3

r

r+2

r+4

r+1

r+3

c c+2 c+4c+1 c+3

r

r+2

r+4

r+1

r+3

before calculating i i+1
of (c+2 | r+2)

during calculating i i+1
of (c+2 | r+2)

after calculating i i+1
of (c+2 | r+2)

Fig. 1. Calculation of an Element Accessing Its Four Element-Neighbors

 A Practical Comparison of Cluster Operating Systems 27

Distribution is achieved by splitting up calculation in bands of lines. There is no
intrinsic write-conflict on elements, but there is the need of synchronization after each
phase of iteration because of the small overlapping read-area of one line at top and
bottom frontier, where reading across the borders needs the other values to correspond
to the reader's phase. Figure 2 shows the calculation of line r, which requires read-
access of lines r-1 and r+1. Synchronization is achieved with barriers both in
Kerrighed and Plurix.

k

k

i i i

i

i

i ...

... i

i

i i

i

0 2 41 3

r+1

r+2

n-4... n-2n-3 n-1

accessed red fields during calculating white fields
of row r (constant outline fields k with n,n-matrix)

k i+1 i+1 ...

...

i+1 i+1r-1

r

k i+1 i i+1 i ... i i+1 i kr-2

i

calc i

i

ik

i

calc

i

i

i

calc i

i

k

k

k

k

Fig. 2. Calculating a Line Accessing Neighbor-Lines

If r resides at the top border of a node's band, line r-1 is inside the band of the
previous node, and if r resides at the bottom border of a node's band, line r+1 is
inside the band of the next node. These nodes will calculate their elements in parallel,
so on page-based distribution such as with Kerrighed and Plurix, there is read access
to elements that reside on pages, which are written by another station in the same
phase. But as all nodes start calculating with their first line of their band, this is not an
indispensable bottle neck: calculation takes long enough to disperse accesses to first
line of node t+1 and to last line of node t, so nodes running Kerrighed with a MESI-
like protocol for pages do not get in the way of nodes. Within Plurix reads and writes
occur atomically during the commit of a TA, so each phase is split up in two sub-
phases for bisection of calculated bands. Thereby the borders are not crossed mutual,
so the nodes do not read and write concurrently to the same line in the same phase.

Because of synchronization after each phase and because all nodes calculate the
same amount of phases, all nodes finish after nearly the same time. The
synchronization is not very data intensive and therefore mainly depending on network
latency. In contrast the network bandwidth is important for data exchange after
synchronization, because for each node two rows of the matrix (for the measurements
one row is between 8 and 28 kilobytes) have to be transmitted.

SOR is implemented from scratch both for Plurix (java compiled with the Plurix
Java Compiler) and Kerrighed (C compiled with gcc) based upon the Splash-II-Suite.

4.3 Ray Tracer

The calculation of the ray tracer starts with an empty shared result-matrix as container
for the image. Each node calculates each element independently from other nodes or

28 S. Frenz et al.

elements based upon a shared scene definition supporting spheres and triangles with
colored and reflective surfaces as well as multiple and different light sources. For this
measurements, the scene-definition (see picture RAY) contains 99 spheres and 8
triangles illuminated by three light sources. Each result pixel can be calculated
without information about other pixels and as a consequence there is no need of
synchronization and the result-matrix is write-only during calculation. Apart from the
transfer of the scene definition and of the accesses to the result-matrix there is no
intrinsic communication and therefore the ray-tracer demonstrates the limits of system
distribution and system dependent scaling. The ray tracer is implemented from scratch
both for Plurix (using the Plurix Java Compiler) and Kerrighed (C compiled with gcc)
based upon project 5 of class 6.837 at MIT [14].

Fig. 3. Calculated Scene

4.4 Experimental Results with SOR

The SOR-algorithm has been tested on both systems using 1, 2, 4, 8 and 12 nodes and
with the following matrix sizes: 2048x2048, 3584x3584, 4096x4096, 5068x5068,
6144x6144, 7168x7168. Measurement results are presented in tables SSK and SSP.
Figure 4 presents the speed-up of the SOR algorithm on Kerrighed. Figure 5 presents
the speed-up on Plurix.

We can observe on fig. 4 and fig. 5 that the matrix size has little impact on speed-
up for Kerrighed but more so for Plurix, which will be explained later. The best
speed-up achieved is 5.8 (Kerrighed) respectively 6.7 (Plurix) on 12 nodes, which is
far from ideal.

The main reason for less than ideal performance on both systems is the large gap
between processor speed and network bandwidth. While the processors are very
powerful, the network is comparatively slow. The SOR algorithm exchanges border
rows between each phase of the computation inducing communications. On the
available hardware platform, the network-bandwidth/processor-speed ratio is not good
enough to reach high speed-ups. Some experiments using a faster network such as
gigabit Ethernet or Myrinet would be of interest.

 A Practical Comparison of Cluster Operating Systems 29

2 4 8 12

0

1

2

3

4

5

6

7

8

9

10

11

12

I d eal

2048x2048

3584x3584

4096x4096

5068x5068

6144x6144
7168x7168

Num ber of n odes

S
p

e
e

d
 u

p

Fig. 4. Speed-up with SOR on Kerrighed

2 4 8 1 2

0

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

Ide a l

2 0 4 8 x2 0 4 8

3 5 8 4 x3 5 8 4

4 0 9 6 x4 0 9 6

5 0 6 8 x5 0 6 8

6 1 4 4 x6 1 4 4

7 1 6 8 x7 1 6 8

Number of node s

S
p

e
e

d
 u

p

Fig. 5. Speed-up with SOR on Plurix

The main difference between the systems is not the difference in speed-up for a
large matrix but the different behavior for a small matrix: even with the smallest
matrix Kerrighed has a speed-up on 12 nodes similar to the largest matrix, whilst
Plurix has a point of reversal on 8 nodes. This is because of the synchronization
mechanisms used on Plurix, that are expensive compared to the few calculations that
have to be done for small matrices. The barrier implementation on Plurix is in a not
fully developed state and still subject of research.

30 S. Frenz et al.

4.5 Experimental Results with Ray Tracer

The ray tracer has been tested on both systems using 1, 2, 3, 4, 6, 8, 10 and 12 nodes
and with the following image sizes: 2048x1536, 4096x3072 and 5792x4344.
Measurement results are presented in tables RSK and RSP. Figure 6 presents the
speed-up of the ray tracer on Kerrighed. Figure 7 presents the speed-up on Plurix.

2 3 4 6 8 1 0 1 2

0

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

Ide al

2 0 4 8 x1 5 3 6
4 0 9 6 x3 0 7 2

5 7 9 2 x4 3 4 4

Number of nodes

S
p

e
e

d
 u

p

Fig. 6. Speed-up with ray tracer on Kerrighed

2 3 4 6 8 10 12

0

1

2

3

4

5

6

7

8

9

10

11

12

I d eal

2048x1536

4096x3072

5792x4344

Nu mber of nod es

S
p

e
e

d
 u

p

Fig. 7. Speed-up with ray tracer on Plurix

We can observe in figure 6 and in figure 7 that the image size has little impact on
speed-up. The best speed-up achieved is 11.77 (Kerrighed) respectively 11.88 (Plurix)

 A Practical Comparison of Cluster Operating Systems 31

on 12 nodes, which is fairly good result. The network is not the bottleneck for the ray
tracer application because there is much more calculation than communication.

Furthermore, as there is no need for barrier-synchronization between steps of
calculation, Plurix can fully utilize its optimistic synchronization model within the
transactional consistency, because even the first write access to a page does not
require the affirmation of all other nodes.

4.6 Comparison of Kerrighed and Plurix

Kerrighed and Plurix are completely different systems: Kerrighed uses Linux and
NFS to share files, whilst Plurix is a operating system from scratch without the need
for any file system. Both Kerrighed and Plurix use page-based distributed shared
memory, but Kerrighed uses an extended MESI protocol to exchange pages, whereas
Plurix always transfers the most recently committed version of a page and uses the
semantic group of a transaction to invalidate multiple pages.

Nevertheless, both systems perform almost linear with the ray tracer up to 12 nodes
and show mature communication models, which are hidden from the application
programmer completely, even though system knowledge will of course help in
writing well performing applications as in any.

The SOR-algorithm uses high-volume communication in comparison to the time
needed for calculation, as a consequence Fast Ethernet becomes the bottleneck.

5 Related Work

Numerous DSM projects have implemented a global memory management service on
top of an existing OS, e.g. Solaris, Linux, and Windows NT. IVY was the first page-
based DSM implementation (sequential consistency) followed by others
implementations with weaker consistency models, e.g. TreadMarks (lazy release
consistency), [9], [11]. To the researcher and to the students from these user-level
systems provide important insight, especially about the relative merits of different
consistency models [3]. But this approach introduces many programming constraints
and limits performance. Specific run-time functions might be called by the
programmer to data in the DSM or special storage classes might be defined.

The Single System Image idea has also been addressed by several projects in the
past. The Sprite OS for example is written from scratch and provides a distributed file
system and a process migration facility [12]. But Sprite does not allow to migrate
threads and does not implement a global memory management mechanism.

The Mosix project extends Linux with a kernel-level process-migration facility.
However, it does not provide any data sharing mechanism. Thus, processes can n ot
share memory and threads can not be migrated in Mosix [13].

Plurix is the first OS tailored to a transactional DSM. Furthermore, there is no
other system utilizing the DSM heap to distribute both data and code. Transactional
consistency in the context of distributed computing is also proposed in [11]. The ideas
discussed are similar to the transactiopnal consistency in Plurix but the authors
simulate a new CPU design for SMP machines rather than a cluster implementation.

32 S. Frenz et al.

6 Conclusions

The comparison of sequential and transactional consistency in Kerrighed and Plurix
respectively shows that both perform adequately in spite of their strong consistency
models. Efficiency is ensured in both systems by implementing the DSM at the kernel
level and by avoiding the overhead of expensive context switches. Furthermore,
Plurix benefits from the fact that several write operations are bundled into one
transaction.

The SOR measurements revealed noticeable costs for the barrier synchronization in
Plurix caused by a currently not optimal barrier implementation. Nevertheless, it is
encouraging that a DSM organized as a heap storing code and data (Plurix) can
compete with a traditional DSM approach (Kerrighed) allocating only dedicated data
in DSM. Experiments with faster networks like Gigabit Ethernet, Myrinet, and
Infiniband are planed in future work.

Acknowledgement

This work has been funded by the German DAAD within the PROCOPE program and
the French ministry of foreign affairs. The work on Kerrighed has been partly
financed by the Direction Générale de l'Armement (DGA) for the COCA project and
by EDF R&D.

References

1. www.kerrighed.org
2. www.plurix.de
3. D. Mosberger, “Memory Consistency Models”, ACM Operating Systems Review, 27(1),

18-26, January 1993.
4. R. Goeckelmann, S. Frenz, M. Schoettner, P. Schulthess, “Compiler Support for Reference

Tracking in a type-safe DSM”, Proceedings of the Joint Modular Languages Conference
Klagenfurt, Austria, 2003.

5. M. Wende, M. Schoettner, R. Goeckelmann, T. Bindhammer, P. Schulthess, “Optimistic
Synchronization and Transactional Consistency”, Proceedings of the 2nd IEEE
International Symposium on Cluster Computing and the Grid, Berlin, Germany, 2002.

6. N. Wirth and J. Guteknecht, Project Oberon - The Design of an Operating System and
Compiler, Addison-Wesley, 1992.

7. Renaud Lottiaux and Christine Morin, “Containers: A Sound Basis For a True Single
System Image”, in: Proceeding of IEEE International Symposium on Cluster Computing
and the Grid (CCGrid '01), Brisbane, Australia, 2001.

8. Geoffroy Vallée, Renaud Lottiaux, Louis Rilling, Jean-Yves Berthou, Ivan Dutka-Malhen,
and Christine Morin, “A Case for Single System Image Cluster Operating Systems:
Kerrighed Approach “, Parallel Processing Letters, 13(2), June 2003.

9. K. Li., “IVY: A Shared Virutal Memory System for Parallel Computing”, in: Proceedings
of the International Conference on Parallel Processing, 1988.

10. P. Keleher et al., “TreadMarks: Distributed Shared Memory on Standard Workstations
and Operating Systems”, in: USENIX Winter 1994, 1994.

 A Practical Comparison of Cluster Operating Systems 33

11. Lance Hammond, Brian D. Carlstrom, Vicky Wong, Ben Hertzberg, Mike Chen, Christos
Kozyrakis, and Kunle Olukotun, “Programming with Transactional Coherence and
Consistency “, in: Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems, Boston, USA, 2004.

12. John Ousterhout, A. Cherenson, Fred Douglis, M. Nelson, Brent Welch, “The Sprite
network operating system”, Computer, 21(2):23-36, February, 1988.

13. Amnon Barak, S. Guday, Richard Wheeler, “The MOSIX Distributed Operating System”,
volume 672 of Lecture Notes in Computer Science, Springer, 1993.

14. http://graphics.csail.mit.edu/classes/6.837/F01/Project05/project5.html

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 34 – 39, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Clock Synchronization State Graphs Based on
Clock Precision Difference

Ying Zhao1, Wanlei Zhou2, Yingying Zhang1, E.J. Lanham2, and Jiumei Huang1

1 School of Information Science and Technology,
Beijing University of Chemical Technology, Beijing, 100029, P.R. China

{zhaoy, huangjm}@mail.buct.edu.cn
2 School of Information Technology, Deakin University,
211 Burwood HWY, Burwood, VIC 3125, Australia

{wanlei, lanham}@deakin.edu.au

Abstract. Consistent and stable global states of clock synchronization are very
important in distributed and parallel systems. This paper presents an innovative
strategy and method to obtain stable global clock synchronization state graphs
in asynchronous Internet environments. Our model will introduce the concept of
clock precision difference as a means to evaluate running states of all clocks in
this system and make this system self-adaptive well. Finally, we introduce the
concept of clock precision difference into global states analysis of clock syn-
chronization and construct clock synchronization state graphs in order to evalu-
ate distributed clock synchronization states. We also present detailed simula-
tions of the strategy and mathematical analysis used on real Internet
environments.

Keywords: Clock Synchronization, Precision Difference, Self-Adaptive, State
graphics.

1 Introduction

Computing technologies and network technologies have developed at an explosive,
but steady rate in the last decade, and many applications have been built on distrib-
uted network environments. Nevertheless, distributed and parallel systems without a
global clock are common nowadays. PC clusters, the GRID, industrial process con-
trol systems, and mobile communications are all examples of this, as without an iden-
tical clock system, these applications cannot perform their tasks well. Consistent
Global States (CGS) proved to be useful in this field [1]. Since Lamport published a
paper [2] to introduce logical clocks and the ordering of events in 1978, logical clocks
have been playing a dominant role in distributed clock synchronization systems. In
the process of the implementation, we will use a software logical clock concept in
order to separate physical clocks, and easily adjust the logical clock. Sometimes we
refer to the logical clock as a virtual clock.

How to describe and evaluate a clock synchronization system in distributed envi-
ronments has been a very difficult problem. In order to solve this classical problem,
we introduce the concept of synchronization state graphs based on clock precision
differences. We have also shown that it not only describes a clock synchronization

 Clock Synchronization State Graphs Based on Clock Precision Difference 35

system clearly, but also provides in a uniform manner with both uncertainty of trans-
mission times and the uncertainty due to the clock drifts. Based on this type of graph,
each node in this system will have a global view of this clock synchronization system
and can easily be observe the node failure.

The paper is organized as follows: Section 2 introduces the related work about
clock synchronization. A linear mathematical trend analysis for clock precision differ-
ences is proposed and an important theorem and a conclusion about clock synchroni-
zation are presented in section 3. Section 4 proposes the important concept of clock
synchronization state graphs and gives a detailed definition. A real simulation of clock
synchronization state graph is discussed in section 5. Finally, Section 6 describes
some extensions of this model and conclusions.

2 Related Works

In the research area of Clock Synchronization, algorithms and models should satisfy
some synchronization conditions, such as: bounded skew and bounded rate of commu-
nication. However, due to the communication uncertainty it is not reasonable to assume
that in practical applications, the skew and rate of communication are bounded.

As there are different clock precisions for nodes, the issue of clock synchroniza-
tion occurs. If an instantaneous time is applied to a synchronization process, the mes-
sage delay must be considered seriously. However, questions such as: how to calcu-
late this delay, and how to predict every delay in the system, are very complicated and
difficult to solve. Some papers use round trip delay to estimate the transmission de-
lay, but the irregular feature of networks frustrates this solution[3],[4]. In this paper,
we first use one way timed transmission to estimate the precision difference, and then
use a mathematical analysis method to estimate clock precision difference in order to
tune the clock in a local node.

With a distributed clock, synchronizing, monitoring, and describing its state is an
important task. Normally, clock synchronization graphs can be viewed as an extension
of the graphs used by Lamport to describe the execution of completely asynchronous
system [3]. But Lamport’s graphs are unweighted, and the main property of interest
regarding a pair of points is whether one is reachable from the other. The dissertation [5]
considered systems with clocks, and define graphs which are weighted. The main prop-
erty of interest regarding two points is the distancebetween them.

Because of the imperfect manufacturing process of oscillators, each clock has a
slightly different drift rate and therefore each clock will have a slightly precision
difference. This precision difference is relatively stable and can be used in clock syn-
chronization state graphs as a weighted value. The global state graphs of clock syn-
chronization can not only provide consistent views of clocks running in this system,
but can also evaluate a clock’s faults easily.

3 Clock Precision Difference Evaluation

On the surface, the occurrence of this transmission delay is random; therefore it is diffi-
cult to measure. In fact, if the previous timestamp arrives at destination late, then the
next timestamp will have a tendency to come early. We can use the coming timestamps
to get its trend.

36 Y. Zhao et al.

From the perspective of the slave, they have their own clocks, and know the send-
ing interval of Tperiod. If a slave clock has the same precision as the master clock, then
the arrival interval calculated by the slave node will waver near the interval of Tperiod.
Hence, if there is a long interval this time, a short interval shall be expected next time.
Even though, in some cases, this next interval may in fact be longer than previous
one. This also means that the next or future interval shall be expected shorter time
period than the interval we are currently expecting. In the long run, its trend line
should be a horizontal line.

Based on above analysis, we can create the following theorem.

Theorem 1. We assume that a master node sends a timestamp per Tperiod interval, and
the drift rate of the slave clock meets assumption 2. Based on the samples of the slave
nodes collected, we can achieve a linear trend formula, which is shown as follows:

xbby 10 += (1)

Here, b1, as a slope, denotes the drift speed of the slave clock, and has a close rela-
tionship with drift rate i of this clock. As the number of samples increases, the
following formula holds:

)/(lim 1 periodi Tb
∞→

=
η

τ (2)

Based on above theorem and analysis, a conclusion is given as follows:

Conclusion 1. If we have calculated the slope b1 of linear equation from the sampling
data, then the following statements prove correct:

If b1<0, the ith slave clock runs slower than the reference clock.
If b1=0, the ith slave clock runs same speed as the reference clock.
If b1>0, the ith slave clock runs faster than the reference clock.

4 Clock Synchronization State Graphs

The introduction of clock synchronization state graphs based on clock precision dif-
ference is an important contribution to the research of distributed clock synchroniza-
tion system. Abstract graph-theoretic methods allow us to analyze clock synchroniza-
tion problems more practically. The network is modeled as a collection of links which
facilitates communication amongst computers. From the general point of view, the
traditional clock synchronization graphs usually use transmission delays as weight
values of edges. Even if the clock nodes run correctly, the state graphs for clock syn-
chronization are still difficult to reach a stable state, due to communication uncer-
tainty and jittering of networks. In this paper, we extend the concept of clock syn-
chronization graphs, and present an innovative concept of clock state graphs. This
means that each node in the clock synchronization system has a consistent view of all
clocks running states in the system. The definition of this concept is described
as following:

 Clock Synchronization State Graphs Based on Clock Precision Difference 37

Definition 1. The clock synchronization state graph is a pair (G, local_time), where
G=(V,E) is a weighted bidirectional directed graph with arc<p,q> E if and only if
arc<p,q> E , and local time includes logical time (LT) and physical time (PT) with
each point p E . For any two points p,q we define arc as relative clock
precision difference pq of node compared to node

Each node has a clock synchronization state graph which shows the global view of
states in the clock synchronization system. It not only includes a graph G, but also is
labeled by the logical time and physical time. The following is an example of the
clock synchronization state graph with two nodes p and q.

Logical Time=LTp

Physical Time=PTp

qp

Logical Time=LTq

Physical Time=PTq

qp

pq

Fig. 1. The clock synchronization state graph with two nodes p and q

Where the weight value of arc <q,p> is pq; the weight value of arc <p,q> is qp.
The value can be computed by Theorem 1.

Property 1. Let p,q,r be any three points of the state graph. If the clock
synchronization state graph steps in a stable state, then the draft rate on the edge
meets the tranmissive rule:

qp = qr + rp (3)

In order to prove this reasoning, we have designed a simulation environment. The
simulation environment is presented in the next section.

5 Simulation

Our simulation is based on the Internet environment in our campus. There are 4 nodes
communicating with each other through the Internet. The system uses logical time to
exchange messages. In order to get results quickly, we use a program in each node to
slow down or speed up the running of the clock. The running state of each clock is
described as follows:

Node 1: We think this node is a standard clock and runs normally. Its logical
clock is equal to physical clock.

Node 2: This node slows down 1 ms per 30 seconds.
Node 3: This node speeds up 1 ms per 30 seconds.
Node 4: This node speeds up 2 ms per 30 seconds.

38 Y. Zhao et al.

For the interval of 30 seconds in logical time, every node broadcasts a timestamp
to other nodes. After we collect 2000 samples, each node should know its running
precision differences relating to other nodes. For example node1, it has three trend
equations.

Node2: Y=1.000x-1.8109 21=1/30000;
Node3: Y=-1.000x+2.3304 31=-1/30000;
Node4: Y=-2.000x+1.4963 41=-2/30000;

As node1, it thinks that other nodes should be standard clock and send out a time
stamp every 30 seconds.

After the system runs near 13 hours, a detailed clock synchronization state graph
for this simulation is described as follows:

Node 1 Node 2

Node 4 Node 3

PT=563208

LT=563208

PT=605068

LT=603565

1/30000

-1/30000

-2/30000
2/30000

1/30000

1/30000

-3/30000

2/30000

-2/30000

3/30000

PT=534732

LT=536234

PT=554806

LT=557808

-1/30000

-1/30000

Fig. 2. The clock synchronization state graph

If this system meets assumption 2 and all clocks have a linear drift rate, then we
can achieve a stable state graph of clock synchronization quickly and easily.

In order to validate property 1, we consider a relative draft rate of node 2 com-
pared to node 4. We have:

42= 43+ 32=(-1/30000)+(-2/30000)= -3/30000

6 Conclusions

This paper presents an innovative concept of clock synchronization state graph to
describe and analyze clock synchronization systems. All edges are directed and la-
beled by the relative clock precision differences, rather than transmission delays or
instantaneous values. In order to improve and stabilize the differences of clock preci-
sion, a continuous communication model and the method of trend analysis are
adopted in this paper. The application of clock precision difference not only reduces

 Clock Synchronization State Graphs Based on Clock Precision Difference 39

the effect of network delay, but also provides important information for local clocks.
Based on this information, a local clock cannot only predict the active-
synchronization time, but can also apply a self-adaptive state when its connection
crashes.

From a long-term viewpoint, more information of precision differences means
more accurate clock synchronization and state graphs.

References

1. Janusz Borkowski, Hierarchical Detection of Strongly Consistent Global States, Proceed-
ings of the Third International Symposium on Parallel and Distributed Computing /Third In-
ternational Workshop on Algorithms, Models and Tools for Parallel Computing on Hetero-
geneous Networks(ISPDC/HeteroPar’04), July 05-07, 2004, Cord, Ireland. pp. 256-261

2. L. Lamport, Time, Clocks, and the ordering of events in a distributed system, Communica-
tions of the ACM, vol 21, no 7,1978. pp. 558-564

3. Masato T., Tetsuya T., Yuji O., Estimation of Clock Offset From One-Way Delay Meas-
urement on Asymmetric Paths, Proceeding of the 2002 Symposium on Application and the
Internet (SAINT’02w), pp. 126-133, Nara, Japan,2002

4. http://www.faqs.org/rfcs/rfc2681.html
5. Boaz Patt, A Theory of Clock Synchronization, Massachusetts Institute of Technology,

1994, USA

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 40 – 49, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Recursive-Adjustment Co-allocation Scheme in Data
Grid Environments*

Chao-Tung Yang1,**, I-Hsien Yang1, Kuan-Ching Li2, and Ching-Hsien Hsu3

1 High Performance Computing Laboratory,
Department of Computer Science and Information Engineering,

Tunghai University, Taichung 40704 Taiwan ROC
ctyang@thu.edu.tw, g922906@thu.edu.tw

2 Parallel and Distributed Processing Center,
Department of Computer Science and Information Management,

Providence University, Taichung 43301 Taiwan ROC
kuancli@pu.edu.tw

3 Department of Computer Science and Information Engineering,
Chung Hua University, Hsinchu 300, Taiwan

chh@chu.edu.tw

Abstract. The co-allocation architecture was developed in order to enable par-
allel downloads of datasets from multiple servers. Several co-allocation strate-
gies have been coupled and used to exploit rate differences among various cli-
ent-server links and to address dynamic rate fluctuations by dividing files into
multiple blocks of equal sizes. However, a major obstacle, the idle time of
faster servers having to wait for the slowest server to deliver the final block,
makes it important to reduce differences in finish time among replica servers. In
this paper, we propose a dynamic co-allocation scheme, namely Recursive-
Adjustment Co-Allocation scheme, to improve the performance of data transfer
in Data Grids. Our approach reduces the idle time spent waiting for the slowest
server and decreases data transfer completion time.

Keywords: Data Grid, Globus, GridFTP, Co-allocation, Recursive-adjustment,
Data transfer.

1 Introduction

Data Grids aggregate distributed resources for solving large-size dataset management
problems [1, 2, 4, 7, 9]. Most Data Grid applications execute simultaneously and
access large numbers of data files in the Grid environment. Certain data-intensive
scientific applications, such as high-energy physics, bioinformatics applications and
virtual astrophysical observatories, entail huge amounts of data that require data file
management systems to replicate files and manage transfers and distributed data ac-

* This paper is supported in part by National Science Council, Taiwan ROC, under grants no.

NSC92-2213-E-029-025, NSC92-2119-M-002-024, NSC93-2119-M-002-004, and NSC93-
2213-E-029-026.

** Corresponding author.

 A Recursive-Adjustment Co-allocation Scheme in Data Grid Environments 41

cess. The data grid infrastructure integrates data storage devices and data management
services into the grid environment, which consists of scattered computing and storage
resources, perhaps located in different countries/regions yet accessible to users [2, 9].

Replicating popular content in distributing servers is widely used in practice [11, 13,
15]. Recently, large-scale, data-sharing scientific communities such as those described
in [1, 4] used this technology to replicate their large datasets over several sites.
Downloading large datasets from several replica locations may result in varied perform-
ance rates, because the replica sites may have different architectures, system loadings,
and network connectivity. Bandwidth quality is the most important factor affecting
transfers between clients and servers since download speeds are limited by the band-
width traffic congestion in the links connecting the servers to the clients[17, 18].

One way to improve download speeds is to determine the best replica locations us-
ing replica selection techniques [15]. This method selects the best servers to provide
optimum transfer rates because bandwidth quality can vary unpredictably due to the
shared nature of the internet. Another way is to use co-allocation technology [13] to
download data. Co-allocation of data transfers enables the clients to download data
from multiple locations by establishing multiple connections in parallel. This can
improve the performance compared to the single-server cases and alleviate the inter-
net congestion problem [13]. Several co-allocation strategies were provided in the
previous work [13]. An idle-time drawback remains since faster servers must wait for
the slowest server to deliver its final block. Therefore, it is important to reduce the
differences in finish time among replica servers.

In this paper, we propose a dynamic co-allocation scheme based on co-allocation
Grid data transfer architecture called Recursive-Adjustment Co-Allocation that re-
duces the idle time spent waiting for the slowest server and improves data transfer
performance. Experimental results show that our approach is superior to previous
methods and achieved the best overall performance.

The remainder of this paper is organized as follows. Related studies are presented
in Section 2 and the co-allocation architecture is introduced in Section 3. Our research
approaches are outlined in Section 4, and experimental results and a performance
evaluation of our scheme are presented in Section 5. Section 6 concludes this
research paper.

2 Related Work

Data grids consist of scattered computing and storage resources located in different
countries/regions yet accessible to users [7]. In this study we used the grid middleware
Globus Toolkit [8, 10, 12] as the data grid infrastructure. The Globus Toolkit provides
solutions for such considerations as security, resource management, data management,
and information services. One of its primary components is MDS [5, 8, 10, 12, 20],
which is designed to provide a standard mechanism for discovering and publishing
resource status and configuration information. It provides a uniform and flexible inter-
face for data collected by lower-level information providers in two modes: static (e.g.,
OS, CPU types, system architectures) and dynamic data (e.g., disk availability, memory
availability, and loading). And it uses GridFTP [1, 8, 12], a reliable, secure, and efficient
data transport protocol to provide efficient management and transfer of terabytes or
petabytes of data in a wide-area, distributed-resource environment.

42 C.-T. Yang et al.

As datasets are replicated within Grid environments for reliability and perform-
ance, clients require the abilities to discover existing data replicas, and create and
register new replicas. A Replica Location Service (RLS) [3, 15] provides a mecha-
nism for discovering and registering existing replicas. Several prediction metrics have
been developed to help replica selection. For instance, Vazhkudai and Schopf [14, 16,
17] used past data transfer histories to estimate current data transfer throughputs.

In our previous work [19], we proposed a replica selection cost model and a replica
selection service to perform replica selection. In [13], the author proposes a co-
allocation architecture for co-allocating Grid data transfers across multiple connec-
tions by exploiting the partial copy feature of GridFTP. It also provides Brute-Force,
History-Base, and Dynamic Load Balancing for allocating data block. Brute-Force
Co-Allocation works by dividing file sizes equally across available flows without
addressing bandwidth differences among the various client-server links. The History-
based Co-Allocation scheme keeps block sizes per flow proportional to predicted
transfer rates.

The Conservative Load Balancing dynamic co-allocation strategy divides re-
quested datasets into “k” disjoint blocks of equal size. Available servers are assigned
single blocks to deliver in parallel. When a server finishes delivering a block, another
is requested, and so on, till the entire file is downloaded. The loadings on the co-
allocated flows are automatically adjusted because the faster servers will deliver more
quickly providing larger portions of the file. The Aggressive Load Balancing dynamic
co-allocation strategy presented in [13] adds functions that change block size de-
liveries by: (1) progressively increasing the amounts of data requested from faster
servers, and (2) reducing the amounts of data requested from slower servers or ceas-
ing to request data from them altogether.

The co-allocation strategies described above do not handle the shortcoming of
faster servers having to wait for the slowest server to deliver its final block. In most
cases, this wastes much time and decreases overall performance. Thus, we propose an
efficient approach called Recursive-Adjustment Co-Allocation and based on a co-
allocation architecture. It improves dynamic co-allocation and reduces waiting time,
thus improving overall transfer performance.

3 Co-allocation Architecture

Figure 1 shows the co-allocation of Grid Data transfers, which is an extension of the
basic template for resource management [6] provided by Globus Toolkit. The archi-
tecture consists of three main components: an information service, broker/co-
allocator, and local storage systems. Applications specify the characteristics of de-
sired data and pass the attribute description to a broker. The broker queries available
resources and gets replica locations from information services [5] and replica man-
agement services [15], and then gets a list of physical locations for the desired files.

The candidate replica locations are passed to a replica selection service [15], which
was presented in a previous work [19]. This replica selection service provides esti-
mates of candidate transfer performance based on a cost model and chooses appropri-
ate amounts to request from the better locations. The co-allocation agent then
downloads the data in parallel from the selected servers. In this research, we use

 A Recursive-Adjustment Co-allocation Scheme in Data Grid Environments 43

Server 1

Server 2

Server 3

Round1 Round2
E(t1) E(t2)t1

File A Section 1 Section 2

...

Fig. 1. Data Grid co-allocation architecture Fig. 2. The adjustment process.

GridFTP [1, 8, 12] to enable parallel data transfers. GridFTP is a high-performance,
secure, reliable data transfer protocol optimized for high-bandwidth wide-area net-
works. Among its many features are security, parallel streams, partial file transfers,
third-party transfers, and reusable data channels. Its partial file transfer ability allows
files to be retrieved from data servers by specifying the start and end offsets of
file sections.

4 Dynamic Co-allocation Strategy

Dynamic co-allocation, described above, is the most efficient approach to reducing
the influence of network variations between clients and servers. However, the idle
time of faster servers awaiting the slowest server to deliver the last block is still a
major factor affecting overall efficiency, which Conservative Load Balancing and
Aggressive Load Balancing [13] cannot effectively avoid. The approach proposed in
the present paper, a dynamic allocation mechanism called “Recursive-Adjustment Co-
Allocation” can overcome this, and thus, improve data transfer performance.

4.1 Recursive-Adjustment Co-allocation

Recursive-Adjustment Co-Allocation works by continuously adjusting each replica
server’s workload to correspond to its real-time bandwidth during file transfers. The
goal is to make the expected finish time of all servers the same. As Figure 2 shows,
when an appropriate file section is first selected, it is divided into proper block sizes
according to the respective server bandwidths. The co-allocator then assigns the
blocks to servers for transfer. At this moment, it is expected that the transfer finish
time will be consistent at E(T1). However, since server bandwidths may fluctuate
during segment deliveries, actual completion time may be dissimilar (solid line, in
Figure 2). Once the quickest server finishes its work at time T1, the next section is
assigned to the servers again. This allows each server to finish its assigned work-load
by the expected time at E(T2). These adjustments are repeated until the entire file
transfer is finished.

The Recursive-Adjustment Co-Allocation process is illustrated in Figure 3. When a
user requests file A, the replica selection service responds with the subset of all avail-
able servers defined by the maximum performance matrix. The co-allocation service
gets this list of selected replica servers. Assuming n replica servers are selected, Si

44 C.-T. Yang et al.

denotes server “i” such that 1 i n. A connection for file downloading is then built
to each server.

Fig. 3. The Recursive-Adjustment Co-Allocation process

The Recursive-Adjustment Co-Allocation process is as follows. A new section of a file
to be allocated is first defined. The section size, “SEj”, is:

SEj = UnassignedFileSize× , (0 < < 1), (1)

where SEj denotes the section j such that 1 j k, assuming we allocate k times for
the download process, and thus, there are k sections, while Tj denotes the time section
j allocated. UnassignedFileSize is the portion of file A not yet distributed for
downloading; initially, UnassignedFileSize is equal to the total size of file A. is the
rate that determines how much of the section remains to be assigned.

In the next step, SEj is divided into several blocks and assigned to “n” servers.
Each server has a real-time transfer rate to the client of Bi, which is measured by the
Network Weather Service (NWS) [18]. The block size per flow from SEj for each
server “i” at time Tj is:

i

n

i
ii

n

i
iji zeUnFinishSiBBzeUnFinishSiSES -)(

11 ==

×+= (2)

where UnFinishSizei denotes the size of unfinished transfer blocks that is assigned in
previous rounds at server “i”. UnFinishSizei is equal to zero in first round. Ideally,

 A Recursive-Adjustment Co-allocation Scheme in Data Grid Environments 45

depending to the real time bandwidth at time Tj, every flow is expected to finish its
workload in future.

This fulfills our requirement to minimize the time faster servers must wait for the
slowest server to finish. If, in some cases, network variations greatly degrade transfer

rates, UnFinishSizei may exceed *)(
11 ==

+
n

i
ii

n

i
ij BBzeUnFinishSiSE , which is the

total block size expected to be transferred after Tj. In such cases, the co-allocator
eliminates the servers in advance and assigns SEj to other servers.

After allocation, all channels continue transferring data blocks. When a faster
channel finishes its assigned data blocks, the co-allocator begins allocating an unas-
signed section of file A again. The process of allocating data blocks to adjust expected
flow finish time continues until the entire file has been allocated.

4.2 Determining When to Stop Continuous Adjustment

Our approach gets new sections from whole files by dividing unassigned file ranges in
each round of allocation. These unassigned portions of the file ranges become smaller
after each allocation. Since adjustment is continuous, it would run as an endless loop
if not limited by a stop condition.

However, when is it appropriate to stop continuous adjustment? We provide two
monitoring criteria, LeastSize and ExpectFinishedTime, to enable users to define stop
thresholds. When a threshold is reached, the co-allocation server stops dividing the
remainder of the file and assigns that remainder as the final section. The LeastSize
criterion specifies the smallest file we want to process, and when the unassigned por-
tion of UnassignedFileSize drops below the LeastSize specification, division stops.
ExpectFinishedTime criterion specifies the remaining time transfer is expected to
take. When the expected transfer time of the unassigned portion of a file drops below
the time specified by ExpectFinishedTime, file division stops. The expected rest time
value is determined by:

1=

n

i
iBFileSizeUnAssigned (3)

These two criteria determine the final section size allocated. Higher threshold val-
ues will induce fewer divisions and yield lower co-allocation costs, which include
establishing connections, negotiation, reassembly, etc. However, although the total
co-allocation adjustment time may be lower, bandwidth variations may also exert
more influence. By contrast, lower threshold values will induce more frequent dy-
namic server workload adjustments and, in the case of greater network fluctuations,
result in fewer differences in server transfer finish time. However, lower values will
also increase co-allocation times, and hence, increase co-allocation costs. Therefore,
the internet environment, transferred file sizes, and co-allocation costs should all be
considered in determining optimum thresholds.

5 Experimental Results and Analyses

In this section, we discuss the performance of our Recursive-Adjustment Co-
Allocation strategy. We evaluate four co-allocation schemes: (1) Brute-Force (Brute),

46 C.-T. Yang et al.

(2) History-based (History), (3) Conservative Load Balancing (Conservative) and (4)
Recursive-Adjustment Co-Allocation (Recursive). We analyze the performance of
each scheme by comparing their transfer finish time, and the total idle time faster
servers spent waiting for the slowest server to finish delivering the last block.

In our example, we assumed that a client site at Tunghai University (THU),
Taichung city, Taiwan, was fetching a file from three selected replica servers: one at
Providence University (PU), one at Li-Zen High School (LZ), and one at Da-Li High
School (DALI). We monitored the bandwidth variations from THU to each server
using NWS [18] probes. Network environment variations of each connection are
shown in Figure 4.

We assign = 0.5 and experiment it over several file sizes, such as 500MB,
1000MB, 2000MB, and 4000MB. We set the LeastSize limit threshold to 100MB,
which result in 12, 15, 17, and 19 block numbers. As mater of comparison, we use the
equal block numbers above to calculate the performance of each size, when using the
Conservative Load Balancing. In Figure 5, we show the cost time of each scheme that
transfers different file sizes. Obviously, Figure 5 shows that our approach reduces the
time efficiently when compared with the other three schemes.

For each of schemes, we analyzed the effect of faster servers waiting for the slow-
est server to deliver the last block. In Figure 6, we calculate the total waiting idle time
with different file sizes, and it shows that our Recursive-Adjustment Co-Allocation
scheme offers significant performance improvements in every file size case when
compared with other schemes. This result is due to our approach reduces the differ-
ence of each server’s finished time efficiently.

For the Recursive-Adjustment technique, we study the effects of various values
on the block numbers and the total idle times. Figures 7 and 8 ,show for an assigned
file size of 10MB to LeastSize, the total idle time increased and the total block num-
ber decreased as the value increased. When the value was greater then 0.7, the
wait time grew rapidly, and although the wait time performance was good when the
value was less than 0.4, it resulted in a great increase in block numbers, which may
cause high co-allocation costs. This experiment indicates that the assigned value
should be neither too large nor too small.

Fig. 4. Network variation between client and each server

 A Recursive-Adjustment Co-allocation Scheme in Data Grid Environments 47

Fig. 5. Completion times for various methods Fig. 6. Idle times for various methods

 Fig. 7. Idle times for various values Fig. 8. Block numbers for various values

Figures 9 and 10 show that the LeastSize threshold value in our Recursive-
Adjustment method is also an important factor affecting total wait time and block
numbers. In this experiment, we set the value to 0.5 and tested various LeastSize
values. The results indicate that decreasing the LeastSize threshold value effectively
reduces the total wait time. Although this results in more block numbers, the increase
is not excessive. Figure 9 indicates we may infer that the Recursive-Adjustment
scheme performs better with smaller LeastSize threshold values for most file sizes
because smaller size final blocks are less influenced by network variations.

Fig. 9. Idle times for various LeastSize values Fig. 10. Block numbers for various LeastSize
values

48 C.-T. Yang et al.

6 Conclusions

Using the parallel-access approach to downloading data from multiple servers reduces
transfer time and increases resilience to servers. The co-allocation architecture pro-
vides a coordinated agent for assigning data blocks. A previous work showed that the
dynamic co-allocation scheme leads to performance improvements, but cannot handle
the idle time of faster servers, that must wait for the slowest server to deliver its final
block. This study proposes the Recursive-Adjustment Co-Allocation scheme to im-
prove data transfer performances using the co-allocation architecture in [13]. In this
approach, the workloads of selected replica servers are continuously adjusted during
data transfers, and we provide a function that enables users to define a final block
threshold, according to their data grid environment. Experimental results show the
effectiveness of our proposed technique in improving transfer time and reducing over-
all idle time spent waiting for the slowest server.

References

1. B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V.
Nefedova, D. Quesnel, S. Tuecke, “Data Management and Transfer in High-Performance
Computational Grid Environments,” Parallel Computing, 28(5):749-771, May 2002.

2. B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V.
Nefedova, D. Quesnel, S. Tuecke, “Secure, efficient Data Transport and Replica Manage-
ment for High-Performance Data-Intensive Computing,” Proc. of the Eighteenth IEEE
Symposium on Mass Storage Systems and Technologies, pp. 13-28, 2001.

3. A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C. Kesselman, P.
Kunszt, and M. Ripeanu, “Giggle: A Framework for Constructing Scalable Replica Loca-
tion Services,” Proc. of SC 2002, Baltimore, MD, 2002.

4. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, “The Data Grid: Towards
an Architecture for the Distributed Management and Analysis of Large Scientific Data-
sets,” Journal of Network and Computer Applications, 23:187-200, 2001.

5. K. Czajkowski, S. Fitzgerald, I. Foster and C. Kesselman, “Grid Information Services for
Distributed Resource Sharing,” Proceedings of the Tenth IEEE International Symposium
on High-Performance Distributed Computing (HPDC-10’01), 181-194, August 2001.

6. K. Czajkowski, I. Foster, C. Kesselman. “Resource Co-Allocation in Computational
Grids,” Proceedings of the Eighth IEEE International Symposium on High Performance
Distributed Computing (HPDC-8’99), August 1999.

7. F. Donno, L. Gaido, A. Ghiselli, F. Prelz, M. Sgaravatto, “DataGrid Prototype 1,”
TERENA Networking Conference, June 2002,
http://www.terena.nl/conferences/tnc2002/Papers/p5a2-ghiselli.pdf

8. Global Grid Forum, http://www.ggf.org/
9. Wolfgang Hoschek, Javier Jaen-Martinez, Asad Samar, Heinz Stockinger, Kurt Stock-

inger, “Data Management in an International Data Grid Project,” First IEEE/ACM Interna-
tional Workshop on Grid Computing - Grid 2000, Bangalore, India, December 2000.

10. IBM Red Books, “Introduction to Grid Computing with Globus,” IBM Press,
www.redbooks.ibm.com/redbooks/pdfs/sg246895.pdf

11. Heinz Stockinger, Asad Samar, Bill Allcock, Ian Foster, Koen Holtman, Brain Tierney, “File
and Object Replication in Data Grids,” Journal of Cluster Computing, 5(3):305-314, 2002.

 A Recursive-Adjustment Co-allocation Scheme in Data Grid Environments 49

12. The Globus Alliance, http://www.globus.org/
13. S. Vazhkudai, “Enabling the Co-Allocation of Grid Data Transfers,” Proceedings of

Fourth International Workshop on Grid Computing, pp. 41-51, November 2003.
14. S. Vazhkudai, J. Schopf, “Using Regression Techniques to Predict Large Data Transfers,”

International Journal of High Performance Computing Applications (IJHPCA), 17:249-
268, August 2003.

15. S. Vazhkudai, S. Tuecke, I. Foster, “Replica Selection in the Globus Data Grid,” Proceed-
ings of the 1st International Symposium on Cluster Computing and the Grid (CCGRID
2001), pp. 106-113, May 2001.

16. S. Vazhkudai, J. Schopf, “Predicting Sporadic Grid Data Transfers,” Proceedings of 11th
IEEE International Symposium on High Performance Distributed Computing (HPDC-11
‘02), pp. 188-196, July 2002.

17. S. Vazhkudai, J. Schopf, and I. Foster, “Predicting the Performance of Wide Area Data
Transfers,” Proceedings of the 16th International Parallel and Distributed Processing
Symposium (IPDPS 2002), pp.34-43, April 2002, pp. 34 – 43.

18. R. Wolski, N. Spring and J. Hayes, “The Network Weather Service: A Distributed Re-
source Performance Forecasting Service for Metacomputing,” Future Generation Com-
puter Systems, 15(5-6):757-768, 1999.

19. Chao-Tung Yang, Chun-Hsiang Chen, Kuan-Ching Li, and Ching-Hsien Hsu, “Perform-
ance Analysis of Applying Replica Selection Technology for Data Grid Environments,”
PaCT 2005, Lecture Notes in Computer Science, vol. 3603, pp. 278-287, Springer-Verlag,
September 2005.

20. X. Zhang, J. Freschl, and J. Schopf, “A Performance Study of Monitoring and Information
Services for Distributed Systems”, Proceedings of 12th IEEE International Symposium on
High Performance Distributed Computing (HPDC-12 ‘03), pp. 270-282, August 2003.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 50 – 59, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Reducing the Bandwidth Requirements of P2P
Keyword Indexing

John Casey and Wanlei Zhou

School of Information Technology, Deakin University,
221, Burwood, HWY, Burwood, VIC 3125, Australia

{jacasey, wanlei}@deakin.edu.au

Abstract. This paper describes the design and evaluation of a federated, peer-
to-peer indexing system, which can be used to integrate the resources of local
systems into a globally addressable index using a distributed hash table. The sa-
lient feature of the indexing systems design is the efficient dissemination of
term-document indices using a combination of duplicate elimination, leaf set
forwarding and conventional techniques such as aggressive index pruning, in-
dex compression, and batching. Together these indexing strategies help to re-
duce the number of RPC operations required to locate the nodes responsible for
a section of the index, as well as the bandwidth utilization and the latency of the
indexing service. Using empirical observation we evaluate the performance
benefits of these cumulative optimizations and show that these design trade-offs
can significantly improve indexing performance when using a distributed
hash table.

1 Introduction

Current, peer-to-peer keyword indexing systems that are built on top of distributed hash
tables (DHT), map keywords and documents into a globally accessible index of feder-
ated resources. To facilitate load balance and scalability many global indexing systems
fragment index data by keyword so that a particular node will only index a fraction of
the total keyword indices. The postings lists of such an index will most likely be broken
into a series of fixed size blocks which will provide efficient means to update, and read
document indices. The keyword indices that a particular node is responsible for are
identified deterministically using a hash value derived from the keyword.

This indexing strategy presents two problems. First, the node responsible for a par-
ticular keyword index has to be located. Second, the keyword indexing data has to be
exported to a remote peer. Therefore, if a node wanted to export its local index so that
its files and resources were globally accessible. The nodes indexing service would
have to lookup the remote systems responsible for every <term, postings list> pair in
the index, forwarding keyword index data to the appropriate systems. As a conse-
quence, data indexing operations may consume excessive amounts of bandwidth, lo-
cating nodes and sending data across the network.

Index duplication is another problem that a DHT based indexing service will have
to cope with. In a homogenous local-area network, which is the target environment of
such an indexing system we expect index data to be heavily duplicated between dif-

 Reducing the Bandwidth Requirements of P2P Keyword Indexing 51

ferent systems. A recent study carried out by Bolosky. Et al in [1] showed that across
550 desktop file systems at Microsoft nearly 47% of the aggregate disk space was
consumed by duplicate documents. Therefore, if duplicate document indices could be
eliminated from the indexing process before they are sent to a remote host, the re-
sources involved with the indexing process could be significantly reduced.

In this paper, we use a combination of batch indexing, bloom filter duplicate detec-
tion, aggressive index pruning, compression and leaf set forwarding to reduce the la-
tency and bandwidth required to locate and store term-document indices in a DHT. To
accomplish this we have developed a prototype indexing system that is based upon
the Bamboo DHT [2] and have incorporated these optimizations into the indexing ser-
vices lookup and put methods.

2 Background and Related Work

In this section, we provide a brief introduction to distributed hash tables (DHTs), and
describe how they can be used to locate, store, and distribute data items in a reliable
manner. Moreover, we review some of the indexing techniques used by similar pro-
jects and analyse their short comings to provide a motivation for this project.

2.1 Distributed Hash Tables

Structured P2P networks use distributed hash tables to map objects into a large virtual
identifier space in which individual peers assume responsibility for a small range of
the key space. Objects are uniformly mapped to key identifiers using a hash function
on the contents or label of an object. This improves load balance, scalability and re-
trieval performance over unstructured P2P networks as queries can be directly routed
to the peers that are responsible for items of interest. DHTs such as Chord [3], Bam-
boo [2], and Pastry [4] are able to route query requests in O(log n) steps for a network
of n hosts. DHT implementations commonly use a hash function on a node’s IP ad-
dress to generate the nodeID or address of a node in the ring topology. In the Chord
and Pastry systems, key-value pairs are stored on the host which has a nodeID that
immediately succeeds a keys identifier, whereas the Bamboo system stores data items
on the numerically closest node (modulo 2160).

2.2 Routing in a Distributed Hash Table

To efficiently route messages to one another, each node participating in the ring main-
tains a routing table of log N rows, where N is the number of nodes in the system.
Each row n of the routing table maintains information (address and node id) relating
to peers which share the present node’s nodeID in the first n digits but whose n + 1
entries do not match the n + 1 digits of the present node’s nodeID. Nodes use this in-
formation to route messages deterministically around the ring by forwarding mes-
sages to nodes in the routing table whose nodeID matches the largest number of digits
in the messages destination hash address. This process is called prefix routing, and
theoretically allows nodes to route messages in O(log N) time.

To improve the routing performance and fault tolerance of the ring topology many
distributed hash table implementations maintain a set of pointers or a leaf set to the

52 J. Casey and W. Zhou

nodes immediately to the left of a peer’s nodeID and immediately to the right of a
peer’s nodeID. These are called the predecessor and successor nodes respectively, and
most DHT implementations typically maintain a leaf set of two to four neighbouring
systems. This parameter can be tuned to support different performance trade offs,
such as routing performance, memory utilization and leaf set maintenance.

2.3 Related Work

Several projects have recently considered using distributed hash tables to support
keyword indexing and search and have attacked the problem of efficient index dis-
semination from several different angles. The research projects that are the most per-
tinent to our research project are reviewed below. These papers can be divided
roughly into three different categories: data indexing, query processing, and duplicate
file detection. Many of the papers that relate to data indexing concentrate their efforts
on efficient query execution in a distributed environment. Therefore, in a lot of these
systems the underlying index implementation is often lacking and will more often
than not consume excessive amounts of bandwidth to index and update postings lists.
Similarly, the research projects which deal with duplicate file detection often concen-
trate their efforts on detecting redundant data in a distributed file system. In this pa-
per, we seek to exploit the distinct properties of distributed inverted indexes to pre-
vent redundant index data being re-indexed.

In [5] Reynolds and Vahdat simulate a vertically distributed inverted index which
caches popular indices along the lookup paths of queries. The system exchanges
bloom filter summaries of document postings lists to reduce the bandwidth require-
ments of conjunctive “and” queries which require remote document listings to be in-
tersected. Our research project uses a similar bloom filter summary of the documents
stored on a node to prevent redundant duplicate document indices being re-indexed.
The major difference between this work and ours is that we initially use a smaller
term filter to reduce the number of documents summarized in the resultant document
bloom filter. This helps to reduce the bandwidth requirements of the bloom filter
document summaries which are exchanged between indexing systems and
remote hosts.

Burkard [6] extended the routing mechanism of Chord to support ring based for-
warding, which reduces many of the lookup operations required to locate the system
responsible for particular data items. The salient feature of ring based forwarding is
that routing costs can be eliminated if the node the index service is currently sending
data to forward its successor node back to the indexing system. In this way the in-
dexer can “walk” around the DHT ring and distribute term-document indices with out
having to lookup the host responsible for every term. Our prototype system uses a
similar indexing strategy to forward a list of successor nodes from a remote system’s
leaf set back to the indexing system.

A possible drawback to using leaf set or ring based forwarding is that a remote sys-
tem’s leaf set maybe out of date due to nodes joining and leaving the system. Cur-
rently, we assume a relatively stable system state and have left issues such as leaf set
inaccuracies for future work.

Apoidea [7] a decentralized web crawler which uses a distributed hash table main-
tains a large in memory bloom filter of the current URLs that have been processed by

 Reducing the Bandwidth Requirements of P2P Keyword Indexing 53

a peer to prevent peers re-processing a URL. The system filters URL listings that are
to be processed and prevents previously indexed URLS being re-indexed. However,
because of the large size of the in memory bloom filter URL listings are only filtered
after a URL listing has been sent to a peer. Therefore, a lot of redundant URL listings
still have to be transmitted across the network.

In [8] Muthitacharoen et. Al developed a low bandwidth file system (LBFS) which
exploits the similarities between different versions of files to save bandwidth. To
minimize redundant network transfer LBFS divides files into content based chunks,
and indexes each of the chunks by a 64-bit hash value. Network bandwidth is reduced
by identifying the chunks of data that a remote system already has so as to avoid hav-
ing to transmit redundant data across the network. The duplicate detection process
used by LBFS is similar in spirit to bloom filter summaries used in this research pro-
ject. However, using the LBFS scheme a client indexing system would have to ex-
change several chunk identifiers with a remote system before redundant indexing data
can be eliminated. Moreover, we expect the chunk identifiers used by LBFS to be too
coarse to index the differences between new documents and duplicate documents in
various postings lists.

3 Efficient Data Indexing in a DHT

In this section we detail the design and optimizations of the indexing service used in
this paper and discuss some of the advantages and potential draw backs of the meth-
ods that we have used. We also discuss the two different index routing methods we
use: the baseline batch indexing algorithm, leaf set forwarding and how duplicate de-
tection using bloom filter digests can help reduce redundant network traffic.

3.1 Batch Indexing

The first indexing optimization that this paper uses is batch indexing. The basic idea be-
hind batch indexing is that the postings lists for a particular term will be batched to-
gether so that a lot of smaller messages do not have to be routed along the same path.
This works well, but performance can be improved by further aggregating those term-
document indices which are destined for the same remote system. For example, the fol-
lowing index terms all generate a hash address which shares a common prefix of at least
two digits. Instead of routing a single RPC put request for each of these terms indexes it
makes more sense to batch them together and send them as a single unit.

Table 1. SHA-1 Term Images

base 0x1405df66cbe219b0bf6355bc3d60361a8376b6b4
input 0x140f86aae51ab9e1cda9b4254fe98a74eb54c1a1
mar 0x1418c40237ee713b2752a18beb0b3335c688b68b

In our prototype system we implement batch indexing using a two step process.
Using a temporary inverted index structure we transform document indices into a se-
ries of <hash, term > listings, which are sorted in sequential order. Once this tempo-

54 J. Casey and W. Zhou

rary index has been constructed, the indexer will iterate through the <hash, term> list-
ings, and locate the nodes responsible for hosting a particular terms postings list. The
indexing service will either look to its leaf set to find the remote system responsible
for a term, or lookup the node responsible for a term using the underlying DHT. Once
the node responsible for a particular term has been found the term and its associated
document postings list are put on the indexing queue for that node. This indexing
queue is emptied periodically and the data it contains is sent to the DHT in com-
pressed form to be serialized. The current batch indexing prototype serializes queued
indexing data at regular intervals in blocks of 500 terms. The number of terms that the
indexer serializes can be tuned to reduce the indexer’s memory requirements or in-
crease the number of terms that are batched together.

In addition, compression can be used to minimise network utilization. The intuition
behind this is that the network will be the biggest bottleneck in distributing document
indices, so the extra processing and memory resources required to queue and com-
press the indices should have a small impact on the indexing service. The current pro-
totype system uses generic GZIP compression.

Finally, to reduce the number of index terms and the number of documents the pro-
totype indexing system utilises aggressive index pruning, stemming, and stop word
removal to select the most informative terms and document postings from local in-
dexes. These techniques improve the performance of index construction and retrieval
by eliminating uninformative words and document postings from the index. Terms are
selected for indexing based upon their document frequency (df) value which quanti-
fies the number of documents a term occurs in. The document frequency filter in the
prototype indexing system has a lower limit of df >=6 and an upper limit of
df<=1000.

3.2 Leaf Set Forwarding

The major problem associated with batch indexing is that the node responsible for a
particular keywords postings list has to be looked up using a DHTs routing substrate.
Not only is the expensive in terms of messages disseminated though out a system.
But, it may also be inaccurate as the state of a system may change, invalidating previ-
ously batched indices. Therefore, our system makes use of ring based forwarding as
proposed by Burkard [6] in his thesis about data indexing and web crawling in a DHT
environment. The ring based forwarding indexing process is largely complementary
to our work on duplicate detection.

3.3 Duplicate Index Elimination Using Bloom Filters

Distributed indexes integrate a wide range of different document resources into a sin-
gle, globally addressable, distributed index. As a consequence, it is natural to assume
that some of these integrated resources are also mirrored or duplicated on a number of
systems. Therefore, to reduce bandwidth consumption and redundant RPC messages
between systems it makes sense to utilize some form of duplicate detection to ensure
duplicate term-document indices are not needlessly re-indexed.

Bloom filters are a lossy indexing scheme, used to compactly represent a set or in-
dex as a series of superimposed bitmap patterns, which are used to represent the items

 Reducing the Bandwidth Requirements of P2P Keyword Indexing 55

stored in the set [9]. Using this technique, the amount of memory (or bandwidth) re-
quired to perform membership queries on an index can be significantly reduced in
comparison to storing the entire set. However, this comes at the price of an adjustable
false positive which is dependent on the number of bits used to construct the bloom
filter, and the number of items represented by the bloom filter. Bloom filters are de-
fined using two parameters: m which specifies the size of the filter in bits, and k
which defines the number of independent hash functions used to derive a data items
bitmap pattern. These parameters determine the amount of space required to encode n
items and the associated false positive p of the bloom filter. The false positive rate of
a bloom filter can be calculated using the following formula.

k

m

kn
ep
−−= 1 (1)

Data items can be inserted into the bloom filter by hashing the label of an item or the
contents of an item with the bloom filter’s k hash functions h1, h2, … hk, each of which
map into the range {0, …,m-1}. The corresponding bit locations as generated by the k
hash functions are then set to one within the bloom filter. Successive, updates to the
bloom filter may set the same bit location to one multiple times as different data items
may hash to the same bit locations. Once a bloom filter has been populated member-
ship queries can be accomplished by hashing a data item using a bloom filter’s k hash
functions and checking that the k bit locations in the bloom filter are set to one. If all
the corresponding bit locations are set to one, then the item has probably been stored
in the bloom filter with a small chance of false positive. If any of the bit locations are
set to zero, then the data item is definitely not in the bloom filter. A diagram illustrat-
ing the insertion of an item into a bloom filter using four hash functions is shown be-
low in figure 1.

Fig. 1. Inserting Data Item X into the Bloom Filter

In this paper, we use bloom filters to summarize the term and document indices
stored at a particular node and derive the k hash functions used to perform index and
lookup operations from the SHA-1 hash of an index items label. This is accomplished
by dividing the result of the SHA-1 hash function into several equally sized blocks,
where the content of each block corresponds to the result of one of the k hash func-
tions to be used by the bloom filter. The bloom filter index summaries used in this pa-
per are created using a two step process to reduce the number of bloom filter entries
that are to be transferred between the indexing system and the remote host. Initially
the indexing system will create a bloom filter summary of the indexing terms that are
to be sent to a remote system taking into account the number of documents indexed
under a specific term. Once the remote system has received the indexing clients list of
terms, it will create a bloom filter digest which summaries the documents that are in-

56 J. Casey and W. Zhou

dexed under the terms specified by the indexing service. In this way, the number of
documents that are transferred between the two systems can be reduced, especially
when the number of terms to be indexed is small in comparison to the number of
terms stored on the remote node. Finally, if a duplicate document is found it is not
completely discarded from the indexing process and it is still indexed in the replica
location index as a replica document.

4 Experimental Evaluation

In this section, we present the preliminary results of these optimizations using a proto-
type indexing service that has been integrated into the Bamboo DHT’s [10] lookup
and put remote procedure calls. In particular, we quantify the potential bandwidth
savings using a realistic document set and compare the optimizations to a baseline
batch indexing system. The experiments have been carried out on a network of 30
Pentium II nodes, where each system has 384 MB of memory and is connected to the
network using a 100 Mbps network card.

To evaluate the performance of the indexing system we have indexed the “Large
Web Document Clustering Collection” [10] which in total constitutes 10,000 docu-
ments and 27,620 terms. Each of the indexing terms of this collection on average in-
dexes ≈ 57 document postings. The frequency rank distribution of these indexing
terms is shown on the next page in figure 2. The relationship between the index terms
and document postings approximates Zipf’s law. Therefore, a few terms will index
many document postings whilst the majority will only index a few.

For each benchmark we measure the time it takes to index this document set and
record the number of RPC operations used to locate the host responsible for a particu-
lar index term as well as the amount of bandwidth consumed by the indexer. To
minimise the effect of various errors or bias in the experiment, we repeat each ex-
periment 10 times and present the average result in the following figures and analysis.

0

200

400

600

800

1000

0 10000 20000 30000

Index Keyword

D
oc

um
en

ts
 In

de
xe

d

LFS

Batch

0

5000

10000

15000

20000

25000

Lookup Algorithm

R
P

C
 L

oo
ku

ps

0
20

40

60
80

100

Top-
250

Top-
500

Top-
750

Top-
1000

Documents Indexed

M
ea

n
C

hu
nk

 S
iz

e
(K

b)

B atch LSF+B lo o m LSF

Fig. 2. Index Distribution Fig. 3. RPC Lookups Fig. 4. Mean Chunk Size

A similar benchmark is used to evaluate the performance of the bloom filter dupli-
cate detection system. However, this time we measure the bandwidth used to transfer
a bloom filter and compare this to the bandwidth saved by eliminating duplicate docu-
ments from the index. To determine the basic performance and overhead of the bloom
filter duplicate detection system, we repeatedly re-index the local text database so that
the maximum number of duplicate documents may be found by the system. This

 Reducing the Bandwidth Requirements of P2P Keyword Indexing 57

means the duplicate detection system will flag every document as being a duplicate as
exactly the same index is being re-indexed again. For each experiment we have also
varied the maximum number of document postings that can be indexed, by a constant
increment of 250 documents. However, this doesn’t seem to have had much effect on
the overall results of the indexing algorithms. The reason for this isn’t immediately
clear but we surmise this is due to the heavy tailed distribution of postings lists as
shown figure 2.

4.1 RPC Lookups

Figure 3 presents the results of the RPC lookup benchmark which we use to compare
the performance of the batch indexing and leaf set forwarding lookup algorithms. The
batch indexing lookup procedure roughly performs 25 thousand lookup operations to
locate the remote systems responsible for individual indexing keywords and their
document posting lists. The reason for this is that the batch indexing algorithm has to
perform a lookup operation for nearly every term in its database except for those des-
tined for its leaf set. In comparison, the leaf set forwarding (LSF) algorithm signifi-
cantly reduces the number of RPC lookup operations required to locate a remote sys-
tems. The reason for this is that the leaf set forwarding algorithm is able to amortize
the costs of looking up a node in a DHT by simply forwarding a remote system's suc-
cessor list back to the indexing service.

4.2 Mean Chunk Size

Figure 4 depicts the average size of a compressed indexing chunk as used by the batch
indexing, leaf set forwarding, and bloom filter indexing schemes. In this experiment
an indexing chunk represents a compressed group of serialized term-document indices
which are to be sent to the same remote system. On average, the leaf set forwarding
and batch indexing algorithms roughly transmit ≈ 80 Kb to remote indexing systems.
In comparison, the bloom filter indexing scheme roughly transmits ≈ 6 Kb of data to
remote indexing systems which is much less. This 6 Kb of data represents the over-
head of the bloom filter duplicate detection system in terms of the term-document
summaries used by the indexing service to identify duplicate documents.

0

2

4

6

8

Top-
250

Top-
500

Top-
750

Top-
1000

Documents Indexed

To
ta

l B
a

nd
w

id
th

 (M
b)

B atch LFS+B lo o m LFS

0.00

2.00

4.00

6.00

8.00

10.00

Top-
250

Top-
500

Top-
750

Top-
1000

Documents Indexed

La
te

nc
y

(m
in

ut
es

)

Fig. 5. Aggregate Bandwidth Fig. 6. Indexing Latency

58 J. Casey and W. Zhou

4.3 Aggregate Bandwidth

In figure 5 we examine the differences between the aggregate bandwidth utilized by
the leaf set, batch and duplicate detection indexing algorithms. For each of these algo-
rithms the aggregate bandwidth metric is used to quantify the amount of data trans-
ferred between a system's indexing service and the DHT. Moreover, for the duplicate
detection algorithm the aggregate bandwidth metric also quantifies the size of the
term-document filters exchanged between the indexing service and remote host. The
batch indexing and leaf set forwarding algorithms in aggregate consume a similar
amount of bandwidth as they index exactly the same number of documents. In Com-
parison, the duplicate detection algorithm in aggregate uses far less bandwidth as it
suppresses many of the redundant indices that have already been indexed. Despite the
significant bandwidth savings of the duplicate detection algorithm more research
needs to be carried out to more accurately quantify the bandwidth savings under dif-
ferent levels of duplication. In addition, using a bloom filter to summarize the con-
tents of a node for each indexing transfer is expensive and in some cases will proba-
bly be unnecessary. Therefore, different strategies need to be developed to reduce the
size and computational cost of creating a bloom filter document summary.

4.4 Indexing Latency

Figure 6 shows the average latency of the various algorithms used in the indexing
process. The fastest algorithm by far is the leaf set forwarding (LSF) algorithm. The
duplicate detection algorithm is almost as fast. But, the overhead of dynamically cre-
ating a bloom filter increases the latency of the algorithm by a constant factor. The la-
tency of the batch algorithm is significantly worse than the other algorithms and we
attribute this to large number of RPC requests made by the algorithm.

5 Conclusion and Further Work

In this paper, we have proposed a set of mechanisms to significantly reduce the number
of lookup operations, and bandwidth required to index term-documents in a distributed
hash table. Our results show that the combination of the different techniques such as in-
dex compression, batching, leaf set forwarding and specifically duplicate detection can
help to improve the performance and bandwidth utilization of indexing operations.

We are currently conducting more extensive investigations to address some of the
current limitations of the system and plan to develop a comprehensive index distribu-
tion which accurately reflects the distribution of duplicate and non-duplicate docu-
ments in a networked environment. Finally, we would also like to perform a larger
scale evaluation of the indexer using more nodes to more accurately gauge the scal-
ability of the system.

References

[1] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer, "Feasibility of a Serverless Dis-
tributed File System Deployed on an existing set of Desktop PCs",SIGMetrics'00.

[2] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, "Handling Churn in a
DHT",Usenix'04.

 Reducing the Bandwidth Requirements of P2P Keyword Indexing 59

[3] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H.
Balakrishnan, "Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applica-
tions",SIGComm'01.

[4] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems",Middleware'01.

[5] P. Reynolds and A. Vahdat, "Efficient Peer-to-Peer Keyword Searching",Middleware'03.
[6] T. Burkard, "Herodotus: A Peer-to-PeerWeb Archival System",in Department of Electri-

cal Engineering and Computer Science. Cambridge: Massachusetts Institute of Technol-
ogy, 2002.

[7] A. Singh, M. Srivatsa, L. Liu, and T. Miller, "Apoidea: A Decentralized Peer-to-Peer Ar-
chitecture for Crawling the World Wide Web",SIG2003.

[8] A. Muthitacharoen, B. Chen, and D. Mazières, "A Low-bandwidth Network File Sys-
tem",18th SOSP, 2001.

[9] B. H. Bloom, "Space/time trade-offs in hash coding with allowable errors," Comm. of the
ACM, vol. 13, pp. 422-426, 1970.

[10] M. Sinka and D. Corne, "A large benchmark dataset for web document clustering," Soft
Computing Systems: Design, Management and Applications, vol. 87, pp. 881-890, 2002.

A Deadline and Budget Constrained Scheduling
Algorithm for eScience Applications on Data Grids

Srikumar Venugopal and Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory,
Department of Computer Science and Software Engineering,

The University of Melbourne, Australia
{srikumar, raj}@cs.mu.oz.au

Abstract. In this paper, we present an algorithm for scheduling of distributed
data intensive Bag-of-Task applications on Data Grids that have costs associated
with requesting, transferring and processing datasets. The algorithm takes into ac-
count the explosion of choices that result due to a job requiring multiple datasets
from multiple data sources. The algorithm builds a resource set for a job that
minimizes the cost or time depending on the user’s preferences and deadline and
budget constraints. We evaluate the algorithm on a Data Grid testbed and present
the results.

1 Introduction

Multi-institutional scientific projects in domains such as high energy physics, astron-
omy and bioinformatics are increasingly generating data in the range of Tera Bytes
(TB) which is replicated at various sites for improving reliability and locality. Grid
computing [1] has made it possible to aggregate heterogeneous, geographically dis-
tributed compute and storage resources for executing large-scale applications in such
eScience [2] projects. Data Grids [3] are instances of Grids where access and man-
agement of distributed data resources have equal or higher priority than computational
requirements. A well-cited example of a Data Grid is the one being set up for processing
the output of the ATLAS experiment at the Large Hadron Collider(LHC) at CERN [4].

The execution of data-intensive applications involves requirements for discovering,
processing, storing and managing large distributed datasets and is guided by factors
such as cost and speed of accessing, transferring and processing data. There may be
multiple datasets involved in a computation, each replicated at multiple locations that
are connected to each other and to the compute resources by networks with varying cost
and capability. Consequently, this explosion of choices makes it difficult to identify the
most optimal resources for retrieving and performing the required computation on the
selected datasets.

In large collaborations that form Data Grids, there can be a lot of pressure on the net-
work, storage and processing elements. This can lead to overloading of resources and
appearance of network ”hot spots” as is commonly observed in the World Wide Web [5].
Previous work has suggested a computational economy metaphor for resource manage-
ment within computational grids [6]. Resource providers price their goods to reflect sup-
ply and demand in order to make a profit or to regulate consumption. On the consumer

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 60–72, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Deadline and Budget Constrained Scheduling Algorithm 61

side, users specify their deadlines for completing their jobs, the budget available to them
and their preference for the cheapest or the fastest processing according to their needs
and priorities. While such strategies have been proposed and evaluated for computational
grids [7], no study has yet been made for similar requirements on Data Grids.

In this paper, we introduce an algorithm for scheduling a Bag-of-Tasks(BoT) ap-
plication on a set of geographically distributed, heterogeneous compute and data re-
sources. Each of the tasks within the application depends on multiple datasets that may
be distributed anywhere within the grid. Also, there are economic costs associated with
the movement and processing of datasets on the distributed resources. The algorithm
minimizes either the overall cost or the time of execution depending on the user’s pref-
erence subject to two user-defined constraints - the deadline by which the processing
must be completed and the overall budget for performing the computation.

The rest of this paper is organised as follows. In Section 2, we survey previous
work in data-intensive Grid scheduling. We extend the notion of user-driven deadline
and budget constrained scheduling within computational grids to data grids in Section
3. In Section 4, the proposed algorithm is evaluated on a real Grid testbed and the results
are reported. Finally, we conclude our paper and outline future work.

2 Related Work

Several approaches have been proposed to schedule data-intensive applications on dis-
tributed resources. In [8], the authors evaluate various heuristics for parameter-sweep
jobs which have files as input. They introduce a new heuristic, XSufferage, that takes
into account file locality by scheduling jobs to those clusters where the files have al-
ready been transferred for a previous job. Takefusa, et. al [9] explore various combi-
nations of scheduling and replication algorithms and come to the conclusion that for
large files, moving computation close to the source of data is the best strategy. Ran-
ganathan and Foster [10] have simulated job scheduling and data scheduling algorithms
and recommend that it is best to decouple data replication from the job scheduling.
In Chameleon [11], the scheduling strategy executes a job on one site while taking
into account computation and communication costs. Kim and Weissman [12] explore
a Genetic Algorithm-based approach for decomposing and scheduling a parallel data-
intensive application. In previous work [13], we have proposed an adaptive algorithm
that schedules jobs while minimizing data transfer. It evaluates all known replica loca-
tions of the file and submits the job to the compute resource which is located closest
to one of the replica locations. However, in the case of applications having to deal
with data from multiple sources, the problem is executing the application such that it
is optimal with respect to all the data sources rather than a single source as has been
considered in the works presented before.

The problem of scheduling BoT applications on distributed systems is a very well-
studied one [14][8][15]. Deadline and budget constrained scheduling algorithms for
compute-intensive BoT applications were proposed and evaluated in [7]. In this paper,
we extend the same notion to data-intensive BoT applications in the following manner.
This paper proposes a detailed cost model for distributed data-intensive applications
that builds on the models for system costs (processing and transferring overheads) pre-

62 S. Venugopal and R. Buyya

viously discussed in [12][11][16] and takes into account expenses for storage, transfer
and processing of data. It then proposes a new algorithm based on the Min-Min heuris-
tic described in [14] that takes into account the deadline and budget constraints of the
users and produces a schedule that minimises either cost or time depending on their re-
quirements. The proposed algorithm also explicilty deals with the explosion of choices
in scheduling Data Grid applications as is mentioned in the previous section. While
this is similar in intent to the work presented in [17], there is a lot of difference in the
methodologies. In [17], the search space is pruned by grouping resources into collec-
tions and then sorting the collections in the order decided by a certain performance
metric. As will be shown later, within our algorithm, the resource sets are created in an
incremental fashion and the search space is limited to only those resources that minimze
the objective function.

3 Scheduling

Fig. 1 shows a typical Data Grid environment which is composed of storage resources,
or data hosts, which store the data and compute resources which run the jobs that exe-
cute upon the data. This is based on the scenarios drawn up for users of the production
Data Grid projects such as LHC Grid [18]. It is possible that the same resource may
contain both storage and computation capabilities. For example, it could be a super-
computing center which has a Mass Storage Facility attached to it. The datasets may
be replicated at various sites within this data grid depending on the policies set by the
administrators of the storage resources and/or the producers of data. The scheduler is
able to query a data directory such as a Replica Catalog [19] or the SRB [20] Metadata
Catalog for information about the locations of the datasets and their replicas. We asso-
ciate economic costs with the access, transfer and processing of data. The processing
cost is levied upon by the computational service provider, while the transfer cost comes
on account of the access cost for the data host and the cost of transferring datasets from
the data host to the compute resource through the network.

Fig. 1. An economy-based data grid environment

A Deadline and Budget Constrained Scheduling Algorithm 63

We consider a job (equivalent to a task in a BoT) as the atomic unit of computation
within this model. Each job requires one or more datasets as input. Each dataset is avail-
able through one or more data hosts. The steps for submitting a job to the grid shown
in Fig. 1 are as follows: The scheduler gathers information about the available compute
resources through a resource information service (1) and about the data through the data
directory (2). It then makes decision on where to submit the job based on the availability
and cost of the compute resource, the minimization preference and the location, access
and transfer costs of the data required for the job (3). The job is dispatched to selected
the remote compute resource (4) where it requests for the dataset from the replica lo-
cation selected by the scheduler (5 & 6). After the job has finished processing (7), the
results are sent back to the scheduler host or another storage resource which then up-
dates the data directory(8). This process is repeated for all the jobs within the set. Here,
only resources that meet minimum requirements of the application such as architec-
ture(instruction set), operating system, minimum free memory and storage threshold
are considered as suitable candidates for job execution.

We consider, therefore, a set of N independent jobs J = {j1, j2, . . . , jN} which
have to be scheduled on M computational resources R = {r1, r2, . . . , rM}. Typ-
ically, N � M . Each job j, j ∈ J requires a subset Fj = {fj1, fj2, . . . , fjK}
of a set of datasets, F , which are each replicated on a subset of P data hosts,D =
{d1, d2, . . . , dP }. For f ∈ F , Df ⊆ D is the set of data hosts on which f is replicated.

The time taken to execute a job is the sum of the execution time and the times taken
to transfer each of the datasets required for the job from their respective data hosts to
the compute node. If the execution time for job j on compute resource r is denoted by
tjr and the transfer time for a dataset fj ∈ Fj from a location dfj ∈ Dfj to compute
resource r is denoted by tfjr, then the total time required for executing the job j is
given by tj = tjr +

∑
fj∈Fj

tfjr where tfjr is the sum of the response time of dfj and
the time taken for the actual data movement. We define response time as the difference
between the time when the request was made to the data host and the time when the
first byte of the file was received at the compute resource. It is an increasing function of
the load on the data host. The time taken for the data movement is the size of the data
divided by the available bandwidth between the data host and the compute resource.
While we have considered a case of sequential data transfer in this model, it can be
modified to consider a parallel data transfer model as presented in [12].

To calculate the economic cost of executing the job, we denote the economic cost of
executing the job j on the compute resource r by ejr and cost of transferring the dataset f
by efjr. Therefore, the total execution cost for job j is given by ej = ejr +

∑
fj∈Fj

efjr

where efjr is the sum of access cost, which is the price levied by the data host for serving
the requested dataset and network transfer cost dependent on the size of the file and the
cost of transferring unit data from data host to compute resource . The access cost can
be an increasing function of either the size of the requested dataset or the load on the
data host or both. This cost regulates the size of the dataset being requested and the
load which the data host can handle. The cost of the network link may increase with
the Quality of Service(QoS) being provided by the network. For example, in a network
supporting different channels with different QoS as described in [21], a channel with a
higher QoS may be more expensive but the data may be transferred faster.

64 S. Venugopal and R. Buyya

We associate two constraints with the schedule, the deadline by which the entire
set must be executed (denoted by TDeadline) and the maximum budget, Budget, for
processing the jobs.The deadline constraint can therefore be expressed in terms of job
execution time as max(tj) ≤ TDeadline, ∀ j ∈ J . The budget constraint can be ex-
pressed as

∑
J ej ≤ Budget.

3.1 Algorithm

Depending on the user-provided deadline, budget and scheduling preference, we can
have two objective functions, viz:

– Cost minimization We try to execute the jobs in the schedule that causes least
expense while keeping the execution time within the deadline provided.

– Time minimization Here, the jobs are executed in the fastest time possible with
the budget for the execution acting as the constraint.

In both cases the same algorithm can be applied to solve the different objective func-
tions. This is done by means of a switch Min which allows us to change the deci-
sion variables depending on the minimization chosen within the algorithm. We define
a function fmin that returns the smallest value within a set of values, A, depending on
the minimization applied. Formally,

fmin(Min, CV ar, TV ar, A) =

⎧⎪⎪⎨
⎪⎪⎩

min(CV ar, A)
if Min = Cost
min(TV ar, A)

if Min = T ime

Here, CV ar and TV ar represents variables deal with cost and time respectively. The
functions min(CV ar, A) and min(TV ar, A) will return the element of A with the
smallest value of CV ar and TV ar respectively. Hence, by changing the value of Min
we can determine the objective function to be minimized by the algorithm. Conse-
quently, Min is a parameter to the scheduling algorithm.

The listing for the algorithm is given in Figure 2. JU , JA, JC and JF are sub-
sets of the set of jobs J consisting of jobs in Unsubmitted, Active, Completed and
Failed states respectively. Jobs initially are in the Unsubmitted state, once they are
submitted, they become Active and finally end up being Completed or Failed. The
scheduling algorithm exits if all jobs are in the final states or if the deadline or budget
constraints are violated. The initial part of the loop does bookkeeping. At every polling
interval, we update the performance data of the compute resources and calculate the al-
location for the current polling interval. For each data resource, we update the network
conditions between itself and the computational resources. Then, we sort the compu-
tational resources either by the cost of the network link or the bandwidth between the
compute resource and the data host depending on the minimization required. The rest
of the algorithm is in two parts : the first part maps the jobs to the selected compute
resources depending on selected minimization objective (cost or time) while the sec-
ond dispatches the jobs while enforcing the deadline and budget constraints. These are
described as follows:

A Deadline and Budget Constrained Scheduling Algorithm 65

while J �= JC ∪ JF OR Tcurrent < TDeadline OR Budget spent < Budget do1
Update Budget spent by taking into account the jobs completed in the last2
interval;
for each r ∈ R do3

Calculate performance data on the basis of resource performance in previous4
polling interval;

end5
for each d ∈ D do6

Based on current network values, sort R in the increasing order of7
Cost(Linkdr) or 1/BW (Linkdr)) depending on whether Min is Cost or
T ime;
Maintain this list as Rd;8

end9
MAPPING SECTION;10
for j ∈ JU do11

Sj , T empj ← {};12
for fj ∈ Fj do13

Select {r, dfj
} such that, depending on Min, either efjr or tfjr is14

minimised;
if Sj = {} then15

Sj ← Sj ∪ {r, dfj
};16

Tempj ← Sj ;17

end18
else19

Sj ← (Sj − {rprev}) ∪ {r, dfj
};20

Tempj ← Tempj ∪ {dfj
};21

end22
Sj ← fmin(Min, ej , tj , {Sj , T empj});23
Tempj ← Sj ;24
rprev ← r ∈ Sj ;25

end26

end27
DISPATCHING SECTION;28
Sort JU in the ascending order of ej or tj depending on Min;29
Expected Budget ← Budget spent;30
for j ∈ JU do31

Take the next job j ∈ JU in sorted order;32
r ← r ∈ Sj ;33
if r can be allocated more jobs then34

if Min = Cost AND (TCurrent + tj) < TDeadline then35
if (Expected Budget + ej) ≤ Budget then submit j to r;36
else stop dispatching and exit to main loop37

end38
if Min = T ime AND Expected Budget + ej ≤ Budget then39

if (TCurrent + tj) < TDeadline then submit j to r;40
else stop dispatching and exit to main loop41

end42
Expected Budget = Expected Budget + ej ;43
Remove j from JU ;44

end45

end46
Wait for the duration of the polling interval;47

end48

i d d f dli d d i d b d h d li f

Fig. 2. Pseudo-code for Deadline and Budget Constrained Cost-based Scheduling of Data Inten-
sive Applications.

66 S. Venugopal and R. Buyya

Mapping: We require one compute resource to execute the job and one data host each
for every dataset required by the job. That is, for each job j, we create a resource
set Sj = {rj , dj1, dj2, . . . , djK} that represents the compute and data resources to
be accessed by the job in execution. However, if we try all possible combinations of
compute and data resources for each job, this results in a O(N(MP)K) mapping where
K is the maximum number of datasets for each job.

We, therefore, decrease the complexity by making a choice at each step within the
mapping section. For a job, we iterate through the list of datasets it requires. For each
dataset, we pick the combination of a compute resource and a data host that returns
the lowest value for expected transfer cost(efjr) or time(tfjr) depending on either cost
or time minimization. This is done in O(P) time as for each data host, we only have
to pick the first compute resource out of its sorted list of compute resources. Then we
create two resource sets, Sj and Tempj, the former with the current selected compute
and data resources and the latter with the current selected data resource but with the
compute resource selected in the previous iteration, rprev (lines 15 - 22) . Then, we
compare the two sets on the basis of the expected cost or execution time and select the
resource set which gives us the minimum value (line 23). This procedure ensures that
the choice of the compute resource and the resource set so formed at the end of each
iteration is better than those selected in all previous iterations. For N jobs, therefore,
the above mapping loop runs in O(NKP) time.

Dispatching: In the dispatching section, we first sort all the job in the ascending or-
der of the value of the minimization function for their respective combinations. Then,
starting with the job with the least cost or least execution time, we submit the jobs to
the compute resources selected for them in the mapping step if the allocation for the re-
sources as determined in the initial part has not been exhausted. For cost minimization,
we see if the deadline is violated by checking whether the current time(TCurrent) plus
the expected execution time exceeds TDeadline (line 35). If so, the job goes back into
the unsubmitted list in the expectation that the next iteration will produce a better com-
bination. If Budget is exceeded by the current job then we stop dispatching any more
jobs and return to the main loop since the rest of the jobs in the list will have higher
cost (lines 36-37). For time minimization, we check if the budget spent (including the
budget for all the jobs previously submitted in current iteration) plus the budget for the
current job exceeds Budget. If the deadline is violated by the current job then we stop
dispatching and return to the main loop.

4 Experiments and Results

We have implemented the scheduling algorithm presented in Section 3 within the Grid-
bus Broker [13]. The testbed resources used in our experiments is detailed in Table
1. The cost per sec denotes the rate for performing a computation on the resource in
Grid Dollars (G$). It can be seen that some of the resources were also used to store the
replicated data and therefore, were performing the roles of both data hosts and com-
pute resources. The average available bandwidth between the compute resources and
the data hosts is given in Table 2. We have used NWS (Network Weather Service) [22]

A Deadline and Budget Constrained Scheduling Algorithm 67

Table 1. Resources within Belle testbed used for evaluation and their costing

Organization Resource details Role Compute
Cost(G$
/sec)

Total Jobs
Done

TimeCost
Dept. of Computer
Science, University of
Melbourne

belle.cs.mu.oz.au
4 Intel 2.6 GHz CPU, 2 GB RAM,
70 GB HD, Linux

Broker Host, Data
Host, Compute
resource, NWS
Server

6 94 2

School of Physics,
University of Mel-
bourne

fleagle.ph.unimelb.edu.au
1 Intel 2.6 Ghz CPU, 512 MB
RAM, 70 GB HD, Linux

Replica Catalog
host, Data host,
NWS sensor

N.A.∗ – –

Dept. of Computer
Science, University of
Adelaide

belle.cs.adelaide.edu.au
4 Intel 2.6 GHz CPU, 2 GB RAM,
70 GB HD, Linux

Data host, NWS
sensor

N.A. ∗ – –

Australian National
University, Canberra

belle.anu.edu.au
4 Intel 2.6 GHz CPU, 2 GB RAM,
70 GB HD, Linux

Data Host, Com-
pute resource, NWS
sensor

6 2 4

Dept of Physics, Uni-
versity of Sydney

belle.physics.usyd.edu.au
4 Intel 2.6 GHz CPU(1 avail), 2
GB RAM, 70 GB HD, Linux

Data Host, Com-
pute resource, NWS
sensor

2 2 119

Victorian Partnership
for Advanced Com-
puting, Melbourne

brecca-2.vpac.org
180 node cluster (only head node
utilised)

Compute resource,
NWS sensor

4 27 0

∗Not used as a compute resource but only as a data host

for measuring the network bandwidths between the computational and the data sites.
We have used only the performance data and not the bandwidth forecasts provided by
NWS. It has been shown that NWS measurements with 64 KB probes cannot be corre-
lated with large data transfers[23][24]. However, we consider the NWS measurements
are indicative of the actual available bandwidth in our case. In the future, we hope to use
regression models for more accurate measurements as has been shown in [23][24] .The
broker itself was extended to consider the price of transferring data over network links
between the compute resources and the data hosts while scheduling jobs. In our experi-
ments, although we have artificially assigned data transmission costs shown in Table 3,
they can be linked to real costs as prescribed by ISPs (Internet Service Providers). Dur-
ing scheduling, data movement cost and time were explicitly taken into account when
data and compute services were hosted on different resources.

Within the performance evaluation, we wanted to capture various properties and
scenarios of Data Grids and applications. Accordingly we devised a synthetic applica-
tion application that requests K datasets that are located on distributed data sources and
are registered within a replica catalog. The datasets are specified as Logical File Names
(LFNs) and resolved to the actual physical locations by the broker at runtime. The ap-
plication then processes these datasets and produces a small output file (of the order
of KB). In this particular evaluation, the datasets are files registered within the catalog.
There are 100 files of size 30 MB each, distributed between the data hosts listed in
Table 1. The BoT application here is a parameter-sweep application consisting of 125

68 S. Venugopal and R. Buyya

Table 2. Avg. Available Bandwidth between
Data Hosts and Compute Resources as reported
by NWS(in Mbps)

Compute Resources
Data Hosts UniMelb

CS
ANU UniSyd VPAC

ANU 6.99 – 10.242 6.33
Adelaide 3.45 1.68 2.29 6.05
UniMelb
Physics

41.05 6.53 2.65 20.57

UniMelb
CS

– 6.96 4.77 36.03

UniSyd 4.78 12.57 – 2.98

Table 3. Network Costs between Data Hosts
and Compute Resources (in G$/MB)

Compute Resources
Data Hosts UniMelb

CS
ANU UniSyd VPAC

ANU 34.0 0 31.0 38.0
Adelaide 36.0 34.0 31.0 33.0
UniMelb
Physics

40.0 32.0 39.0 35.0

UniMelb
CS

0 30.0 36.0 33.0

UniSyd 33.0 35.0 0 37.0

0

20

40

60

80

100

120

140

belle.cs.mu.oz.au

belle.anu.edu.au

belle.cs.adelaide.edu.au

fleagle.ph.unimelb.edu.au

belle.physics.usyd.edu.au

Data Hosts

N
u

m
b

er
 o

f
R

eq
u

es
ts

Fig. 3. Distribution of file access

Table 4. Summary of Evaluation Results

Minimiz-
ation

Total
Time
(mins.)

Compute
Cost (G$)

Data Cost
(G$)

Total
Cost (G$)

Cost 80 31198.27 39126.65 70324.93
Time 54 76054.90 43821.64 119876.55

jobs, each job an instance of the application described before requiring 3 files (that is,
K = 3 for all the jobs in this evaluation). Fig. 3 gives the distribution of the number of
requests for data made by the jobs versus the data hosts. The distribution is the same for
both cost and time minimization. The datasets were transferred in sequence, that is, the
transfer of one dataset was started after the previous had completed. The computation
times for the jobs were randomly distributed within 60-120 seconds.

There are two measures of performance that we are interested in: the first is the rela-
tive usage of the computational resources under cost and time minimization which indi-
cates how the choice of minimization criteria impacts resource selection and the second,
is the distribution of jobs with respect to the computational and data transfer costs and
times incurred within each minimization which tells us the how effective the algorithm
was in producing the cheapest or the fastest schedule. The experiments were carried out
on 29th November 2004 between 6:00 p.m. and 10:00 p.m. AEDT. The deadline and
budget values for both cost and time minimization were 2 hours and 500,000 G$ re-
spectively. Table 4 shows the summary of the results that were obtained. The total time
is the wall clock time taken from the start of the scheduling procedure up to the last
job completed. All the jobs completed successfully in both the experiments. The aver-
age costs per job incurred during cost and time minimization are 562.6 G$ and 959 G$
with standard deviations of 113 and 115 respectively. Mean wall clock time taken per
job(including computation and data transfer time) was 167 secs for cost minimization
and 135 secs for time minimization with standard deviations 16.7 and 19 respectively.

A Deadline and Budget Constrained Scheduling Algorithm 69

0

20

40

60

80

100

120

140

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Polling Interval (every 40s)

N
u

m
b

er
o

f
jo

b
s

belle.cs.mu.oz.au belle.anu.edu.au belle.physics.usyd.edu.au brecca-2.vpac.org

(a) cost minimization scheduling

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Polling Intervals(every 40s)

N
u

m
b

er
o

f
Jo

b
s

belle.cs.mu.oz.au belle.anu.edu.au belle.physics.usyd.edu.au brecca-2.vpac.org

(b) time minimization scheduling

Fig. 4. Cumulative number of jobs completed vs time

As expected, cost minimization scheduling produces minimum computation and
data transfer expenses whereas time minimization completes the experiments in the
least time. The graphs in Figs. 4 and 4 show the number of jobs completed versus
time for the two scheduling strategies for data grids. Since the computation time was
dominant, within cost minimization, the jobs were executed on the least economically
expensive compute resource. This can be seen in Fig. 4 where the compute resource
with the least cost per sec, the resource at University of Sydney, was chosen to execute
95% of the jobs. Since a very relaxed deadline was given, no other compute resource
was engaged by the scheduler as it was confident that the least expensive resource alone
would be able to complete the jobs within the given time. Within time minimization, the
jobs were dispatched to the compute resources which promised the least execution time
even if they were expensive as long as the expected cost for the job was less than the
budget per job. Initially, the scheduler utilised two of the faster resources, the Univer-
sity of Melbourne Computer Science(UniMelb CS) resource and the VPAC resource.
However, as seen from Fig. 3, 26.67% of the requests for datasets were directed to
the UniMelb CS resource. A further 6.67% were directed to the resource in UniMelb
Physics. Hence, any jobs requiring one of the datasets located on either of the above
resources were scheduled at the UniMelb CS resource because of the low data transfer
time. Also, the UniMelb CS resource had more processors. Hence, a majority of the
jobs were dispatched to it within time minimization.

Figs. 5(a) and 5(b) show the distribution of the jobs with respect to the compute and
data costs respectively. For cost minimization, 95% of the jobs have compute costs less
than or equal to 400 G$ and data costs between 250 G$ to 350 G$. In contrast, within
time minimization, 91% of the jobs are in the region of compute costs between 500
G$ to 700 G$ and data costs between 300 G$ to 400 G$. Hence, in time minimization,
more jobs are in the region of high compute costs and medium data costs. Thus, it can
be inferred that the broker utilized the more expensive compute and network resources
to transfer data and execute the jobs within time minimization.

Figs. 6(a) and 6(b) show the distribution of the jobs with respect to the total execu-
tion time and the total data transfer time for cost minimization and time minimization
respectively. The execution time excludes the time taken for data transfer. It can be seen
that within time minimization 6(b) the maximum data transfer time was 35s as com-

70 S. Venugopal and R. Buyya

20

10
0

18
0

26
0

34
0

42
0

50
0

58
0

66
0

74
0

82
0

90
0

98
0

20

200

380

560

740
920

0

5

10

15

20

25

30

35
N

u
m

b
er

 o
f

Jo
b

s

Compute Cost(G$)

D
at

a
C

o
st

(G
$)

(a) cost minimization scheduling

20

10
0

18
0

26
0

34
0

42
0

50
0

58
0

66
0

74
0

82
0

90
0

98
0

20

200

380

560

740

920

0

5

10

15

20

25

30

35

40

N
u

m
b

er
 o

f
Jo

b
s

Compute Cost(G$)

D
at

a
C

o
st

(G
$)

(b) time minimization scheduling

Fig. 5. Distribution of jobs against compute and data costs

0

20 40 60 80

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

0

35

70

105

140

175

210

245

0

5

10

15

20

25

30

35

N
u

m
b

er
 o

f
Jo

b
s

Execution Time (secs)

To
ta

l D
at

a
Tr

an
sf

er
 T

im

(a) cost minimization scheduling

0

15 30 45 60 75 90

10
5

12
0

13
5

15
0

16
5

18
0

19
5

21
0

22
5

24
0

0

35

70

105

140

175

210
245

0

5

10

15

20

25

N
u

m
b

er
 o

f
jo

b
s

Execution time(secs)

To
ta

l D
at

a
tr

an
sf

er
 ti

m
e(

se
c

(b) time minimization scheduling

Fig. 6. Distribution of jobs against execution time and data transfer time

pared to 75s for cost minimization. Also, there are more jobs within time minimization
that have had transfer time less than 10s which implies that the jobs were scheduled
close to the source of the data. Therefore, from the results, it can be seen that given cost
or time minimization, the algorithm presented in this work does minimize the objective
function for upto 90% of the set of jobs.

5 Conclusion and Future Work

We have presented here a model for executing jobs on data grids which takes in to ac-
count both processing and data transfer costs. We have also presented an algorithm which
greedily creates a resource set, consisting of both compute and data resources, that
promises the least cost or least time depending on the minimization chosen. We have pre-
sented empirical results obtained from evaluating the algorithm on a Data Grid testbed.

A Deadline and Budget Constrained Scheduling Algorithm 71

We plan to conduct further evaluations to conclusively state that the algorithm mini-
mizes its objective functions. We also plan to evaluate the algorithm with a testbed with
different levels of replication of data and with varying resource prices.

References

1. Foster, I., Kesselman, C.: The Grid: Blueprint for a Future Computing Infrastructure. Morgan
Kaufmann Publishers (1999)

2. Hey, T., Trefethen, A.E.: The UK e-Science Core Programme and the Grid. Journal of Future
Generation Computer Systems(FGCS) 18 (2002) 1017–1031

3. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S.: The data grid: Towards an
architecture for the distributed management and analysis of large scientific datasets. Journal
of Network and Computer Applications 23 (2000) 187–200

4. Lebrun, P.: The Large Hadron Collider, A Megascience Project. In: 38th INFN Eloisatron
Project Workshop on Superconducting Materials for High Energy Colliders, Erice, Italy
(1999)

5. Mahajan, R., Bellovin, S.M., Floyd, S., Ioannidis, J., Paxson, V., Shenker, S.: Controlling
high bandwidth aggregates in the network. Computer Communications Review 3 (2002)

6. Buyya, R., Giddy, J., Abramson, D.: A Case for Economy Grid Architecture for Service-
Oriented Grid Computing. In: 10th IEEE International Heterogeneous Computing Workshop
(HCW 2001), In conjunction with IPDPS 2001, San Francisco, California, USA (April 2001)

7. Buyya, R., Giddy, J., Abramson, D.: An Evaluation of Economy-based Resource Trading
and Scheduling on Computational Power Grids for Parameter Sweep Applications. In: The
Second Workshop on Active Middleware Services (AMS 2000), Pittsburgh, USA (2000)

8. Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for Scheduling Param-
eter Sweep Applications in Grid environments. In: 9th Heterogeneous Computing Systems
Workshop (HCW 2000), Cancun,Mexico, IEEE CS Press (2000)

9. Takefusa, A., Tatebe, O., Matsuoka, S., Morita, Y.: Performance Analysis of Scheduling
and Replication Algorithms on Grid Datafarm Architecture for High-Energy Physics Appli-
cations. In: Proceedings of the 12th IEEE international Symposium on High Performance
Distributed Computing(HPDC-12), Seattle, USA, IEEE CS Press (2003)

10. Ranganathan, K., Foster, I.: Decoupling Computation and Data Scheduling in Distributed
Data-Intensive Applications. In: Proceedings of the 11th IEEE Symposium on High Per-
formance Distributed Computing (HPDC), Edinburgh, Scotland, IEEE Computer Society
(2002)

11. Park, S.M., Kim, J.H.: Chameleon: A Resource Scheduler in a Data Grid Environment. In:
Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the
Grid, 2003 (CCGrid 2003), Tokyo, Japan, IEEE CS Press (2003)

12. Kim, S., Weissman, J.: A GA-based Approach for Scheduling Decomposable Data Grid
Applications. In: Proceedings of the 2004 International Conference on Parallel Processing
(ICPP 04), Montreal, Canada, IEEE CS Press (2003)

13. Venugopal, S., Buyya, R., Winton, L.: A Grid Service Broker for Scheduling Distributed
Data-Oriented Applications on Global Grids. In: Proceedings of the 2nd Workshop on Mid-
dleware in Grid Computing (MGC 04) : 5th ACM International Middleware Conference
(Middleware 2004), Toronto, Canada (2004)

14. Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic Mapping of a
Class of Independent Tasks onto Heterogeneous Computing Systems. Journal of Parallel and
Distributed Computing(JPDC) 59 (1999) 107–131

72 S. Venugopal and R. Buyya

15. Beaumont, O., Legrand, A., Robert, Y., Carter, L., Ferrante, J.: Bandwidth-Centric Allocation
of Independent Tasks on Heterogeneous Platforms. In: Proceedings of the 2002 International
Parallel and Distributed Processing Symposium(IPDPS ’02), Fort Lauderdale, California,
USA, IEEE CS Press (2002)

16. Stockinger, H., Stockinger, K., Schikuta, E., Willers, I.: Towards a Cost Model for Dis-
tributed and Replicated Data Stores. In: 9th Euromicro Workshop on Parallel and Distributed
Processing PDP 2001, Mantova, Italy, IEEE Computer Society Press (2001)

17. Dail, H., Casanova, H., Berman, F.: A Decoupled Scheduling Approach for the GrADS Envi-
ronment. In: Proceedings of the 2002 IEEE/ACM Conference on Supercomputing (SC’02),
Baltimore, USA, IEEE CS Press (2002)

18. Hoschek, W., Jaen-Martinez, F.J., Samar, A., Stockinger, H., Stockinger, K.: Data manage-
ment in an international data grid project. In: Proceedings of the First IEEE/ACM Interna-
tional Workshop on Grid Computing(GRID ’00), Bangalore, India, Springer-Verlag, Berlin
(2000)

19. Vazhkudai, S., Tuecke, S., Foster, I.: Replica Selection in the Globus Data Grid. In: Proceed-
ings of the First IEEE/ACM International Conference on Cluster Computing and the Grid
(CCGRID 2001), Brisbane, Australia (2001)

20. Baru, C., Moore, R., Rajasekar, A., Wan, M.: The SDSC Storage Resource Broker. In: Procs.
of CASCON’98, Toronto, Canada (1998)

21. Hui, T., Tham, C.: Reinforcement learning-based dynamic bandwidth provisioning for qual-
ity of service in differentiated services networks. In: Proceedings of IEEE International
Conference on Networks (ICON 2003), Sydney, Australia (2003)

22. Wolski, R., Spring, N., Hayes, J.: The Network Weather Service: A Distributed Resource
Performance Forecasting Service for Metacomputing. Journal of Future Generation Com-
puting Systems 15 (1999) 757–768

23. Vazhkudai, S., Schopf, J.: Using Regression Techniques to Predict Large Data Transfers.
International Journal of High Performance Computing Applications 17 (2003) 249–268

24. Faerman, M., Su, A., Wolski, R., Berman, F.: Adaptive Performance Prediction for Dis-
tributed Data-Intensive Applications. In: Proceedings of the 1999 IEEE/ACM Conference
on Supercomputing (SC’99), Portland, Oregon, USA, IEEE CS Press (1999)

A Survivability Model for Cluster System

Khin Mi Mi Aung1, Kiejin Park2, and Jong Sou Park1

1 Computer Engineering Dept., Hankuk Aviation University
{maung, jspark}@hau.ac.kr

2 Division of Industrial and Information System Engineering, Ajou University
kiejin@ajou.ac.kr

Abstract. Even in an intrusion tolerant system, the resources will be fa-
tigued if the intrusion is long lasting because of compromising iteratively
or incrementally. In due course, the system will not provide even the mini-
mum critical functionality. Thus we propose a model to increase the cluster
system survivability level bymaintaining the essential functionality. In this
paper, we present the cluster recovery model with a software rejuvenation
methodology, which is applicable in security field and also less expensive.
Firstly, we perform the steady-state analysis of a cluster system and then
study the 4th Generation Security Mechanism: Restore system with cold
standby cluster. The basic idea is investigate the consequences for the ex-
act responses in face of attacks and rejuvenate the running software or/and
service, or/and reconfigure it. It shows that the system operates through
intrusions and provides continued the critical functions, and gracefully de-
grades non-critical system functionality in the face of intrusions.

1 Introduction

After intrusion protection, detection and tolerant systems mechanisms, the next
4th security mechanism is the restore system. Restore system includes diagnosis,
learning, reconfiguration, software rejuvenation, natural immunity and reflection
[1]. Thus we propose a restore system model to increase the cluster system
survivability level by maintaining the essential functionality. In this paper, we
present the cluster recovery model with a software rejuvenation methodology,
which is applicable in security field and also less expensive. An attacker carries
out a DoS attack by making a resource out of action. The nature of attacks is
very dynamic because attackers have the specific intention to attack and well
prepare their steps in advance. So far no respond technique able to cope with
all types of attacks has been found. In most attacks, attackers overwhelm the
target system with a continuous flood of traffic designed to consume all system
resources, such as CPU cycles, memory, network bandwidth, and packet buffers.
These attacks degrade service and can eventually lead to a complete shutdown.
In this work, we address attacks mainly related to CPU usage, physical memory
and swap space usage, running processes, network flows and packets. It will
automatically detect potential weaknesses and reconfigure with attack patterns,
which are characterizing an individual type of attack and attack profiles. We had
analyzed the attack datasets and injected the attacks events into a system, and

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 73–82, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

74 K.M.M. Aung, K. Park, and J.S. Park

learned the prior knowledge. The next step is to restore the system to a healthy
state within a set time following the predictive alerts [2]. Software rejuvenation is
a proactive fault management technique aimed at cleaning up the internal system
state to prevent the occurrence of more severe future crash failures. It involves
occasionally terminating an application or a system, cleaning its internal state
and restarting it. IBM Software Rejuvenation is a tool to help increase server
availability by proactively addressing software and operation system aging [3].
The effect of aging is captured as crush/hang failures [4].

In the current literature, there are significant numbers of researches, which
are mainly concerned with survivability analysis. Jha et. al. [5]and Nikolopoulos
et. al. [6] have studied reliability, latency and cost benefit model. Jha et. al. have
analyzed survivability of network systems, which are service dependent; therefore
a system architect should focus on the design of the system by analyzing only the
service required of that system. They use a Constrained Markov Decision Process
(CMDP) to form the basis of the survivability analysis, which is composed of
reliability, latency, and cost benefit.

Liew et. al. [7] had presented a survivability function model. In their study,
a survivability function is used as the measure instead of a single value for sur-
vivability. They evaluate network survivability in terms of nodes connected after
a failure (disaster) that results in unavailable or destroyed nodes. The surviv-
ability function is described as the probability that a fraction of the nodes are
connected to the central node. The function allows for different quantities to be
calculated based on the network characteristics such as type of failure (disaster)
and goodness of the network. The survivability function can calculate expected,
worst-case, r-percentile, and probability of zero survivability. Newport [8] built
node and link connectivity models. The terms connectivity and survivability are
used interchangeably in their research. They measure survivability using Node
Connectivity Factor (NCF) and Link Connectivity Factor (LCF). A modified
cut-saturation algorithm in conjunction with Floyd’s algorithm is used in the
design process for networks. Moitra et. al. [9][10] simulated the model for man-
aging survivability of network information systems. They propose a model to
assess the survivability of a network system. Different parameters affect surviv-
ability such as the frequency and impact of attacks on a network system. The
authors finally conclude that there is no absolute survivability and sites other
measures of survivability such as relative survivability, worst-case survivability,
and survivability with expected compromise. Simulations to analyze survivabil-
ity used the Poisson model.

In this paper, we present a model to increase the cluster system survivability
level using software rejuvenation. The organization of the paper is as follows. In
Section 1, we define the problem and address related research. Section 2 presents
a proposed model which can be used to analyze and proactively manage the
effects of cluster network faults and attacks, and recover accordingly and in the
following section, the model is analyzed and experiment results are given to
validate the model solution. Finally, we conclude that software rejuvenation is a
viable method and present further research issues.

A Survivability Model for Cluster System 75

2 Proposed Model

Significant features of various system resources may differ between specific at-
tacks. And the response and restore methods would differ as well. In this work,
the system has divided into three stages; healthy stage, restoration stage and fail-
ure stage (refer to Figure. 1). The model consists of five states: healthy state (H),
infected state (I), rejuvenation state (Rj), reconfiguration state (Rc) and failure
state (F). The healthy state represents the functioning and service providing
phases. In the healthy stages, the systems aware to resist by various policies and
offer proactive managements which are periodic diagnostics and automatic error
log analysis, scheduled tasks (checking routine) based on experiences to assess
the approximate frequency of unplanned outages due to resources exhaustion,
monitoring server subsystems and software processes to ascertain common trends
accompanying regular failures, error logging and alerts (error logging controls).

At the rejuvenation performing state, we need to be able to weigh the risk
of policy with further damage against the policy of shutting the system in an
emergency stage. In this case, the tools not only detect an attacker’s presence but
also support to get the information containments. The events are preconditions
and are related to compromised system states. Susceptible to attack is an action
or series of actions that lead to a compromise. Multiple defense mechanisms are
the set of actions that may be taken to correct vulnerable conditions existing

Fig. 1. Proposed Model

76 K.M.M. Aung, K. Park, and J.S. Park

on the system or to move the system from a more compromised state to a
less compromised state. To this end, software rejuvenation methodologies are
reviewed and synthesized by the policies. The main strategies are occasionally
stopping the executing software, cleaning the internal state and restarting by
means of effectiveness of proactive managements, degrading mechanism, service
stop, service restart, reboot and halt.

At the restoration stage, they may be decomposed into three types according
to their specific attacks such as

– Performing rejuvenation only
– Performing reconfiguration only and
– Performing both rejuvenation and reconfiguration

For example, if an attacker carries out attack by overloading processes, causing re-
sources to becomeunavailable,wewill performa rejuvenationprocess by gracefully
terminating processes causing the resource overload and immediately restarting
them in a clean state. But for the other kinds of attacks, we have to reconfigure the
system according per their impact. In this case we have considered the reconfigu-
ration state with various reconfiguration mechanisms, such as

– Patching (operating system patch, application patch),
– Version control (operating system version, application version),
– Anti virus (vaccine),
– Access control

(IP blocking, port blocking, session drop, contents filtering), and
– Traffic control (bandwidth limit)

As an example, performing rejuvenation only could deter the attacks, which
cause the process degradation such as spawn multiple processes, fork bombs,
CPU overload etc. For the cases of process shutdown and system shutdown
attacks, the attackers intend to halt a process or all processing on a system.
Normally it happens by exploiting a software bug that causes the system to
halt could cause system shutdown. In this case, just as with software bugs
that are used to penetrate, so until the software bug is reconfigured, all sys-
tems of a certain type would be vulnerable. An example of attacks called mail
bombardment or mail spam, the attacker accomplishes this attack by flooding
the user with huge message or with very big attachments. Depending on how
the system is configured, this could be counteracted by performing both recon-
figuration and rejuvenation processes. To perform the various reconfiguration
mechanisms, we have implemented the event manager, which contains the var-
ious strategies with respect to the various impact levels of the specific infected
cases. Each type of event has its own routine, to be run when the attack takes
place [2].

A Survivability Model for Cluster System 77

Fig. 2. State Transition Diagram of non-cluster system

3 A Survivability Model with Cold Standby Cluster

3.1 Steady-State Analysis on a Single Node Through Markov
Process

According to the state transition diagram of Figure. 2 We denote as,
λh,i = infected rate from the healthy state
λi,j = rejuvenation rate from the infected state
μj,h = rejuvenation service rate to the healthy state
λi,c = reconfiguration rate from the infected state
μc,j = reconfiguration service rate to the rejuvenation state
λc,f = failure rate from the reconfiguration state
μc,h = reconfiguration service rate to the healthy state
λi,f = failure rate from the infected state
μf,h = service rate from the failure state

And let the steady-state probabilities of the state of the system be
πh = the probability that the system is in Healthy State
πi = the probability that the system is in Infected State
πr = the probability that the system is in Rejuvenation State
πc = the probability that the system is in Reconfiguration State
πf = the probability that the system is in Failure State
Using principle of the rate at which the process enters each state with the rate
at which the process leaves can derive the balance equations for the system (refer
to Figure 3).

λh,iπh = μj,hπj + μc,hπc + μf,hπf (1)
πi = Eπh (2)

πc =
λi,c

F
Eπh (3)

πj =
(

λi,j +
λc,jλi,c

F

)
E

1
μj,h

πh (4)

78 K.M.M. Aung, K. Park, and J.S. Park

Fig. 3. Restoration system with cold standby cluster

πf =
(

λi,f +
λc,fλi,c

F

)
E

1
μj,h

πh (5)

By solving above equation in terms of πh and the condition πh + πi + πr +
πc + πf , we get

πh =
1

1 + E + λi,c

F E
+

1(
λi,j + λc,jλi,c

F

)E
1

μj,h
+

1(
λi,f + λc,f λi,c

F

)E
1

μj,h
(6)

Where E = λh,i

λi,j+λi,c+λi,f
and F = λc,f + λc,j + μc,h

The availability for the steady-state analysis on a single node through Markov
Process can be expressed as:

A = 1 − (πf + πj + πc) (7)

3.2 Steady-State Analysis with Two Nodes Through Semi-Markov
Process

When only one of the states in the diagram violates the memoryless property,
which means that soj0urn time in a state does not follow exponential distribu-
tion, the diagram is classified as a semi-Markov process. Semi-Markov models
contain a Markov chain, which describes the stochastic transitions from state
to state, and transition or ’sojourn’ times, which describe the duration that

A Survivability Model for Cluster System 79

the process takes to transition from state to state. We address the survivability
model with semi-Markov process. We consider a cold standby cluster with two
nodes through Semi-Markov process. One node is as an active (primary) and
other as a standby (secondary) unit. The failure rate of the primary node and
secondary node are different, and also the effect of failure of the primary node is
different from that of secondary node. The state transition diagram is shown in
Figure 3. Initially the system is in state (1,1). In the infected state, the system
has to figure out whether rejuvenate or reconfigure to recover or limit the dam-
age that may happen by an attack. If the primary node has to reconfigure, the
system enters state (Rc, 1) otherwise enters rejuvenation state (Rj , 1). If both
strategies fail then the primary system enters the fail state. When the primary
is infected by active attacks, the system enters state (I, 1).When the primary
node fails a protection switch successfully restores service by switching in the
secondary unit, and the system enters state (0,1). If the node failure occurs when
the system is in one of the states : (0,I) or (0, Rc), the system fails and enters
state (F,F).To calculate the steady-state availability of the proposed model, the
stochastic process of equation 1 was defined.

X(t) : t > 0 (8)

XS= {(1, 1), (I, 1), (Rj , 1), (Rc, 1), (F, 1), (0, 1), (0, Rj), (0, Rc), (F, F)} Through
SMP (Semi-Markov Process) analysis applying M/G/1, whose service time is
general distribution; we have calculated the steady-state probability in each
state. Healthy Stage: π1,1 + π0,1 Restoration Stage: πRj ,1 + πRc,1 + π0,Rj + π0,Rc

Failure Stage: πF,1 + πF,F As all the states shown in Figure 3 are attainable to
each other, they are irreducible. Additionally, as they do not have a cycle and
can return to a certain state, they satisfy the ergodicity (Aperiodic, Recurrent,
and Nonnull) characteristics. Therefore, there is a probability in the steady-state
of SMP for each state and each corresponding SMP can be induced by embed-
ded DTMC (Discrete-time Markov Chain) using transition probability in each
state. If we define the mean sojourn times in each state of SMP as h′

is and define
DTMC steady-state probability as d′is, the steady-state probability in each state
of SMP πi can be calculated by equation 2 [11].

πi =
dihi∑
j djhj

, i, j ∈ XS (9)

The system availability in the steady-state is defined as equation 3, which is the
same as the exclusion of the probability of being in (F, 1) and (F, F) in the state
transition diagram.

A = 1 − (πF,1 + πF,F) (10)

The cluster systems are not survive in all of the rejuvenation process in the
normal state (1), all of the switchover states, and the failure state (0). The
survivability of cold standby cluster systems is defined as follows:

S = A − ((1 − πRj ,1) + (1 − πRc,1) + (1 − π0,Rj) + (1 − π0,Rc)) (11)

80 K.M.M. Aung, K. Park, and J.S. Park

4 Numerical Results

Weperformthe experimentsusing the same systemoperatingparameterswith [12].
Failure rate of the server is one time per year and repair time is fifteen hours. Re-
juvenation is scheduled at every month. The rejuvenation and switchover time are
10 and 3 minutes, respectively. The expected downtime cost per unit is 100 times
greater than thatof the scheduled rejuvenation cost.Thenumber of servers is varied
from simplex to multiplex (n=4), at the same time we perform software rejuvena-
tion with the interval from 10 days (rate = 3) to infinity (rate=0: no rejuvenation).

From the graph (Figure 4), the amount of survivability level increment from
simplex to duplex is significant but from duplex to multiplex very little is shown.
As infected states are removed frequently with high rejuvenation rates, the sur-
vivability of the cluster systems with simplex configuration increases. However,
as the degree of redundancy is larger than or equal to 3, the improvement of
availability is not significant. According to the required survivability level, the
decision making of a rejuvenation rate is possible under consideration of various
evaluation criteria such as state probabilities and downtime cost.

Figure 5 shows the relationship between switchover time and rejuvenation
rate with survivability level. When switchover time is less than 15 minutes,
a high rejuvenation rate is beneficial for improving survivability level. However
when switchover time exceeds 15 minutes, frequent rejuvenation is not beneficial.

Rejuvenation Rate (Per Month)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Su
rv

iv
ab

ili
ty

 L
ev

el

0.99965

0.99970

0.99975

0.99980

0.99985

0.99990

0.99995

1.00000

1.00005

Simplex

Duplex

Multiplex

Fig. 4. Survivability level changes due to rejuvenation

Switchover Time (Second)

0 100 200 300 400 500 600 700

Su
rv

iv
ab

ili
ty

 L
ev

el

0.99976

0.99978

0.99980

0.99982

0.99984

0.99986

Simplex

Duplex

Multiplex

Fig. 5. Survivability level changes due to switch over time

A Survivability Model for Cluster System 81

Time (Second)

0 5 10 15 20 25 30

S
ur

vi
va

bi
li

ty
 L

ev
el

0.9990

0.9992

0.9994

0.9996

0.9998

1.0000

Simplex

Duplex

Multiplex

Fig. 6. Survivability Level Changes Due to Failure Rate

Due to this fact, switchover time must be considered carefully when determining
the rejuvenation policy. The influence of failure rates along with rejuvenation
rates on survivability level is shown in Figure 6. In the duplex configuration,
failure rates are less sensitive to rejuvenation rate for availability. These results
suggest that software reliability is more important than hardware reliability in
improvement of the survivability of cluster systems.

5 Conclusion

In this paper, we have presented a survivability model for cold standby system.
This study defined 10 states for a cold-standby cluster system, computed DTMC
steady-state probability and SMP steady-state probability using the transition
probability and the mean sojourn time in each state and based on the results,
defined the availability of general systems. We have demonstrated the model can
be used to analyze and proactively manage the effects of cluster network faults
and attacks, and restore accordingly. According to the system operating param-
eters, we have modeled and analyzed steady-state probability and survivability
level of cluster systems under DoS attacks by adopting a software rejuvenation
technique. The result shows that the system operates through intrusions and
provides continued the critical functions, and gracefully degrades non-critical
system functionality in the face of intrusions. As an ongoing work, we are per-
forming our model with the real sojourn times of specific attacks in order to
generalize it with various attacks. We are analyzing a variety of probability dis-
tributions in the real attack data, which is, described the attackers’ transitions
and the sojourn time that they spend in every state. The integration of re-
sponse time and throughput with downtime cost will provide a more accurate
evaluation measure.

Acknowledgment. This research is granted by Ajou University and Regional
Research Center(RRC) Program, a research program of Korea Science and En-
gineering Foundation.

82 K.M.M. Aung, K. Park, and J.S. Park

References

1. J. Lala: Introduction to the Proceedings of Foundations of Intrusions Tolerant
Systems (OASIS 03), Dec. 2003.

2. J. Park and K. Aung: Transient Time Analysis of Network Security Survivability
Using DEVS, Lecture Notes in Computer Science, Springer, Vol. 3397, ISBN 3-
540-24476, pp.607-616, 2005.

3. Y. Huang, C. Kintala, N. Kolettis and N. Fulton: Software Rejuvenation: Analysis,
Module and Applications, Proc. of FTCS-25 Pasadena, CA pp.381-390, 1995.

4. S. Garg, A. Puliafito, M. Telek and K. S. Trivedi: Analysis of Software Rejuvenation
Using Markov Regenerative Stochastic Petri Nets, International Symposium on
Software Reliability Engineering, Oct. 1995.

5. S. Jha and J. Wing: Survivability Analysis of Networked Systems, Proc. of the
23rd International Conference on Software Engineering, IEEE, pp.872-874, 2001.

6. S. Nikolopoulos, A. Pitsillides and D. Tipper: Addressing Network Survivability
Issues by Finding the Kbest Paths through a Trellis Graph, 16th Annual Joint
Conference of the IEEE Computer and Communications Societies, Vol. 1, pp.370-
377, 1997.

7. S. Liew and K. Lu: A Framework for Network Survivability Characterization, IEEE
International Conference on Communications, pp.441-451, 1992.

8. K. Newport: Incorporating Survivability Considerations Directly into the Network
Design Process, 9th Annual Joint Conference of the IEEE Computer and Commu-
nication Societies, pp.1963-1970, 1990.

9. Moitra, D. Soumyo and S. Konda: Survivability of Network Systems: An Empirical
Analysis, SEI, Dec 2000.

10. Moitra, D. Soumyo and S. Konda: A Simulation Model for Managing Survivability
of Networked Information Systems, SEI, Dec 2002.

11. K. Trivedi: Probability and Statistics with Reliability Queueing and Computer
Science Applications, John Wiley and Sons, Inc. 2003.

12. S. Garge, ”Analysis of Preventive Maintenance in Transactions Based Software
Systems,” IEEE Transactions on Computers Vol. 47(1), pp.96-107, 1998.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 83 – 92, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Localization Techniques for Cluster-Based Data Grid

Ching-Hsien Hsu1, Guan-Hao Lin1, Kuan-Ching Li2, and Chao-Tung Yang3

1 Department of Computer Science and Information Engineering,
Chung Hua University, Hsinchu 300 Taiwan

chh@chu.edu.tw
2 Department of Computer Science and Information Management,

Providence University, Taichung 43301 Taiwan
kuancli@pu.edu.tw

3 Department of Computer Science and Information Engineering,
Tunghai University, Taichung 40704 Taiwan

ctyang@mail.thu.edu.tw

Abstract. In this paper, we present an efficient method for optimizing
localities of data distribution when executing data parallel applications.
The data to logical grid nodes mapping technique is employed to enhance
the performance of parallel programs on cluster grid. Cluster grid is a
typical computational grid environment consists of several clusters
located in multiple campuses that are distributed globally over the
Internet. Objective of the proposed technique is to reduce inter-cluster
communication overheads and to speed the execution of data parallel
programs in the underlying distributed cluster grid. The theoretical
analysis and experimental results show improvement of communication
costs and scalable of the proposed techniques on different hierarchical
cluster grids.

1 Introduction

Computing grid system [8] integrates geographically distributed computing resources
to establish a virtual and high expandable parallel machine; cluster grid is a typical
paradigm in which each cluster is geographically located in different campus and is
connected by software of computational grids through the Internet. In cluster grid,
computers might exchange data through network to other computers to run job
completion. This consequently incurs two kinds of communication between grid
nodes in a cluster grid. If the two grid nodes are geographically belong to different
clusters, the messaging should be accomplished through the Internet. We refer this
kind of data transmission as external communication. If the two grid nodes are
geographically in the same space domain, the communications take place within a
cluster; we refer this kind of data transmission as interior communication.
Intuitionally, the external communication is usually with higher communication
latency than that of the interior communication sine the data should be routed through
numbers of layer-3 routers or higher-level network devices over the Internet.
Therefore, to efficiently execute parallel programs on cluster grid, it is extremely
critical to avoid large amount of external communications.

84 C.-H. Hsu et al.

This paper presents a generalized processor reordering technique for minimizing
external communications of data parallel program on cluster grid. We employ the
problem of data alignments and realignments in data parallel programming languages to
examine the effective of the proposed data to logical processor mapping technique. As
many research discovered that many parallel applications require different access
patterns to meet parallelism and data locality during program execution. This will
involve a series of data transfers such as array redistribution. For example, a 2D-FFT
pipeline involves communicating images with the same distribution repeatedly from one
task to another. Consequently, the computing nodes might decompose local data set into
sub-blocks uniformly and remapped these data blocks to designate processor group.
From this phenomenon, we propose a processor-reordering scheme to reduce the volume
of external communications of data parallel programs in cluster grid. The key idea is that
of distributing data to grid/cluster nodes according to a mapping function at data
distribution phase initially instead of in numerical-ascending order. The theoretical
analysis and experiments results of the processor-reordering technique on mapping data
to logical grid nodes show improvement of volume of external communications and
conduce to better performance of data alignment in different cluster grid topologies.

2 Related Work

Research works on computing grid have been broadly discussed on different aspects,
such as security, fault tolerance, resource management [10, 4], job scheduling [2, 18,
19, 20], and communication optimizations [6]. From the issue of communication
optimizations, Dawson et al. [6] addressed the problems of optimizations of user-level
communication patterns in local space domain for cluster-based parallel computing.
Plaat et al. analyzed the behavior of different applications on wide-area multi-clusters
[17, 3]. Similar research works were studied in the past years over traditional
supercomputing architectures [13, 14]. Guo et al. [12] eliminated node contention in
communication step and reduced communication steps with schedule table. Y. W. Lim
et al. [16] presented an efficient algorithm for block-cyclic data realignments. A
processor mapping technique presented by Kalns and Ni [15] can minimize the
total amount of communicating data. Namely, the mapping technique
minimizes the size of data that need to be transmitted between two algorithm
phases. Lee et al. [11] proposed similar method to reduce data communication
cost by reordering the logical processors’ id. They proposed four algorithms for
logical processor reordering. They also compared the four reordering algorithms
under various conditions of communication patterns.

There is significant improvement of the above research for parallel applications on
distributed memory multi-computers. However, most techniques applicable for
applications running on local space domain, like single cluster or parallel machine. For
a global grid of clusters, these techniques become inapplicable due to various factors of
Internet hierarchical and its communication latency. In this following discussion, our
emphasis is on minimizing the communication costs for data parallel programs on
cluster grid and on enhancing data distribution localities.

3 Data Distribution on Cluster Grid

Appropriate data distribution is critical for balancing the computational load. A typical
function to decompose the data equally can be accomplished via the BLOCK

 Localization Techniques for Cluster-Based Data Grid 85

distribution directive in many data parallel programming languages. However, a good
mapping of data to logical processors must change adaptively in order to ensure good
data locality and reduce inter-processor communication during program running. For
example, a global array could be equally allocated to a set of processors at beginning in
BLOCK distribution manner. As the algorithm goes into another phase that requires to
access fine-grain data patterns, processors might divide their own data set into
sub-blocks locally and then exchange these sub-blocks with corresponding processors
over the cluster grid. To explicitly define the problem, upon the number of clusters
(C), number of computing nodes in each cluster (ni) and the degree of refinement, we
consider two models of cluster grid when performing data reallocation.

3.1 Identical Cluster Grid Model

Identical cluster grid is composed by several clusters in which each cluster provides the
same number of computing nodes (identical ni) involved in the computation. Figure 1
shows an example of this scenario. Cluster 1 owns logical grid nodes P0, P1, …Pm-1,
cluster-2 owns Pm, Pm+1, …, P2m-1, and so on. If the number of nodes provided by
cluster i is ni, we have ni =m, for all i=1~C. Considering the data reallocation problem
described above, in this model, each node is initially responsible to hold a complete
block. When algorithm goes into a refinement phase (assume the degree of refinement
is k), it will partition its own block of data into k sub-blocks locally and redistribute
them over the global grid processor set. This process will bring volumes of
inter-processor message exchange during program execution. These exchanges could
be intra-cluster or inter-cluster communications. Because of network latency of
inter-cluster message passing, how to increase data localities and transform
inter-cluster communications as intra-clusters becomes an important subject to the
performance of these applications.

Fig. 1. Identical cluster grid model

3.2 Non-identical Cluster Grid Model

Non-identical cluster grid is composed by several clusters in which each cluster may
provides different number of computing nodes (non-identical ni) involved in the
computation. Because of the unequal ni, the total number of grid nodes can be denoted

86 C.-H. Hsu et al.

as P =
=

C

i
in

1

, where C is the number of clusters in grid. Since cluster grid is composed

of heterogeneous cluster systems over the internet, the overheads of interior and
external communications among different clusters should be identified individually.
To formulate cost model for evaluating the communication costs in cluster grid, let Ti
represents the time of two nodes both in Cluster-i to transmit per unit data; Ii is the total
number of interior communications within cluster i; for external communication
between cluster i and cluster j, Tij is used to represent the time of processor p in cluster
i and processor q in cluster j to transmit per unit data; similarly, the total number of
external communications between cluster i and cluster j is denoted by Eij. According to

these declarations, we can have equation)()(
,1,1

ij

C

jiji
ij

C

i
iicomm TETIT ×+×=

≠==

. This

equation explicitly defines the communication costs of a parallel program running on a
cluster grid. However, there are various factors might cause unstable communication
delay over internet; it is difficult to estimate accurate costs. As the need of a criterion
for performance modeling, integrating the interior and external communications
among all clusters into points is an alternative mechanism to get legitimate evaluation.

Therefore, we totaled the number of these two terms as |I| =
=

C

i
iI

1

, the number of

interior communications, and |E| =
≠=

C

jiji
ijE

,1,
, the number of external

communications for the following discussion and analysis.

4 Localized Data Mapping

4.1 Motivating Example

To motivate the proposed localization technique for data reallocation, we use the
example shown in Figure 2 for explanation. As demonstrated in section 3, the degree
of data refinement is set to three (K = 3). This example also assumes an identical
cluster grid that consists of three clusters and each cluster provides three nodes to join
the computation. In algorithm phase, to accomplish the fine-grained data distribution,
processors partition its own block into K sub-blocks and distribute them to
corresponding destination processors in ascending order of processors’ id that
specified in most data parallel programming languages. For example, processor P0
divides its data block A into a1, a2, and a3; it then distributes these three sub-blocks to
processors P0, P1 and P2, respectively. Because processors P0, P1 and P2 belong to the
same cluster with P0; therefore, these three communications are interior. However, the
same situation on processor P1 generates three external communications. Because
processor P1 divides its local data block B into b1, b2, and b3. It then distributes these
three sub-blocks to processors P3, P4 and P5, respectively. As processor P1 belongs to
Cluster 1 and processors P3, P4 and P5 belong to Cluster 2. Therefore, this results three
external communications. Figure 2(a) summarizes all messaging patterns of this

 Localization Techniques for Cluster-Based Data Grid 87

example into communication table. We noted that messages {a1, a2, a3}, {e1, e2, e3}
and {i1, i2, i3} are interior communications (| I | = 9); all the others are external
communications (| E | = 18).

The idea of changing data to logical processor mapping [11, 15] is employed in our
implementation. Such techniques were used in many previous research works to
minimize data transmission time of runtime array redistribution. In cluster grid, we can
derive a mapping function to produce a realigned sequence of logical processors’ id for
grouping communications into local cluster. Given an identical cluster grid with C
clusters, a new logical id for replacing processor Pi can be determined by New(Pi) = (i
mod C) * K+ (i / C), where K is the degree of data refinement. Figure 2(b) shows
the communication table of the same example after applying the above reordering
scheme. The source data is distributed according to the reordered sequence of
processors’ id, i.e., <P0, P3, P6, P1, P4, P7, P2, P5, P8> which is computed by mapping
function. In the target distribution, processor P0 distributes three sub-blocks to
processors P0, P1 and P2 in the same cluster. Similarly, processor P3 sends three
sub-blocks to processors P3, P4 and P5 that are in the same cluster with P3; and
processor P6 sends e1, e2 and e3 to processors P6, P7 and P8 that causes three interior
communications. All other processors generate three interior communications as well.
Therefore, we have |I|= 27 and | E | = 0.

 D P

S P
P 0 P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8

P 0 a 1 a 2 a 3

P 1 b 1 b 2 b 3

P 2 c 1 c 2 c 3

P 3 d 1 d 2 d 3

P 4 e 1 e 2 e 3

P 5 f 1 f 2 f 3

P 6 g 1 g 2 g 3

P 7 h 1 h 2 h 3

P 8 i 1 i 2 i 3

 C l u s t e r - 1 C l u s t e r - 2 C l u s t e r - 3

D P

S P
P 0 P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8

P 0 a 1 a 2 a 3

P 3 b 1 b 2 b 3

P 6 c 1 c 2 c 3

P 1 d 1 d 2 d 3

P 4 e 1 e 2 e 3

P 7 f 1 f 2 f 3

P 2 g 1 g 2 g 3

P 5 h 1 h 2 h 3

P 8 i 1 i 2 i 3

 C l u s t e r - 1 C l u s t e r - 2 C l u s t e r - 3

(a) (b)

Fig. 2. Communication tables of data reallocation over cluster grid. (a) Without data mapping
(b) With data mapping.

4.2 Identical Cluster Grid

For the case of K (degree of refinement) is not equal to n (the number of grid nodes in
each cluster), the mapping function becomes impracticable. In this subsection, we
propose a grid node replacement algorithm for optimizing distribution localities of data
reallocation. According to the relative position of the first of consecutive sub-blocks
that produced by each processor, we can determine the best target cluster as candidate
for node replacement. Combining with a load balance policy among clusters, this
algorithm can effectively improve data localities. Figure 3 gives an example of data
reallocation on cluster grid, which has four clusters. Each cluster provides three
processors. The degree of data refinement is set to five. Figure 3(a) demonstrates an
original reallocation communication patterns. We observe that | I | = 12 and | E | = 36.

If we change the distribution of block B to processors reside in cluster 2 (P3, P4 or
P5) or cluster 3 (P6, P7 or P8) in the source distribution, we find that the

88 C.-H. Hsu et al.

communications could be centralized in local cluster for some parts of sub-blocks.
Because cluster 2 and cluster 3 will be allocated the same number of sub-blocks in the
target distribution, therefore processors belong to these two clusters have the same
priority for node replacement. In our algorithm, P3 is first assigned to replace P1. For
block C, most sub-blocks will be reallocated to processors in cluster 4, therefore the
first available node P9 is assigned to replace P2. Similar determination is made to block
D and results P1 replace P3. For block E, cluster 2 and cluster 3 have the same amount
of sub-blocks. Processors belong to these two clusters are candidates for node
replacement. However, according to the load balance policy among clusters, cluster 2
remains two available processors for node replacement while cluster 3 has three; our
algorithm will select P6 to replace P4. Figure 3(b) gives the communication tables
when applying data to logical grid nodes mapping technique. We obtain | I | = 28 and |
E | = 20.

 D P

S P
P 0 P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 1 0 P 1 1

P 0 a 1 a 2 a 3 a 4

P 1 b 1 b 2 b 3 b 4

P 2 c 1 c 2 c 3 c 4

P 3 d 1 d 2 d 3 d 4

P 4 e 1 e 2 e 3 e 4

P 5 f 1 f 2 f 3 f 4

P 6 g 1 g 2 g 3 g 4

P 7 h 1 h 2 h 3 h 4

P 8 i 1 i 2 i 3 i 4

P 9 j 1 j 2 j 3 j 4

P 1 0 k 1 k 2 k 3 k 4

P 1 1 l 1 l 2 l 3 l 4

 C l u s t e r - 1 C l u s t e r - 2 C l u s t e r - 3 C l u s t e r - 4

(a)

 D P

S P
P 0 P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 1 0 P 1 1

P 0 a 1 a 2 a 3 a 4

P 3 b 1 b 2 b 3 b 4

P 9 c 1 c 2 c 3 c 4

P 1 d 1 d 2 d 3 d 4

P 6 e 1 e 2 e 3 e 4

P 1 0 f 1 f 2 f 3 f 4

P 2 g 1 g 2 g 3 g 4

P 4 h 1 h 2 h 3 h 4

P 1 1 i 1 i 2 i 3 i 4

P 5 j 1 j 2 j 3 j 4

P 7 k 1 k 2 k 3 k 4

P 8 l 1 l 2 l 3 l 4

 C l u s t e r - 1 C l u s t e r - 2 C l u s t e r - 3 C l u s t e r - 4

(b)

Fig. 3. Communication tables of data reallocation on identical cluster grid. (C=4, n=3, K=4) (a)
Without data mapping (b) With data mapping.

4.3 Non-identical Cluster Grid

Let’s consider a more complex example in non-identical cluster grid, the number of
nodes in each cluster is different. We need to add global information of cluster grid
into algorithm for estimating the best target cluster as candidate for node replacement.

 Localization Techniques for Cluster-Based Data Grid 89

Figure 4 shows a non-identical cluster grid composed by four clusters. The number of
processors provided by these clusters is 2, 3, 4 and 5, respectively. We also set the
degree of refinement as K=5. Figure 4(a) presents the table of original communication
patterns that consists of 19 interior communications and 51 external communications.
Applying our node replacement algorithm, the derived sequence of logical grid nodes
is <P2, P5, P9, P3, P6, P10, P4, P11, P0, P7, P12, P1, P8, P13>. This data to grid nodes
mapping produces 46 interior communications and 24 external communications. This
result reflects the effectiveness of the node replacement algorithm in term of
minimizing inter-cluster communication overheads.

 D P

S P
P 0 P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 1 0 P 1 1 P 1 2 P 1 3

P 0 a 1 a 2 a 3 a 4 a 5

P 1 b 1 b 2 b 3 b 4 b 5

P 2 c 5 c 1 c 2 c 3 c 4

P 3 d 1 d 2 d 3 d 4 d 5

P 4 e 1 e 2 e 3 e 4 e 5

P 5 f 4 f 5 f 1 f 2 f 3

P 6 g 1 g 2 g 3 g 4 g 5

P 7 h 1 h 2 h 3 h 4 h 5

P 8 i 3 i 4 i 5 i 1 i 2

P 9 j 1 j 2 j 3 j 4 j 5

P 1 0 k 1 k 2 k 3 k 4 k 5

P 1 1 l 2 l 3 l 4 l 5 l 1

P 1 2 m 1 m 2 m 3 m 4 m 5

P 1 3 n 1 n 2 n 3 n 4 n 5

 C l u s t e r 1 C l u s t e r 2 C l u s t e r 3 C l u s t e r 4

(a)

 D P

S P
P 0 P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 1 0 P 1 1 P 1 2 P 1 3

P 2 a 1 a 2 a 3 a 4 a 5

P 5 b 1 b 2 b 3 b 4 b 5

P 9 c 5 c 1 c 2 c 3 c 4

P 3 d 1 d 2 d 3 d 4 d 5

P 6 e 1 e 2 e 3 e 4 e 5

P 1 0 f 4 f 5 f 1 f 2 f 3

P 4 g 1 g 2 g 3 g 4 g 5

P 1 1 h 1 h 2 h 3 h 4 h 5

P 0 i 3 i 4 i 5 i 1 i 2

P 7 j 1 j 2 j 3 j 4 j 5

P 1 2 k 1 k 2 k 3 k 4 k 5

P 1 l 2 l 3 l 4 l 5 l 1

P 8 m 1 m 2 m 3 m 4 m 5

P 1 3 n 1 n 2 n 3 n 4 n 5

 C l u s t e r 1 C l u s t e r 2 C l u s t e r 3 C l u s t e r 4

(b)

Fig. 4. Communication tables of data reallocation on non-identical cluster grid.
(a) Without data mapping (b) With data mapping.

5 Performance Evaluation

5.1 Theoretical Estimate

This section presents the theoretical value of processor reordering technique in
different hierarchy of cluster grid. For the case of data reallocation on an identical

90 C.-H. Hsu et al.

cluster grid that consists of five clusters (C=5) and K = n, the values of K vary from 2 to
10. The results in Figure 5(a) show that the processor reordering technique provides
more interior communications than the method without processor reordering. Figure
5(b) gives the number of interior communications for both methods when n ≠ K and
values of n vary from 2 to 10. Figure 5(c) compares the amount of interior
communications for three methods, the original method, reordering algorithm A and
reordering algorithm B. The difference between algorithms A and B is that algorithm
A uses load balance policy to select target cluster for node replacement while algorithm
B does not. As the results shown in Figure 5(c), reordering algorithm A has better
performance than the other methods. Overall, the reordering technique enhances
localities of data distribution and conduce lower communication overheads. We
emphasize that the result reported in Figure 5 is improvement ratio come from
theoretical estimate which will not be affected by network latency.

(a) (b)

(c)

Fig. 5. Improvement of interior communications (a) C=5 and K = n (b) C= 5, K=3 (c)
non-identical cluster grid C=4, n1= 2, n2= 3, n3= 4, n4= 5

5.2 Experimental Results

To evaluate the performance of the proposed technique, we have implemented
processor reordering technique with the application of data reallocation on Taiwan
UniGrid [1], eight universities’ clusters are geographically internet-connected. Each
cluster owns different number of computing nodes. The programs were written in the
single program multiple data (SPMD) programming paradigm with C+MPI codes.

Figure 6 shows the execution time of the methods with and without processor
reordering to perform data reallocation on an identical cluster grid with C=n=4 and
K=3. The size of test data is 10 MB that required remote I/O access. Different

 Localization Techniques for Cluster-Based Data Grid 91

combinations of cluster grid denoted as NTCH, NTCI, NTCD, etc. were tested. The
composition of these labels is summarized in Table 1.

In this experiment, method with processor reordering technique outperforms the
method that without processor reordering. Compare to the results given in Figure 6,
this experiment matches the theoretical estimation. It also satisfying reflects the
efficiency of the processor reordering technique. This experimental result shows the
proposed localization methods provide significant improvement.

Table 1. Labels of different cluster grid

Label Organization

N National Center for High Performance Computing

T National Tsing Hua University

C Chung Hua University

H Tung Hai University

I Institute of Information Science, Academia Sinica

D National Dong Hwa University

P Providence University

Fig. 6. Execution time to perform data reallocation on different combination of cluster grids in
Taiwan UniGrid

6 Conclusions

In this paper, we have presented a generalized processor reordering method for localizing
distributions of parallel data. The data to logical grid nodes mapping technique is
employed to enhance the performance of parallel programs on cluster grid. Effectiveness
of the proposed technique is to reduce inter-cluster communication overheads and to
speed the execution of data parallel programs in the underlying distributed cluster grid.
The theoretical analysis and experimental results show improvement of communication
costs and scalable of the proposed techniques on different hierarchical cluster grids.

Acknowledgement

The authors would like to acknowledge the National Center for High-Performance
Computing for sponsoring the Taiwan UniGrid project, under the national project,
“Taiwan Knowledge Innovation National Grid”. This research is also supported
partially by National Science Council, Taiwan, under grant number
NSC-93-2213-E-216-029.

References

1. Taiwan UniGrid, http://unigrid.nchc.org.tw
2. O. Beaumont, A. Legrand and Y. Robert, ”Optimal algorithms for scheduling divisible

workloads on heterogeneous systems,” Proceedings of the 12th IEEE Heterogeneous
Computing Workshop, 2003.

92 C.-H. Hsu et al.

3. Henri E. Bal, Aske Plaat, Mirjam G. Bakker, Peter Dozy, and Rutger F.H. Hofman,
“Optimizing Parallel Applications for Wide-Area Clusters,” Proceedings of the 12th
International Parallel Processing Symposium IPPS'98, pp 784-790, 1998.

4. M. Faerman, A. Birnbaum, H. Casanova and F. Berman, “Resource Allocation for
Steerable Parallel Parameter Searches,” Proceedings of GRID’02, 2002.

5. J. Blythe, E. Deelman, Y. Gil, C. Kesselman, A. Agarwal, G. Mehta and K. Vahi, “The
role of planning in grid computing,” Proceedings of ICAPS’03, 2003.

6. J. Dawson and P. Strazdins, “Optimizing User-Level Communication Patterns on the
Fujitsu AP3000,” Proceedings of the 1st IEEE International Workshop on Cluster
Computing, pp. 105-111, 1999.

7. I. Foster, “Building an open Grid,” Proceedings of the second IEEE international
symposium on Network Computing and Applications, 2003.

8. I. Foster and C. Kessclman, “The Grid: Blueprint for a New Computing Infrastructure,”
Morgan Kaufmann, ISBN 1-55860-475-8, 1999.

9. I. Foster and C. Kessclman, “Globus: A metacomputing infrastructure toolkit,” Intl. J.
Supercomputer Applications, vol. 11, no. 2, pp. 115-128, 1997.

10. James Frey, Todd Tannenbaum, M. Livny, I. Foster and S. Tuccke, “Condor-G: A
Computation Management Agent for Multi-Institutional Grids,” Journal of Cluster
Computing, vol. 5, pp. 237 – 246, 2002.

11. Saeri Lee, Hyun-Gyoo Yook, Mi-Soon Koo and Myong-Soon Park, “Processor
reordering algorithms toward efficient GEN_BLOCK redistribution,” Proceedings of
the 2001 ACM symposium on Applied computing, 2001.

12. M. Guo and I. Nakata, “A Framework for Efficient Data Redistribution on Distributed
Memory Multicomputers,” The Journal of Supercomputing, vol.20, no.3, pp. 243-265,
2001.

13. Florin Isaila and Walter F. Tichy, “Mapping Functions and Data Redistribution for
Parallel Files,” Proceedings of IPDPS 2002 Workshop on Parallel and Distributed
Scientific and Engineering Computing with Applications, Fort Lauderdale, April 2002.

14. Jens Koonp and Eduard Mehofer, “Distribution assignment placement: Effective
optimization of redistribution costs,” IEEE TPDS, vol. 13, no. 6, June 2002.

15. E. T. Kalns and L. M. Ni, “Processor mapping techniques toward efficient data
redistribution,” IEEE TPDS, vol. 6, no. 12, pp. 1234-1247, 1995.

16. Y. W. Lim, P. B. Bhat and V. K. Parsanna, “Efficient algorithm for block-cyclic
redistribution of arrays,” Algorithmica, vol. 24, no. 3-4, pp. 298-330, 1999.

17. Aske Plaat, Henri E. Bal, and Rutger F.H. Hofman, “Sensitivity of Parallel
Applications to Large Differences in Bandwidth and Latency in Two-Layer
Interconnects,” Proceedings of the 5th IEEE High Performance Computer Architecture
HPCA'99, pp. 244-253, 1999.

18. Xiao Qin and Hong Jiang, “Dynamic, Reliability-driven Scheduling of Parallel
Real-time Jobs in Heterogeneous Systems,” Proceedings of the 30th ICPP, Valencia,
Spain, 2001.

19. S. Ranaweera and Dharma P. Agrawal, “Scheduling of Periodic Time Critical
Applications for Pipelined Execution on Heterogeneous Systems,” Proceedings of the
30th ICPP, Valencia, Spain, 2001.

20. D.P. Spooner, S.A. Jarvis, J. Caoy, S. Saini and G.R. Nudd, “Local Grid Scheduling
Techniques using Performance Prediction,” IEE Proc. Computers and Digital
Techniques, 150(2): 87-96, 2003.

GridFTP and Parallel TCP Support in
NaradaBrokering

Sang Boem Lim1, Geoffrey Fox2, Ali Kaplan2,
Shrideep Pallickara2, and Marlon Pierce2

1 Korea Institute of Science and Technology Information,
(KISTI), Daejeon, Republic of Korea

slim@kisti.re.kr
2 Pervasive Technology Labs at Indiana University,

Bloomington, IN 47404-3730
{gcf, alikapla, spallick, marpierc}@indiana.edu

Abstract. Many of the key features of file transfer mechanisms like
reliable file transferring and parallel transferring are developed as part of
the service. It makes very hard to re–use the same code for the different
systems. We are trying to overcome this disadvantage by decoupling
useful features of file transfer mechanisms from the implementation of
the service and protocol, and instead placed into the messaging substrate.
We may thus treat file transfer operations as a specific usage case for a
more general messaging environment. This will allow us to provide file
transfer quality of service to other file transfer tools that does not have
same features.

1 Introduction

Today’s network environments require people to download many things on a
daily basis. Especially new technologies developed recently, like Grid environ-
ments, require reliable, secure high performance file transfer as the most im-
portant services. GridFTP [2] [6] is the one of the most common data transfer
services for the Grid and is a key feature of Data Grids [1]. This protocol provides
secure, efficient data movement in Grid environments by extending the standard
FTP protocol. In addition to the standard FTP features, the GridFTP protocol
supports various features offered by the Grid storage systems currently in use.

Even though GridFTP has good features of file recovery technologies,many
interesting features of GridFTP are tied to its protocol and implementation.
Providing these features to other file transfer services (such as those based
on Web Services, for instance) requires re–implementation and re-engineering.
These shortcomings may be addressed by inserting a reliable, high performance
messaging substrate between the client and service. This addresses specific prob-
lems in GridFTP client lifetimes, but more generally will allow us to extend
GridFTP-like features to other services without extensive re–implementation.
According to specification of GridFTP [2], GridFTP also has a restriction that
the client needs to remain active at all the times until the transfer finishes.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 93–102, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

94 S.B. Lim et al.

This in turn implies that we cannot use the rich set of recovery features of
GridFTP when the client state has been lost. In the event of client state loss,
transfer has to restart from scratch.

2 Related Work

We are using many different file transfer mechanisms on daily basis. One of the
most commonly used file transfer mechanism is File Transfer Protocol (FTP)
[5]. This is the simplest way to exchange files between computers. FTP is an
application protocol that uses the TCP/IP protocols. A more secure replacement
for the common FTP, protocol is Secure Copy (SCP), which uses the Secure
Shell (SSH) as the lower-level communication protocol. From the popularity of
World Wide Web, we are also commonly using Hypertext Transfer Protocol
(HTTP) as mechanism for transferring files. Even though some of file transfer
mechanisms are quite reliable, these mechanisms do not provide guaranteed,
reliable file transfer features like automatic recovery from failures.

Issues about reliable file transfer mechanism are more actively discussed
and developed from the Grid community recently. More relevant service to our
project is Reliable File Transfer (RFT) [8] [11] service developed by the Globus.
RFT service provides reliable file transfer mechanisms like automatic failure re-
covery. In the next section we will discuss more about behaviors of RFT.

The RFT is developed with automatic failure recovery while overcoming the
limitation of its predecessor technology, GridFTP. The most important idea
added to the RFT service is automatic failure recovery mechanism when any
problems are occurred during file transfer like dropped connections and tempo-
rary network outage. The RFT is dealing with problem by performing a retry
until the problem is resolved. The RFT also will inherit all the features that
GridFTP has since it is built on top of existing GridFTP. The RFT will in-
herit most of the automatic recovery features like restart support and remote
problems of the RFT service and it also will not lose performance of GridFTP.

The RFT service resolved a strict restriction of its predecessor GridFTP. The
client of GridFTP needs to remain active at all the times until the transfer finishes.
However, the RFT no longer requires this restriction. The RFT introduced a non-
user-based service. This service will store the transfer state in a persistent manner
and this state will be used to recover transfer from the last marker recorded for that
transfer when failure occurs including the client state failure.

3 NaradaBrokering

NaradaBrokering [9] [10] is messaging middleware designed to run on a large
network of cooperating broker nodes (we avoid the use of the term servers
to distinguish it clearly from the application servers that would be among the
sources/sinks to messages processed within the system). Communication within
NaradaBrokering is asynchronous and the system can support large client

GridFTP and Parallel TCP Support in NaradaBrokering 95

configurations publishing messages at a very high rate. The system places no
restrictions on the number, rate and size of messages issued by clients.

In NaradaBrokering entities can also specify constraints on the Quality-of-
Service (QoS) related to the delivery of messages. Among these services is the
reliable delivery service, which facilitates delivery of events to interested entities
in the presence of node and link failures. Furthermore, entities are able to retrieve
any events that were issued during an entity’s absence (either due to failures or
an intentional disconnect). The scheme can also ensure guaranteed exactly-once
ordered delivery.

Another service, relevant to this paper, is NaradaBrokering’s Fragmenta-
tion/Coalescing service. This service splits large files into manageable fragments
and proceeds to publish individual fragments. Upon receipt at a consuming entity
these fragments are stored into a temporary area. Once it has been determined
(by the coalescing service) that all the fragments for a certain file have been
received, these fragments are coalesced into one large file and a notification is
issued to the consuming entity regarding the successful receipt of the large file.
The fragmentation/reliable delivery service combination can be used to facili-
tate transfer of large files reliably. Access to these capabilities is available to
entities through the use of QoS constraints that can be specified. This facilitates
exploiting these capabilities with systems such as GridFTP.

We emphasize here that NaradaBrokering software is a message routing sys-
tem which provides QoS capabilities to any messages it sends. The NaradaBro-
kering system may be the messaging layer between many different applica-
tions, such as Audio/Video conferences [4]. The QoS features provided by the
NaradaBrokering system are independent of the implementation details of the
endpoint applications that use it for messaging. Thus applications do not need
to implement (for example) reliable messaging.

Furthermore, NaradaBrokering provides capabilities for communicating
through a wide variety of firewalls and authenticating proxies while supporting
different authenticating-challenge-response schemes such as Basic, Digest and
NTLM (a proprietary Microsoft authenticating scheme).

4 Enhancing GridFTP

On the previous papers ([3] [7]) we already described enhancing mechanisms. In
this paper we will briefly describe enhancing GridFTP with NaradaBrokering.And
we will focus more on how reliable mechanism works in the NaradaBerokering.

GridFTP and other file transfer mechanisms may already incorporate a num-
ber of reliability features on there implementation of service and protocol. How-
ever, the most important weakness of these architectures is all the great features
can not be used outside of its own architecture. This means whenever people
want develop new file transfer mechanism and if they want existing features
of other mechanisms, they have to re-develop same features within the service
implementation. It is our goal to show that these reliability features can be de-
coupled from the implementation of the service and protocol, and instead placed

96 S.B. Lim et al.

into the messaging substrate. This will allow us to provide file transfer quality
of service comparable to GridFTP in other file transfer tools (such as normal
FTP, SCP, HTTP uploads, and similar mechanisms).

Fig. 1. (a) Traditional GridFTP (b) GridFTP with NaradaBrokering

Figure 1 is present the basic architecture of integration between GridFTP
and NaradaBrokering. For initial testing we developed the router approach even
though proxy approach is the more preferred method. Main difference of those
two approaches is usage of NaradaBrokering Agent A. The router approach will
use NaradBrokering Agent A as simple router to transfer requests to the remote
server. Key to the proxy approach is the remote GridFTP server is simulated
by the NaradaBrokering Agent A. Since NaradaBrokering Agent A is a simple
router on the router approach, it is easier than the proxy approach to implement.
However, the router approach also has disadvantages like we have to change
the user application, even though change is minor and also requires some minor
extensions to FTP/GridFTP client codes to communicate with NaradaBrokering
Agent A. The client and server communicate solely with the agents on the edge of
the broker cloud. For the GridFTP client point of view, NaradaBrokering Agent
A is a server and NaradaBrokering Agent B is a client for GridFTP server point
of view. The proxy approach is the preferred method since the GridFTP client
code and user application do not have to change. All existing GridFTP code
and user application can be used in our architecture without any changes once
this method is implemented. Disadvantage of this approach is it is harder to
implement and time consuming process since we have to create GridFTP server
from the scratch.

4.1 Reliable Mechanism in NaradaBrokering

We will describe in depth about how reliable mechanism of NaradaBrokering
works. As we mentioned earlier we assumed that any of our architecture nodes
could be go down during transfer except GridFTP server. To achieve this idea
we are using acknowledgements and database. As we can see from Figure 2, the

GridFTP and Parallel TCP Support in NaradaBrokering 97

Fig. 2. Reliable Mechanisms in NaradaBrokering

first step is that we divide large file into small pieces (a1, a2, . . . , an−1, an) of
same size except last piece that may truncated. Once NaradaBrokering get a
piece from NaradaBrokering Agent A, it stores the piece into the database for
any failure cases while NaradaBrokering is also sending same file to NaradaBro-
kering Agent B. An acknowledgment of receiving a piece on the NaradaBroker-
ing from NaradaBrokering Agent A is taking place when NaradaBrokering is
finished storing piece into the database. Also, there is an acknowledgment to
NaradaBrokering after NaradaBrokering Agent B received and stored a piece
into the temporary local directory. Those acknowledgments will be stored in the
local file system and will be used when any failures occur during transferring a
file. Once failure is fixed NaradaBrokering Agent A, and/or NaradaBrokering is
looking for acknowledgment file and figure out the start point of resume trans-
mission. For example, we have a machine failure on NaradaBrokering Agent A
during sending a7 with a6 on acknowledgment file. After machine is re-started,
NaradaBrokering Agent A is looking in the acknowledgment file and fined start
point as a7 since there are receive acknowledgment until a6. This is goes to same
between NaradaBrokering and NaradaBrokering Agent B.

Database on the NaradaBrokering will be used as storage of small pieces
of files. In this way we can transfer file from NaradaBrokering Agent A to
NaradaBrokering without any guarantee of NaradaBrokering Agent B running
and it is true for sending file form NaradaBrokering to NaradaBrokering Agent
B. Even NaradaBrokering server itself can be go down. NaradaBrokering server
is smart enough to know resuming point to NaradaBrokering Agent B after
recovered from failure.

4.2 Multiple Stream Transfer Mechanism in NaradaBrokering

Advancement in network technologies is providing increasing data rates, but
current TCP implementation prevents us to use maximum bandwidth across
high-performance networks. This problem becomes very clear especially when
transferring data happens on a high-speed wide area network. Either increas-
ing the TCP window size by tuning network settings or using multiple TCP
streams in parallel can be used to overcome this problem and achieve optimal
TCP performance. Since lack of automatic network tuning and tuning network

98 S.B. Lim et al.

settings is different in each every operating system, it cannot be considered
as cross platform solution. Hence, we chose multiple parallel TCP streams to
achieve maximum bandwidth usage and we will describe in depth about our
implementation in this section.

Our idea of multiple parallel TCP streams consists of splitting data into
sub small packets at sender side and sending these sub small packets over the
network by using multiple Java socket streams in parallel. Although the default
socket buffer size is not set to value of the bandwidth delay product, using
multiple parallel TCP streams gives better transfer rate by aggregating each
socket bandwidth.

Fig. 3. NaradaBrokering PTCP Architecture

Figure 3 illustrates the architecture of NaradaBrokering Parallel TCP
(NBPTCP) transport layer, and NBPTCP usage as communication layer be-
tween NaradaBrokering Agent A and NaradaBrokering Agent B. Like all
other NaradaBrokering transport protocols, NBPTCP is implemented in the
NaradaBrokering’s transport layer as multi stream protocol, and it uses our Par-
allel TCP Socket (PTCPSocket) implementation. PTCPSocket can handle mul-
tiple sockets’ input and output streams and it is derived from Java.net.Socket. It
consists of packet splitter, packet merger, senders, receivers, and TCP sockets,
and it has two types of channels; communication and data channels. All control
information and negotiations are sent over the communication channel, which
stays open till the end of whole data transfer, and data channels are used for
actual user data transfer. For example, both sender side and receiver side agree
on the number of streams, which will be used during the data transfer by using
communication channel. Sender side is responsible for deciding the number of
parallel streams before initiating the actual user data transfer.

After the setting parallel streams number, packet splitter starts diving user
data into small packets. These packets are passed to senders layer and senders
send them to receiver side by writing these packets into TCP sockets’ output
streams (data channels). The number of senders and receivers are same as the
number of parallel streams. At receiver side, receivers read packets from the
TCP sockets’ input streams (data channels) then pass these packets to upper

GridFTP and Parallel TCP Support in NaradaBrokering 99

layer, which is called packet merger. The packet merger combines these incoming
packets by checking their packet number, which is given by the packet splitter.
Since TCP uses a checksum computed over the whole packet to verify that the
protocol header and the data in each received packet have not been corrupted,
there is no need to check data integrity at the packet merger layer again.

5 Benchmarks

In this section, we will discuss how well our reliable middleware architecture is
performing in the existing services. To increase realities, we are done performance
tests between Cardiff University at United Kingdom and Indiana University at
United State. We are also using multiple platform environments to show inter–
operability of the NaradaBrokering. For example, we are running NaradaBro-
kering server on the Windows platform and NB Agents on the Linux platform.
The experimental setup is described below (see Figure 1 for each parts):

– GridFTP Client: Dual Pentium III 1GHz CPU with 1.5 GB of RAM on
Red Hat Linux 7.2. Located at Cardiff University.

– NB Agent A: Dual Pentium III 1GHz CPU with 1.5 GB of RAM on Red
Hat Linux 7.2. Located at Cardiff University.

– NaradaBrokering Server: Pentium 4 2.53GHz CPU with 512 MB of RAM
on Windows XP Professional Operating System. Located at Indiana Univer-
sity.

– NB Agent B: Intel(R) Xeon(TM) CPU 2.40GHz CPU with 2GB of RAM
on Red Hat Linux 7.2. Located at Indiana University.

– GridFTP Sever: Dual AMD Athlon(tm) MP 1800+ CPU with 513 MB on
Red Hat Linux 7.3. Located at Indiana University.

In our performance measurements, we wish to examine the performance
penalty represented by adopting the architecture of Figure 1. Again, the routing
approach allows us to provide reliability features (such as recovery from network
failures) on top of the basic GridFTP file transfer mechanisms. This will create
some additional overhead, which we determine below.

Fig. 4. File Transfer Results with 1 Stream

100 S.B. Lim et al.

We will present performance results up to 2 streams since there are vir-
tually no differences beyond 2 streams. This kind of behavior is due to the
network setting between Cardiff University at UK and Indiana University at
USA, which is beyond our control. Figure 4 shows the performance result of 1
stream of GridFTP, NBGridFTP, and NaradaBrokering. As we can see on this
Figure, NBGridFTP is slower by 22.22% (25 MB) to 28.76% (400 MB) range.
Those percentages of delays come from inside NaradaBrokering like dividing
large file, writing to database, and temporarily copying data on the NaradaBro-
kering Agent A and NaradaBrokering Agent B. Result of NB only represent the
performance result of between NaradaBrokering Agent A and NaradaBroker-
ing Agent B. This means that we remove timing for temporary file store and
NaradaBrokering Agent A is worked as GridFTP Client and NaradaBrokering
Agent B is worked as NBGridFTP server. This result gives us idea about how
well our NaradaBrokering network implemented. As actual network stand point
of view it is only about 11.91% to 18.52% slower compared with GridFTP, plus
our NaradaBrokering system has reliable mechanisms are there.

Fig. 5. File Transfer Results with 2 Streams

As we can see on the Figure 5, we also have similar results for 2 streams
case. In this case our architecture is slower compared with GridFTP by 25.44%
to 30.91% for NB + GridFTP case and about 7.56% to 13.45% for NB only
case. We also can see the rate of second dropping from the 1 stream case is very
similar to GridFTP-GridFTP dropped 42.36% and NaradaBrokering dropped
44.57%. This means our implementation of multiple streams is as effective as
what GridFTP has currently. For the future optimization issues, we will discuss
about the matters that delays our architecture in the next section.

5.1 NaradaBrokering Timing

We will look deeply into the time spent in our architecture for further optimiza-
tion (see Table 1). We divide NaradaBrokering with GridFTP into 2 parts; Tim-
ing for internal and external NaradaBrokering time. Internal NaradaBrokering
time is divided into initialization, deleting temporary file, writing to database,
actual transferring, and merging file. For the external time, we measured file

GridFTP and Parallel TCP Support in NaradaBrokering 101

Table 1. Detailed timing for NaradaBrokering + GridFTP with 2 streams in seconds

MB Temp. Transfer Init Del. DB Merging Network NB + GridFTP GridFTP

25 4.82 0.95 0.02 1 0.36 25.52 25.52 26.95
50 9.16 1.80 0.05 2 0.72 52.24 52.24 54.18
100 17.54 3.88 0.11 4 1.66 106.05 106.05 103.93
200 36.42 17.28 0.22 8 3.15 206.63 206.63 208.66
400 74.20 41.04 0.43 16 5.97 418.56 418.56 424.85

transfer between GridFTP client to NaradaBrokering Agent A and between
NaradaBrokering Agent B to GridFTP server. A large file will be divided into
small pieces of fixed size and will be stored into temporary directory in the Ini-
tialization phase and after done transfer, timing for the cleanup those temporary
files are measured on the Delete phase. Those small pieces of a file will be stored
into the database that located on the NaradaBrokering server first. This time is
estimated timing based on the experimental benchmark. Actual file transferring
time is measured on the Network phase. After NaradaBrokering Agent B gets
all the small pieces of file it will reconstruct original file using those pieces. As
we can see for this table, most of the time is either negligible (delete, database,
and merging) or non-avoidable (temporary file transfer). And also actual timing
for the transferring file is reasonable. According last two measurements of Table
1, actual file transfer rates are as good as GridFTP file transfer rates. GridFTP
is little bit slower because we did not separate authentication from the actual
file transfer.

One part we believe we can optimize is initialization. Table 1 shows that it is
not taking much time if dealing with small file size. However it takes more then
necessary when dealing with larger file size. Initialization phases will be deeply
investigated for the future optimization.

6 Conclusions

We discussed reliable transfer mechanism in NaradaBrokering using GridFTP
as an example. NaradaBrokering system is an event brokering system designed
to run on a large network of cooperating broker nodes and is used here as a
general purpose messaging substrate. Communication within NaradaBrokering
is asynchronous and the system can be used to support different interactions by
encapsulating them in specialized events. . Decoupling desirable features of exist-
ing systems like file recovery technologies in GridFTP from the implementation
of the service and instead placing into the reliable, high performance messaging
substrate between the client and service will allow us to extend to other services
without extensive reimplementation.

We also discussed deploying NaradaBrokering in GridFTP and its perfor-
mance tests. As we can see from the performance tests we have reasonable file
transfer rates with added features like reliable transfer and multiple stream file

102 S.B. Lim et al.

transfer. We show the possibilities of our goal of decoupling reliability features
from the implementation of the service and protocol, and instead placed into the
software messaging substrate without great lose of performances.

For future work, the brokering system is by design a many-to-many messaging
system, so we may exploit this to support simultaneous delivery of files to multi-
ple endpoints. Finally, we will develop more examples of using other file transfer
mechanisms that will mimic RFT-like features without reimplementation

References

1. Bill Allcock, Joe Bester, John Bresnahan, Ann L. Chervenak and
Ian Foster, Carl Kesselman, Sam Meder, Veronika Nefedova, Darcy Quesnel, and
Steven Tuecke. Data Management and Transfer in High Performance Computa-
tional Grid Environments. Parallel Computing Journal, 28(5):749–771, May 2002.

2. W. Allcock, J. Bester, J. Bresnahan, A. Chervenak,
L. Liming, and S. Tuecke. Gridftp: Protocolextensions to ftp for the grid. Technical
Report JGF-TR-03, Argonne National Laboratory, April 2002.

3. Geoffrey Fox, Sang Boem Lim, Shrideep Pallickara, and Marlon Pierce. Message-
based cellular peer-to-peer grids: foundations for secure federation and autonomic
services. Future Generation Computer Systems, 21(3):401–415, 2005.

4. Geoffrey C. Fox, Wenjun Wu, Ahmet Uyar, and Hasan Bulut. Design and imple-
mentation of audio/video collaboration system based on publish/subscribe event
middleware. In CTS04, January 2004.

5. Rfc 765 - file transfer protocol specification. http://www.faqs.org/rfcs/rfc765.html.
6. Gridftp: Universal data transfer for the grid.

http://www.globus.org/datagrid/gridftp.html.
7. Sang Boem Lim, Geoffrey Fox, Shrideep Pallickara, and Marlon Pierce. Web service

robust gridftp. In The 2004 International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA04), June 2004.

8. Ravi K Madduri. Reliable file transfer in grid environments. In the 27th Annual
IEEE Conference on Local Computer Networks (LCN’02), November 2002.

9. The naradabrokering system. http://www.naradabrokering.org.
10. Shrideep Pallickara and Geoffrey Fox. Naradabrokering: A middleware framework

and architecture for enabling durable peer-to-peer grids. In ACM/IFIP/USENIX
International Middleware Conference Middleware-2003, June 2003.

11. Reliable file transfer service. http://www-unix.mcs.anl.gov/ madduri/RFT.html.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 103 – 111, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2-Layered Metadata Service Model in Grid Environment*

Muzhou Xiong, Hai Jin, and Song Wu

Cluster and Grid Computing Lab,
Huazhong University of Science and Technology, Wuhan, 430074, China

hjin@hust.edu.cn

Abstract. Data intensive task is becoming one of the most important applications
in grid environment. The scale of data sets has been hundreds of terabytes and
soon will be petabytes. The primary problem we face is how to organize the
geographical distributed storage devices to support the collaborative operations
on data in those resources. On the one hand, performance is critical to such
application, but on the other hand the diverse network conditions prevent users
from getting the same service quality. This paper focuses on how to resolve the
above problem, and presents a 2-layered metadata service model in grid
environment which utilizes the special locality of users’ distribution and provides
a platform for grid data management. We have implemented that 2-layered
metadata service model in ChinaGrid Supporting Platform (CGSP) - the grid
middleware for ChinaGrid project.

1 Introduction

Advances in science are made possible largely through the collaborative efforts of
many researchers in a particular domain. We see collaborations of hundreds of
scientists in areas such as gravitational-wave physics [1], high-energy physics [2],
astronomy [3] and many others coming together and sharing a variety of resources
within collaboration in pursuit of common goals. These resources are geographically
distributed and can encompass people, scientific instruments, computer and network
resources, applications and data. It is common to see datasets on the order of terabytes
today, and soon be petabyte-scale. Grid technologies [4, 12, 13] enable efficient
resource sharing in collaborative distributed environments. In this paper, we focus on
the area of data management of the grid, with a particular emphasis on metadata
management so that data can be well placed to provide high access efficiency.

One challenge in these shared environments is how to put data sets to proper
storage resource so that the relevant researchers can fetch them with high efficiency.
Usually data are transparently stored in system and users need not care how to select
storage resources. Also the data must be easy to be discovered and accessed. But
because of the complexity of grid components and their connectivity, geographical
distributed users can hardly get the same performance from the grid environment.
Perhaps a set of users gets much high transfer speed but the others can get very poor
performance. Such conditions will not be tolerable especially when the scale of
required data sets getting much larger.

* This paper is supported by National Science Foundation of China under grant 60125208 and

90412010, and ChinaGrid project of Ministry of Education of China.

104 M. Xiong, H. Jin, and S. Wu

For example, thousands of scientists from worldwide collaboratively work on the
same project in grid environment and data are shared among them. They often get and
store data from and into the grid. All of them want to get high transfer speed to
improve the efficiency. However, the difference of logical distance between the
scientists and the storage resources with the data makes the different performance of
data transfer. How to build a common data management platform in grid environment
so that all the users interested in the same domain will get alike performance is a big
barrier in the development of grid technology.

Traditional replica mechanism is one solution to eliminate the performance gap
among users. But with the data scale getting larger and the frequency of operations on
the data becoming higher, the maintenance of data consistency will be a very complex
work, which constrains users waiting for the data updating or working in degrading
model in a long time. An alternative solution of such problem may be an intelligent
data scheduling algorithm, which can store data in proper location to satisfy users’
access requirement as much as possible according to users’ access pattern. When the
pattern changes, data will be migrated to another location to adapt to the new
condition. This method contains two main shortcomings. One is that it is hard to find
a common algorithm to satisfy all the requirements of application. The distribution of
storage resources and users may cause different data scheduling mechanism, and the
cost of scheduling is very expensive. The other is that when the access pattern
changes frequently, data will be migrated in the grid environment very frequent. This
will cause the whole system unstable and make the probability of data error higher.

This paper addresses the issue on how to build a metadata management model in
grid environment to get high performance. In our model, we divide the traditional
metadata manager in grid environment into two parts. One is responsible for building
a global namespace for users in a special domain, and the other is responsible for
collecting a set of storage resources to store data in that domain. We have implement
this data management model in ChinaGrid project [10] as a part of ChinaGrid support
platform (CGSP) [10]. Through that users in the same domain can get almost the
same transfer speed.

This paper is organized as follows. We discuss the related work in section 2. In
section 3, we give the overview of the data management in CGSP, and the two-layered
metadata service in CGSP in section 4. Section 5 is the use case study of the model. We
perform the performance study in section 6, and conclude this paper in section 7.

2 Related Works

Storage Resource Broker (SRB) [5] and its associated Metadata Catalog [6] provide
metadata and data management services. SRB supports a logical name space that is
independent with physical name space. The logical objects, logical files in SRB can
also be aggregated into collections. SRB provides various authentication mechanisms
to access metadata and data within SRB.

Replica Metadata (RepMec) [14] catalog is built upon the Spitfire database service.
The RepMec Catalog stores logics and physical metadata. It is used within the EDG
project to map user-provided logical names of data items to unique identifiers called
GUIDs. RepMec is used in the Reptor system in cooperation with a replica
location service.

 2-Layered Metadata Service Model in Grid Environment 105

Internet Backplane Protocol (IBP) [7] is a middleware for managing and using
remote storage. It supports logistical networking in large scale, distributed systems
and applications. It defines logistical networking as the global scheduling and
optimization of data movement, storage and computation based on a model that takes
into account all the network's underlying physical resources. IBP provides a
mechanism for using distributed storage for logistical purposes and also provides
strategies of data depots and repositories, and replica management.

Majority of data grid projects, such as Particle Physics Data Grid [15] and LHC
Computing Grid Project [16], are focusing on designing higher-level services on top
of the basic Globus infrastructure. Some of the services being developed are: replica
management, which combines replica catalog with file transfer; replica selection,
which chooses the “best” replica with respect to network and storage performance;
and broker services, which seek out available resources to schedule jobs.

3 Overview of Data Manager in CGSP

ChinaGrid [10] integrates all the resources among participant universities in China,
and makes users and heterogeneous grid resources work cooperatively. It provides
transparent grid services with high performance, high reliability for all kinds of
science computing and research. ChinaGrid Support Platform (CGSP) [10] is the core
middleware for ChinaGrid, which also provides development environment for grid
application.

CGSP integrates all kinds of resources in education and research environments,
makes the heterogeneous and dynamic nature of resource transparent to the users, and
provides high performance, high reliable, secure, convenient and transparent grid
service for the scientific computing and engineering research. CGSP provides both
ChinaGrid service portal, and a set of development environment for deploying various
grid applications.

The current version, CGSP 1.0, is based on the core of Globus Toolkit 3.9.1, and is
WSRF [8] and OGSA [9] compatible. CGSP contains five building blocks: grid
portal, grid development toolkits, information service, grid management and grid
security. Grid management has four parts: service container, data manager, job
manager, and domain manager [10].

Data management is the core service in CGSP. It manages heterogeneous storage
resources and data in grid environment. When a user sends a request to data manager
for storing a set of data, data manager selects a proper storage resource to receive the
data set and in the meaning while, it also recodes the relevant metadata. When a user
wants to fetch a set of data, data manager will find the relevant metadata according to
the data identifier and return to the user with the best replica. Data logical domain
manager and data domain manager are in charge of metadata maintenance. Different
from the traditional metadata management mechanism, it uses the 2-layered metadata
management model to record the relevant metadata. We will discuss this model in
detail in next section. In section 5 we also give a use case study to descript how this
model works in grid environment.

106 M. Xiong, H. Jin, and S. Wu

4 2-Layered Metadata Services

4.1 Requirements of Metadata Services in CGSP

Basically, metadata manager records a variety of information of the related data.
Some information is application dependent, such as the creation time, author,
described in Dublin Core [6]. It also provides data location service. For example, if a
user wants to fetch a data file with a given logical file name in his data namespace,
the metadata service finds the corresponding metadata associated with the file name
and provides the URL of the storage location storing the data. The metadata service
records Access Control List (ACL) for every data file. Data are shared among
different users and the author does not want to let all users have the same access right
to the data. Receiving a data access request, the metadata service first checks the ACL
to tell whether the user has the right to do such operation.

Metadata service must also have a proper data scheduling mechanism to confirm
all the transfer speed to users. In grid environment, it is hard to find such an algorithm
to satisfy all the users’ requirement. We need to change to traditional metadata
organization to satisfy such requirement. We design 2-layered metadata service model
to guarantee the service quality of metadata management.

4.2 2-Layered Metadata Service Model

This design is adaptive to the applications in grid environment, especially to the
data-intensive applications. In these applications, data are stored in storage resources
and shared by users, which are all geographically distributed. Collaborative work
makes the shared data becoming the key component among the users. But all
applications have space locality, that is to say users and data usually distributed in
some special sites. Using this locality, we provide the 2-layered metadata service
model which can largely improve the data transfer speed. The design of 2-layered
metadata service model focuses on how to resolve the data transfer speed in grid
environment. Such solution does not make emphasis on data transfer protocol, but on
the organization of data and storage resources. In such a model, system creates a data
logical domain for every application containing a set of users. In order to confirm data
near to users, data logical domain also contains a set of storage resources logically
near to the users and data are always stored in them. Through that, proper data are
confirmed to be stored on the proper storage resources, making high effective data
transfer speed between users and resources.

The 2-layered metadata service model in CGSP has two parts: the lower part
organizes distributed storage resources into a manageable storage pool and also
provides data location service, which is called Data Domain (DD); the upper part
with the name of Data Logical Domain (DLD) connects special applications and a set
storage resources, also it maintains the domain independent metadata. DD takes care
of the management of storage resources with the dynamic state of resources, which
supports resource selection strategy. DLD does not manage any storage resource, but
it contains a list of resources for a special data logical domain. All data in the DLD
are stored in those resources, which are selected to satisfy almost all users’ transfer
speed requirement.

 2-Layered Metadata Service Model in Grid Environment 107

4.3 Data Domain

The tremendous storage resources are organized as where they are, that is, all storage
resources in that region are collected together and managed by DD. Every storage
resource sends its own state information such as CPU load, storage capacity, to DD
periodically. Through such information, DD knows status of each resource so that
upper component can decide where to store data when receiving data storing request.
If a resource does not send its information to DD in a certain internal, it will be
considered as out-of-work and the next task will not refer to this resource. Through
this mechanism, DD dynamically knows which resource adapts to the type of task.
For example, if a task is a data back-up, usually it will focus on the capacity of the
resource but not on CPU processing capability.

Replica catalog is another function of DD. The main task of replica catalog is to
provide data location service and maintain the integrity of data. It implements
mapping from data uniform identifier to URLs where user can fetch data. Because a
data can have multiple replicas, replica catalog must also choose the best one.
Through this mechanism, users can transparently access data, without knowing where
to store or fetch data and what type of data transfer protocol is. When updating a
replica, replica catalog will maintain the consistent among the replicas.

4.4 Data Logical Domain

DLD is the main feature in data management of CGSP, through which performance
consistency can be achieved. DLD is a triple-tuple: <application, user, resource>,
which describes an application stores data on which storage resources and which
users work together for the application. The element application indicates the task to
which DLD provides storage service. A given application usually has fixed users
working in some special places, and also application decides the type of resource for
it. The element user is a collection of user IDs with an administrator in it. When a
DLD is created, user has only one element: administrator. The administrator takes
care of user management. The user joining the DLD is added into the user collection
and has the right to access data in DLD. The administrator manages storage resources.
It selects storage resources from resource list, and the selected resource is the last
element of DLD: resource. Because of the locality of user’s geographical distribution,
administrator can choose resources logically for almost every user, but not with
tremendous users with disordered distribution. Through this the data storage quality
of service is confirmed.

DLD builds a uniform namespace for each user. When launching a DLD, user sees
a tree structure directory. A group of data operations are supported, such as data
upload, download. For example, a user can upload a data file with a given file name in
any directory of the namespace. Insides the system the relevant metadata information
including the logical file name (the complete path in the namespace) is recorded. A
global uniform ID is corresponding to the logical file name. In DD the ID is mapped
to a set of URLs. The two translations make data operations transparent, and user
does not need to know the location of data. Every application has its own data shared
by all the collaborative users, and DLD provides a mechanism to publish the data to
all. DLD records metadata of all shared data and adds them to every user’s
namespace. In user’s namespace, a fixed directory called common in a DLD contains
all the shared data. Any user can operate these data under certain access control rule.

108 M. Xiong, H. Jin, and S. Wu

A user has a namespace even if he is not belonged to a DLD. Each user is in a
default data logical domain. Default data domain is created during system
initialization, and contains all users registered in the system. The difference between a
DLD and default DLD is that default DLD contains all the resources of the DD, that
is, data are distributed in all the resources, which will decrease the transfer
performance without considering the locality. Default DLD is convenient to users
when they work alone, but the performance seems worse than that of DLD (seen in
the performance study section). Metadata in DLD and default DLD together compose
a uniform namespace for a user.

In some circumstances, no storage resource can satisfy users for the performance
requirement. DLD will duplicate data for them. DLD chooses the most frequently
used data replica near to those users, and makes consistent between the replica and
original data. Through this, all users in DLD will get relative high performance.

Fig. 1. Workflow of 2-layered metadata services in CGSP

5 Use Case Study

When a user uses data management in CGSP, he may first login from the portal or the
data management client. Through the client or portal, the user sends request to operate
data. The request which contains the data path in the user’s namespace is sent to the
Access Point and the Access Point forwards it to the corresponding DLD manager. In
DLD manager the request is resolved to the following format: <request type, DLD
name, data path>. If the request is a query operation, DLD manager will search the
metadata in the corresponding DLD according to the DLD name and data path, which
will be returned to Access Point and sent to user. Fig. 1 illustrates a fetching operation
workflow. Like the query operation, DLD manager finds the uniform identifier (UID)
and sends it to DD manager which will get URLs of data from replica catalog.

 2-Layered Metadata Service Model in Grid Environment 109

When a portal or a client gets the URLs, it can get data from the relevant storage
resource directly. When creating a new file, DLD manager will create a new UID for
the file, record metadata of the file and choose a proper resource to store the file from
the DLD resource list. UID is sent to DD manager. Also the URL reserved in replica
catalog is created according to the selected storage resource. Data will be uploaded
from portal or client to the site indicated by URL.

6 Performance Evaluation

The data management of CGSP is run on a cluster with 16 nodes and each node is
configured with 1GHz Xeon CPU with 512MB memory and 40GB disk, with Red
Hat 7.3 kernel version 2.4.9 as its operating system. All nodes are connected by
100Mb Ethernet. All the data management modules including DD and DLD are
installed in the cluster. Clients are distributed in the wide area network.

With this study we aim to address two issues: 1) the performance of metadata
service model; and 2) the performance of data transfer speed in DLD and default
DLD. The key measurement of metadata services is the operation rate to metadata.
The operation contains two aspects: metadata read which is used to query or list data
and metadata write when creating new data file. We also compare the performance
between data in DLD and default DLD.

We used 1 to 12 concurrent threads to perform the read/write operation to
metadata. The result is showing in Fig. 2. From the result we can see that metadata
read rate is about 15% higher than that of write. That is because we use OpenLDAP to
optimize read operation to store metadata information.

0 2 4 6 8 10 12

20

40

60

80

100

120

140

160

180

O
pe

ra
tio

n
nu

m
be

r
pe

r
se

co
nd

Number of threads

 Read
 Write

Fig. 2. Performance of metadata operation (read, write)

For data transfer test, we fetch data in DLD and default DLD with the size range
from 50 to 1000 MB, respectively. We use GridFTP [12] as the data transfer protocol.
From Fig. 3, we find that the performance of data transfer speed in DLD is averagely
60% higher than that in default DLD. The data transfer speed is much steady because

110 M. Xiong, H. Jin, and S. Wu

users are distributed in relative small scale sites and the storage resources are logically
near them. For data in default DLD, data transfer speed may be high, but for the most
circumstances, we just get poor performance. The performance difference shows that
using geographical distribution locality, we can get much better result.

0 200 400 600 800 1000
0

2

4

6

8

0

2

4

6

Data size (MB)

 DLD
 DefaultDLD

Fig. 3. Performance of data transfer speed

7 Conclusion and Future Work

In this paper we present the 2-layered metadata service model in grid environment.
The model is based on the locality distribution of users. With the separation of
traditional metadata service, we manage metadata in DLD and DD. DLD manages a
set of resources and a user’s namespace and in DD it maintains replica catalog.
Without complex resources scheduling algorithm, we can get a good data transfer
speed. The model is implemented in CGSP 1.0 of ChinaGrid project.

Replica mechanism is another important aspect in the model. We have
implemented some simple algorithms for replica creating, resource selection and
replica shifting, but they are not enough for the complex conditions in grid
environment. In the future we plan to design efficient replica algorithms to satisfy
users’ distribution in larger area.

References

1. B. C. Barish and R. Weiss, “LIGO and the Detection of Gravitational Waves”, Physics
Today, Vol.52, p.44, 1999.

2. C.-E. Wulz, “CMS – Concept and Physics Potential,” Proceedings II-SILAFAE, San Juan,
Puerto Rico, 1998.

3. NVO, 2004. http://www.us-vo.org/.
4. I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable

Virtual Organizations”, International Journal of High Performance Computing
Applications, vol.15, 2001.

 2-Layered Metadata Service Model in Grid Environment 111

5. C. Baru, R. Moore, A. Rajasekar, and M. Wan, “The SDSC Storage Resource Broker”,
Proceedings of CASCON’98 Conference, 1998.

6. MCAT, MCAT – A Meta Information Catalog (Version 3.0),
http://www.npaci.edu/DICE/SRB/mcat.html.

7. M. Beck, Y. Ding, T. Moore, and J. S. Plank, “Transnet Architecture and Logistical
Networking for Distributed Storage”, Proceedings of Workshop on Scalable File Systems
and Storage Technologies, San Francisco, CA, Sept. 2004.

8. The Web Services Resource Framework, http://www.globus.org/wsrf/.
9. Open Grid Service Architecture,

http://www.ggf.org/Public_Comment_Docs/Documents/draft-ggf-ogsa-specv1.pdf.
10. H. Jin, “ChinaGrid: Making Grid Computing a Reality”, Digital Libraries: International

Collaboration and Cross-Fertilization - Lecture Notes in Computer Science, Vol.3334,
Springer-Verlag, December 2004, pp.13-24.

11. GridFTP: Universal Data Transfer for the Grid,
http://www.globus.org/datagrid/gridftp.html/.

12. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, “The Data Grid:
Towards an Architecture for the Distributed Management and Analysis of Large Scientific
Data Sets”, J. Network and Computer Applications, pp.187-200, 2001.

13. A. Rajasekar and A. Jagatheesan, “Data grid management systems”, Proceedings of the
2003 ACM SIGMOD international conference on Management of data, April 2003.

14. L. Guy, P. Kunszt, E. Laure, H. Stockinger, and K.Stockinger, Replica Management in Data
Grids, Global Grid Forum 5, 2002.

15. PPDG Project: http://www.ppdg.net/.
16. LHC Computing Grid Project: http://lcg.web.cern.ch/LCG/.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 112 – 117, 2005.
© Springer-Verlag Berlin Heidelberg 2005

 pKSS: An Efficient Keyword Search System
in DHT Peer-to-Peer Network*

Yin Li, Fanyuan Ma, and Liang Zhang

The Department of Computer Science and Engineering,
Shanghai Jiaotong University, Shanghai, China, 200030

{liyin, fy-ma, zhangliang}@cs.sjtu.edu.cn

Abstract. The state-of-the-art keyword search system for structured P2P
systems is built on the distributed inverted index. However, Distributed
inverted index by keywords may incur significant bandwidth for executing
more complicated search queries such as multiple-attribute queries. In order
to reduce query overhead, KSS (Keyword Set Search) by Gnawali partitions
the index by a set of keywords. However, a KSS index is considerably
larger than a standard inverted index, since there are much more word sets
than individual words. And the insert overhead and storage overhead are
obviously unacceptable for full-text search on a collection of documents. In
this paper, we presents pKSS, a P2P keyword search system that that adopts
term ranking approach such as TFIDF and exploits the relationship
information between query keywords to improve performance of P2P
keyword search. Experimental results clearly demonstrated that the
improved keyword search is more efficient than KSS index in insert
overhead and storage overhead, and much less than standard inverted index
on bandwidth costs for a query.

1 Introduction

In recent years, P2P has emerged as a popular way to share huge volumes of data. The
key to the usability of a data-sharing P2P system, and one of the most challenging
design aspects, is efficient techniques for search and retrieval of data.

Structured P2P systems, such as Chord [1], Pastry [2], don’t support full text
search directly. While, as they actually implement distributed hash tables (DHTs)
over them, keyword search can easily be implemented by distributing inverted indices
among hosts by keyword. Then a query with k keywords can be answered by at most
k hosts through the intersection of inverted lists. However, Distributed inverted index
by keywords may incur significant bandwidth for executing more complicated search
queries such as multiple-attribute queries. This is unacceptably large bandwidth for
query in a P2P system because bandwidth available to most nodes in the Internet is
rather small.

In order to reduce query overhead, KSS (Keyword set Search)[3] partitions the
index by a set of keywords. A KSS index is considerably larger than a standard
inverted index, since there are more word sets than there are individual words. And

* Supported by The Science & Technology Committee of Shanghai Municipality Key Project

Grant 03dz15027 and 03dz15028.

 pKSS: An Efficient Keyword Search System in DHT Peer-to-Peer Network 113

insert overhead for KSS grows exponentially with the number of the keywords while
query overhead is reduced because no intermediate lists are transferred across the
network for the join operation. However, the insert overhead and storage overhead of
KSS are obviously unacceptable for full-text search on a collection of documents
even if KSS makes use of the distance window technology.

Our work aims to design an efficient P2P keyword search system which has the
same order of insert and storage overhead as standard distributed inverted index while
has the same (or better) performance of keyword search as (or than) KSS. pKSS (P2P
keyword search system), presented in this paper, adopts term ranking approach such
as TFIDF and exploits the relationship information between query keywords to
improve performance of P2P keyword search. In pKSS, instead of publishing
keyword pairs as done in KSS, we only publish individual important keywords and
associate each publishing keyword with a set of related keywords, and the insert and
storage overhead can be greatly reduced when compared with KSS. When doing
keyword search, related query keywords are grouped into sets, and search can be done
in keyword set like KSS. Therefore the performance of keyword search can also be
greatly improved when compared with standard distributed inverted index.

2 Keyword Relationship Discovering

To speed up the keyword search in pKSS, each publishing term is associated with a
set of keywords that are usually queried by the user together. To determine the
keyword relationship, we take a query log which can be obtained from WWW or FTP
search sites as input and map it into a graph which expresses the relationship between
keywords. The algorithm has three basic steps:

Step 1 Construct a directed graph G(A,E) according to the query log
Step 2 Pruning the graph to G(A,E)|θ according to a given connectivity threshold θ
Step 3 Output Eθ

We discuss each step in turn.

Step1. Construct a directed graph G(A,E) according to the query log.
The set of vertices A in graph G(A,E) corresponds to the search terms used in the user
queries. The set of edges E corresponds to search terms co-occurrence as observed in
the user queries.

E={e|weight(e)>0}. Since the graph G(A,E) is a directed graph, EA1->A2 and EA2->A1
should be distinguished form each other. The weight of a directed edge is defined as
follows:

1 2

(1 2)
weight()

(1)A A

freq A A
E

freq A−>
∩= (1)

Where A1 and A2 are vertices in set A. The freq(X) represents the frequency that
search term X occurs in users’ query. For instance, if a query procedure contains the
search terms "p2p" and "search" the frequency of the relevant vertices is added one
respectively. The weights on the directed edge (p2p search) are computed as the
normalized frequencies by dividing them with the occurrence frequencies of the

114 Y. Li, F. Ma, and L. Zhang

“p2p” vertices .The effect of the normalization is to remove the bias for
characteristics that appear very often in all users.

Step2. Pruning the graph to G(A,E)|θ according to a given connectivity
threshold θ.
As the connectivity of the resulting graph G is usually high, we use a connectivity
threshold, aiming at reducing the number of edges in the graph. The connectivity
threshold represents the minimum weight allowed for the edge’s existence. When this
threshold is high the graph will be sparse and when the threshold is lower the graph
will be dense.

In graph G(A,E)|θ, the set of vertices A in graph G(A,E)|θ is same to the set of
vertices A in graph G(A,E) , which corresponds to the search terms used in the user
queries. However, the set of edges Eθ corresponds to search terms co-occurrence as
observed in the user queries. Eθ can be obtained from following equation.

{ | , () }E e e E weight eθ θ= ∈ ≥ (2)

It is obvious that different connectivity threshold θ may output different Eθ. The
larger connectivity threshold θ is, the sparser the graph is. In pKSS, we choose
θ=0.05.

Step3. Output Eθ .
This step outputs the vertex pairs corresponding to Eθ, which expresses the co-
occurrence relationship of query keywords.

3 Keyword Publishing and Search in pKSS

In pKSS, we make two optimizations for keyword search in structured P2P network.
Firstly, by adopting TFIDF technique, only important terms that best describe the
document are selected as publishing keywords. This can reduce the costs for
publishing inverted list of the documents at cost of ignoring some less important
documents that may be queried by unimportant keywords which have low TFIDF
weight. Secondly, pKSS exploits keyword relationship, the inverted list intersection
cost for multiple-attribute queries can be greatly reduced.

When a user shares a document, pKSS first builds the inverted list of the document
with each term associated with a weight. The term weight is computed by TFIDF
approach. Then the most significant term list is selected as the publishing keywords.
Of cause, we can publish every keyword in the inverted list as is done in traditional
structured P2P keyword search system[4][5][6]. However, in pKSS, only the first L
largest weighted terms are published, and if the number of terms in the inverted list
are less than L, all the terms will be published. Therefore, if L is large enough, for
example larger than the size of lexicon, all the keywords in inverted list will be
published. In pKSS, we let L=500 in favor of reducing the insert overhead at the cost
of ignoring some less important documents that may be queried by unimportant
keywords which have low TFIDF weight.

 pKSS: An Efficient Keyword Search System in DHT Peer-to-Peer Network 115

The index entry to publish in pKSS contains three parts: the keyword itself, the
document ID, and a set of keywords that are in the document and related to the
publishing keyword. The keyword set in the index entry can be expressed as follows:

{ | (,) , }i j i j jKS K K K E K Dθ= ∈ ∈ (3)

where Ki is the publishing keyword in index entry, D is the document, Kj is the related
keyword, KSi is the related keyword set, and Eθ is the keyword relationship graph
introduced in section 2. In pKSS, instead of storing related keyword set in the index
entry, we use Bloom Filter to compress the keyword set and store the bloom filter in
the index entry. BF(KSi) represents the bloom filter of the related keyword set KSi.
Thus the index entry of keyword Ki can be represented as follows:

, , ()i i iIE K DocID BF KS=< > (4)

where IEi is the index entry of keyword Ki, DocID is the document ID.
To publish the index entry to the P2P network, pKSS first compute the hash of the

keyword as key, then maps the key to the node in the network using Chord algorithm,
and stores the index entry to that node at last. The algorithm of publishing keyword in
pKSS works as follows:

Query in pKSS is consisted of a set of keywords. Thus, the query can be expressed
as follows:

1 2{ , ,..., }nQ k k k= (5)

where Q represents the query, ki(i=1,2,…n) is keyword in the query. To speed up the
keyword search process, keywords in the query are grouped into sets of related
keywords. Each group has a primary keyword which will be used to accomplish the
keyword lookup process by Chord algorithm, while other keywords in the group set
are the related keywords of the primary keyword that are used to filter the documents.
The grouping method lies in two key points. The first is how to determine the primary
keyword of the group set, and the second is how to select the related keywords of the
primary keyword. In pKSS, the resolving power of the term is used to determine the
primary keyword, and the keyword relationship graph of the query log is used to
select related keywords of the primary keyword. The grouping process can be divided
by the following steps:

Step1 In the query keyword set Q, select the term k that has maximum IDF value
as the primary keyword, create a group set Gk, and remove this term from Q.

Step2 Find all the related keywords of primary keyword k, add them to the group
set Gk, and remove these keywords from the query set Q. The related keywords can be
selected by the following equation.

{ | (,) | , }k i i iG k k k E k Qθ= ∈ ∈ (6)

Step3 If Q ≠ Φ , goto step1 to create another group set.

Unlike standard distributed inverted index approach, pKSS performs distributed
search based on each group set, not the term only. For each group set Gk, pKSS maps
the primary keyword k onto the node in the network by Chord algorithm, then fetches

116 Y. Li, F. Ma, and L. Zhang

all the document index entries and filters the satisfied documents according to the
BF(KSk) field. The filtering condition is defined as following equation.

() () ()k k kBF G BF KS BF G∧ = (7)

where BF(Gk) is the bloom filter of group set Gk. The filtering condition in equation
(7) is in fact to test that every the keyword in set Gk appears in set KSk. Finally, the
intersection of documents fetched according to each group set are the final results that
satisfy the query. Thus, compared to the standard inverted list intersection approach,
the performance of keyword search in pKSS can be greatly improved by query
keywords grouping.

4 Experiments

In this section, we evaluate pKSS by simulation. In order to find the relationship
between query keywords, we used the query logs of the FTP search website
bingle.pku.edu.cn from Dec 1, 2002 to Dec 31, 2002.

We simulated inserting and querying of a document using pKSS. Next we ran the
pKSS algorithm on each text file to create index entries and published them to
corresponding virtual peers. We evaluated these algorithms by insert overhead and
query overhead.

Insert Overhead is the number of bytes transmitted when a document is inserted in
the system. When a user asks the pKSS system to share a file, the system generates
index entries which are inserted in the distributed index. Unlike KSS, in which if we
generate index entries for a document with n keywords for typical keyword-pair
scheme the overhead required is bounded by C(n,2), pKSS only generates small index
entries which results in a small insert overhead.

0 200 400 600 800 1000 1200 1400 1600

0

2000

4000

6000

8000

10000

12000

14000

16000

si
ze

 o
f i

nd
ex

 e
nt

rie
s(

by
te

s)

number of words in a document

 KSS
 Standard Inverted Index
 pKSS

1 2 3 4 5

0

100

200

300

400

500

m
ea

n
K

B
 tr

an
sf

er
re

d

number of words in the query

 Standard inverted index with Bloom Filter
 Standard inverted index without Bloom Filter
 KSS with window size 5
 pKSS

Fig. 1. Insert overhead Fig. 2. Query overhead

Fig.1 gives the curves of size of index entries generated vs. number of words in a
document using the standard inverted indexing scheme, pKSS with θ=0.05 and KSS
with window size of ten. Fig.1 shows that the insert overhead for pKSS is much lower
than that for KSS, is a little higher than that of the standard inverted index scheme
when the document is small, and is lower than that of the standard inverted index
scheme when the document is large.

 pKSS: An Efficient Keyword Search System in DHT Peer-to-Peer Network 117

Query overhead is a measure of bytes transmitted when a user searches for a file in
the system. As we know, the overhead to send the intermediate result list in the
system from one host to another is the main part of the query overhead.

Fig.2 gives mean data transferred in KB when search using the standard inverted
index with Bloom Filter, the standard inverted index without Bloom Filter, KSS with
window size of 5, pKSS with θ=0.05, for a range of query words. Fig.2 shows that the
query overhead for pKSS is much lower than that of the standard inverted index
scheme, with or without bloom filter, and is a little lower than that for KSS when the
number of keywords is greater than 3.

5 Conclusions

In this work, we adopt keyword ranking approach such as TFIDF and exploit the
relationship between query keywords which can be extracted from users’ queries logs,
to improve the performance of P2P keyword search system. Experiments results
clearly demonstrated that pKSS index is more efficient than KSS index in insert
overhead and storage overhead, and more efficient than a standard inverted index in
terms of communication costs for query. In a forthcoming paper, the authors will
show how the parameter L and θ in pKSS impact the insert and query overhead and
the query accuracy.

References

1. I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-
to-peer Lookup Service for Internet Applications. Proc. ACM SIGCOMM 2001, Aug. 2001.

2. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. Proc. Middleware 2001, Nov. 2001.

3. Omprakash, D. Gnawali, 2002. A Keyword-set Search System for Peer-to-Peer Networks.
MIT’s thesis Lib.

4. Reynolds, P., Vahdat, A. Efficient peer-to-peer keyword searching. Technical Report 2002,
Duke University, CS Department, Feb. 2002.

5. Jinyang Li, Boon Thau Loo, etc. On the Feasibility of Peer-to-Peer Web Indexing and
Search. IPTPS 2003.

6. Shuming Shi, Guangwen Yang, Dingxing Wang, Jin Yu, Shaogang Qu, Ming Chen,
Making Peer-to-Peer Keyword Searching Feasible Using Multi-level Partitioning, IPTPS
2004.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 118 – 124, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Comparative Study at the Logical Level of Centralised
and Distributed Recovery in Clusters

Andrew Maloney and Andrzej Goscinski

School of Information Technology,
Deakin University,

Geelong, Vic 3217, Australia
{asmalone, ang}@deakin.edu.au

Abstract. Cluster systems are becoming more prevalent in today’s computer
society and users are beginning to request that these systems be reliable.
Currently, most clusters have been designed to provide high performance at the
cost of providing little to no reliability. To combat this, this report looks at how
a recovery facility, based on either a centralised or distributed approach could
be implemented into a cluster that is supported by a checkpointing facility. This
recovery facility can then recover failed user processes by using checkpoints of
the processes that have been taken during failure free execution.

1 Introduction

The advancements in computing are more often than not focused on improving
performance rather than improving reliability. Reliability is often neglected because
in most cases when reliability is improved, system performance decreases. But it is
becoming an increasingly desired feature, especially in such systems as non-dedicated
clusters. These systems provide an ideal platform for parallel processing, given their
high scalability, availability and low cost to performance ratio [1]. However, given
that non-dedicated clusters are composed of a collection of individual computers
connected via a network and used by multiple users, reliability is somewhat lacking.
Thus, many hours of execution of a parallel application could be lost.

Methods such as redundancy, checkpointing and rollback recovery, failure
semantics, and group failure masking have been developed to improve reliability, but
these methods have not been widely researched in non-dedicated cluster operating
systems [2]. It has been shown that checkpointing and rollback recovery is an ideal
reliability method for non-dedicated clusters as it provides reliability for users and
adapts well to environments where many processes are executing over multiple
computers [3]. However, the systems currently developed either do not provide
transparent and autonomic recovery for users, based on middleware and are not
implemented as a system service, or users have to restart their applications manually
after a failure [5][6][7]. The aim therefore of this paper is to detail how the recovery
of processes in a cluster can be achieved transparently and autonomically to create
seamless recovery in clusters using checkpointing and rollback recovery, and to
furthermore show that the outcome will be beneficial to the users of the system. It is
also the aim to demonstrate how recovery can be achieved using either a centralised
or distributed recovery approach and present their comparative study.

 A Comparative Study at the Logical Level of Centralised and Distributed Recovery 119

2 Target Platform Architecture

It has been identified that a microkernel based cluster operating system compliments
the development of new research services as they can be developed independently of
the other system services [2]. The microkernel based operating system uses peer to
peer servers to provide the complex functionality of the cluster operating system.
Whilst the microkernel only provides the minimal functionality needed, the other
system servers provide any additionally needed facilities. Each of these facilities
communicates using messages. To incorporate a recovery facility, five existing
facilities are used to provide the additional services needed by the recovery facility:
the checkpoint facility, remote execution facility, global schedular, process facility,
and the self-discovery facility.

The checkpoint facility is responsible for checkpointing applications in the system.
When a checkpoint is taken, the process’s memory, communication buffers, and
process information are copied into a new checkpoint. A coordinated checkpoint
facility model has been identified for a cluster operating system by Rough and
Goscinski, and will be used as a basis of this checkpointing facility [10]. In their
model, checkpoints are taken at periodic intervals and are stored in the volatile
storage of other computers within the cluster of computers. The remote execution
facility (REX) is responsible for process creation. The facility consists of many
Remote Execution Managers; one manager is located on each computer within the
cluster. These managers can cooperate together to create new processes within the
system [1]. Scheduling of processes within the system is managed by a single
centralised Global Schedular. This server combines static allocation and dynamic load
balancing components. Using current loads and load trends, the Global Schedular
makes decisions on where to create new processes. The process facility is responsible
for managing processes within the system. The process facility is made up of many
Process Managers and each Process Manager is responsible for the processes on its
local computer. Lastly, the responsibility of the self-discovery facility is to provide
high-level management of all computing resources on a global cluster-wide basis. The
self-discovery facility is a dedicated service, which coordinates the discovery of the
installed computing resources and their parameters. The self-discovery facility is also
responsible for reporting failures of user processes to the recovery facility.

3 Overview of the Proposed Recovery Facility

The recovery facility uses the checkpoints created by the checkpoint facility to
recover failed applications. The recovery facility is composed of many Recovery
Managers; one Recovery Manager resides on each of the computers within the
system. These Recovery Managers communicate using either single or group
communications. Once a failure has occurred in the cluster, the recovery facility is
alerted to the failure and begins the recovery process. Only user applications are
recovered as an assumption is made that the system servers cannot fail.

Transparency must also be upheld during the recovery of a failed application as the
user should not know that it has failed, and does not need to know that it has failed
unless the application is unrecoverable. The checkpoint facility described in Section
2 currently only stores checkpoints on the volatile storage of other computers within

120 A. Maloney and A. Goscinski

the system. This feature of the checkpoint facility had to be extended to store the
checkpoints on stable storage at regular intervals or when the computers are idle to
prevent the checkpoint data being lost when a computer fails.

At-least-k delivery semantics are used to store the checkpoints of the processes in
the volatile storage of other computers [10]. At-least-k semantics guarantee to deliver
messages to a user specified number of computers, this value is denoted by k (where k
>= 1). Because of these delivery semantics, each time a new checkpoint of a process
is taken, the checkpoint may be stored in the volatile storage of a different computer
than that of the computer which was used to store the previous checkpoint of
that process.

Once implemented, the recovery facility has many advantages over existing manual
recovery methods that exist due to the transparency and autonomy provided, as with
manual recovery facilities, the user must have explicit knowledge of the recovery
facility, how the recovery facility is used, and how to carry out the recovery operation.

4 The Recovery Facility

Different recovery approaches can be used to control how applications are recovered.
The two approaches that exist are Centralised and Distributed. .

4.1 Centralised Approach for Recovery of Processes

The centralised approach aims at using a Coordinating Recovery Manager in order to
dictate to the recovery facility which processes should be started on each computer
within the system. As there are many Recovery Managers within the system, one
Recovery Manager must become a Coordinating Recovery Manager when a failure
occurs in the system. When a failure occurs, an election takes place to ensure that
there is only one Coordinating Recovery Manager.

The local Checkpoint Manager is queried by the Coordinating Recovery Manager to
determine where the checkpoints are stored in the system. To select the computers that
are used for the recreation of the processes, the Coordinating Recovery Manager
contacts the Global Schedular informing it of the processes that need to be restarted and
to request a list of computers that are to be used for the recovered processes. Several
parameters are passed to the Global Schedular along with the request. These parameters
include the location of the stored checkpoint data in the system so that it may use this
information to make a more informed decision on where to recover the processes. The
Recovery Managers on these target computers are then contacted by the Coordinating
Recovery Manager and informed of the processes that have to be recreated on their
respective computers. If a computer within the cluster fails during the recovery process,
then the Coordinating Recovery Manager is informed by the self-discovery facility and
requests another computer begin the recovery for that process.

The information on where the images are stored is passed on to the remote
execution facility. With this information, the remote execution facility attempts to
retrieve the checkpoint data from the volatile storage of the other computers. If the
image is no longer residing in volatile storage, then the image is retrieved from stable
storage. The steps to recover an application when using the centralised approach
shown in Figure 1 is as follows: step 1 – A fault is reported to the Local Recovery

 A Comparative Study at the Logical Level of Centralised and Distributed Recovery 121

Manager: step 2 – Check to see if checkpointing is enabled for the failed process: step
3 – Find out which computers the new processes should be started on: step 4 – Inform
the Remote Recovery Managers that a recovery is occurring: step 5a – Tell Process
Managers to kill any surviving processes of the application: step 5b – Process
Managers kill off any surviving processes: step 6 – Request each REX Manager to
create the new processes: step 7 – Get the data from either volatile or stable storage:
step 8 – Create the process: step 9 – Coordinating Recovery Manager informed that a
process is recovered; and step 10 – Coordinating Recovery Manager informs all that
recovery is complete.

4.2 Distributed Approach for Recovery of Processes

The distributed approach for recovery of failed applications is quite different to that of
the centralised approach. The major difference with the distributed approach is that
there is no one Coordinating Recovery Manager. Also, the distributed approach
doesn’t contact the checkpoint facility, nor does it contact the Global Schedular.
Instead, this approach looks at recreating processes whose checkpoints exist on the
same computer as the Recovery Manager who is trying to recover the process of the
application.

Because the Recovery Manager does not contact the checkpoint facility or the
Global Schedular, the recovery process can then get underway faster than in the
centralised approach. If a process has been recovered on a heavily loaded computer,
then the Global Schedular may choose to migrate the process at a later time once it is
recovered. The distributed approach therefore has the advantage that the recovery is
completed faster, but may be more expensive later if migration is required to balance
the computer loads.

As k copies of each checkpoint exist within the system, steps must be taken to
ensure that only one of each process is recreated. This is done using majority voting
with the other Recovery Managers within the system.

Coordinating
Recovery
Manager

Checkpoint
Manager

Recovery Computer 1

Recovery Computer n Coordinating Computer

1
9

7

4 & 10
Process

Manager

Old Process

Recovery
Manager

5a

5b

Fig. 1. Operation of Centralised Recovery Mechanism

Availability
Service

REX
Manager

Checkpoint Data

7 New Process

8

2

Global
Schedular 3

either Storage Computer

Checkpoint Data File
Server

Process
Manager

either

Checkpoint
Manager

6

122 A. Maloney and A. Goscinski

If the checkpoint data for a process exists on a local computer, then the Recovery
Manager on that computer requests to recover that process. If the Recovery Manager
on the local computer has already been informed that another Recovery Manager is
attempting to recover that process within the system, then the Local Recovery
Manager does not attempt to recover the process.

Once a Recovery Manager has obtained the right to recover a process, it does so
immediately. Once the process has been recovered, then the Recovery Manager that was
responsible for recovering the process informs the other Recovery Managers that the
process has been recovered. Once all Recovery Managers have been informed that each
process of the application has been recovered then the recovery is deemed complete.

If during the recovery of processes, a Recovery Manager fails to recover a process,
then it sends a recovery failed message to the other Recovery Managers within the
system. Once this has happened, another Recovery Manager can vote to start to
recover the process that was unable to be recovered by the previous Recovery
Manager. This also happens if a process is not recovered by another Recovery
Manager in a specified length of time. If the recovering of a process fails a pre-
defined amount of times, then it is deemed that the failed application cannot be
recovered, and all recovered processes must be terminated. The steps to recover an
application when using the distributed approach as shown in Figure 2 is as follows:
step 1 – A fault is reported to the Local Recovery Manager: step 2 – Inform the
Remote Recovery Managers that a recovery needs to occur: step 3 – Each Recovery
Manager sends votes to recover some of the processes: step 4a – Tell Process
Managers to kill any surviving processes of the application: step 4b – Process
Managers kill off any surviving processes: step 5 – Request each REX Manager to
create the new processes: step 6 – Get the data from either volatile or stable storage:
step 7 – Create the process; and step 8 – Inform the other Recovery Managers using
reliable communications that the process has been created.

Fig. 2. Operation of Distributed Recovery Mechanism

Remote
Recovery
Manager

Recovery Computer n
Process

Manager 4a

4b

Old Process

Remote
Recovery
Manager

Recovery Computer 2
Process

Manager 4a

4b

Old Process

2 & 8

Process
Manager

Recovery Computer 1

Local
Recovery
Manager

4a 4b

REX Manager
Checkpoint Data

New Process
7

5

3

1

Availability Service

either

Old Process

6

 A Comparative Study at the Logical Level of Centralised and Distributed Recovery 123

4.3 Centralised vs. Distributed Recovery

Each of the two approaches has their own strengths and weaknesses. The strengths of
the centralised approach are that it uses a Coordinated Recovery Manager to control
the steps of the recovery process. The centralised approach also uses the Global
Schedular to make an informed decision on where to recreate the processes. Lastly,
this approach uses less communication than the distributed approach. The weaknesses
however, are that this approach has to deal with selecting a Coordinating Recovery
Manager before the recovery can begin, and if the Coordinating Recovery Manager
fails during a recovery, then a new Coordinating Recovery Manager needs to be
selected. The strengths of the distributed approach are that it eliminates a single point
of failure by using Coordinating Recovery Manager. Instead the Recovery Managers
request to start a process if the checkpoint data already resides on the local computer;
consequently, the checkpoint data does not need to be sent across the network. To
ensure that no two Recovery Managers attempt to recover the same process, majority
voting is employed by the Recovery Managers. However, this creates a weakness as
the use of majority voting greatly increases the amount of traffic transmitted over the
network during recovery. Failed processes also may not be recreated on the most
suitable computers within the cluster as the computers may be heavily loaded.

Although both approaches are innovative and provide major benefits to the user,
the centralised approach is believed to provide a more suitable recovery approach as
the proposed advantages appear to be better than that of the distributed approach. The
centralised approach uses a Global Schedular in order to select the most appropriate
computer to restart the processes. In the distributed approach, the processes could be
started on heavily loaded computers and would then have to be migrated to different
computers in the cluster. This along with the extra communication due to the use of
voting mechanisms increases network traffic significantly.

5 Conclusion

Throughout this document, two logical designs of Recovery Facilities for non-
dedicated clusters have been detailed. It has been shown how cluster operating
systems can be extended to provide seamless recovery of failed processes through the
use of a recovery facility. This recovery facility is a unique and innovative system
service in that it can provide transparent and autonomous recovery of processes for
the users of the system. This was achieved by using Recovery Managers residing on
each of the computers within the system. These managers then use checkpoints that
have been taken of the failed processes to recover the failed processes. Furthermore, it
has detailed and compared a model for both centralised and distributed recovery.

References

1. Goscinski, A., Towards A Cluster Operating System That Offers A Single System Image, In
Distributed and Parallel Systems, 2002

2. Maloney, A., Checkpointing and Rollback-Recovery Mechanisms to Provide Fault
Tolerance for Parallel Applications, School of Information Technology, Deakin University,
2004, http://www-development.deakin.edu.au/scitech/sit/dsapp/members/ index.php

124 A. Maloney and A. Goscinski

3. Elnozahy, M., Alvisi, L., Wang, Y. M. and Johnson, D. B., A Survey of Rollback-Recovery
Protocols in Message-Passing Systems, School of Computer Schience at Carnegie Mellon
University, Pittsburgh, PA 15213, 1999

4. Badrinath, R., Morin, C., and Vallée, G., Checkpointing and Recovery of Shared Memory
Parallel Applications in a Cluster. In Proc. Intl. Workshop on Distributed Shared Memory
on Clusters (DSM 2003), Tokyo, pages 471-477, May 2003.

5. Plank, J. S., Beck, M., Kingsley, G. and Li, K., Libckpt: Transparent Checkpointing under
Unix, Proceedings of the USENIX Winter 1995 Technical Conference, p. 213-223, 1995

6. Landau, C. R., The Checkpoint Mechanism in KeyKOS, from Proceedings of the Second
International Workshop on Object Orientation in Operating Systems, September 1992

7. Rough, J. and Goscinski, A, The development of an efficient checkpointing facility
exploiting operating systems services of the GENESIS cluster operating system, In Future
Generation Computer Systems 20, p. 523-538, 2004

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 125 – 131, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Toward Self Discovery for an Autonomic Cluster

Eric Dines and Andrzej Goscinski

School of Information Technology,
Deakin University,

Geelong, Vic 3217, Australia
{esd, ang}@deakin.edu.au

Abstract. Nondedicated clusters are currently at the forefront of the
development of high performance computing systems. These clusters are
relatively intolerant of hardware failures and cannot manage dynamic cluster
membership efficiently. This report presents the logical design of an innovative
self discovery service that provides for automated cluster management and
resource discovery. The proposed service has an ability to share or recover
unused computing resources, and to adapt to transient conditions autonomically,
as well as the capability of providing dynamically scalable virtual computers
on demand.

1 Introduction

The present generation of parallel processing systems, which have arisen to take
advantage of the more accessible computers, tend to be add-ons to existing operating
systems (such as Linux and Windows NT) rather than purpose built distributed or
cluster operating systems. The most prominent of these add-on systems are PVM [6]
and Beowulf [7]. Unfortunately this class of system has several major limitations; a
static nature requiring interventionist management techniques [8], a need for
dedicated individual component computers in the case of Beowulf [7], an inability to
either exploit underutilized desktop workstations as members of a non-dedicated
cluster [7] or dynamically manage resource allocation and assignment in real time or
derive system knowledge through resource discovery [8].

We have identified five desirable attributes that articulate the requirements of a
typical cluster operating system and which overcome these shortcomings:

• Automated Cluster Management to replace the manual processes currently
employed for managing membership and routine administration functions.

• Resource Sharing to take advantage of the casual members of a non-dedicated
cluster, such as end user computers.

• Resource Discovery to determine current and potential members of the cluster, and
also their computing resource complement, such as local hard drives, unallocated
RAM, or specific installed applications.

• Network Performance to monitor the underlying performance of the network
infrastructure, and optimize scheduling decisions accordingly.

• Dynamically Sizable Virtual Computers to dynamically reconfigure access to
portions of a cluster based on user requirements.

126 E. Dines and A. Goscinski

Achieving these attributes requires that the system maintains a dynamic global
knowledge of the resources of the non-dedicated cluster, from a fine grained
knowledge of the computing resources on a given computer (e.g. free RAM) to
knowledge of whole sub-groupings of computers. This knowledge or self-awareness
embraces a single system image (SSI) view of the cluster [3] incorporating:

• A dynamic system with computers joining and leaving at unpredictable times;

• A collection of independent computers, often controlled by other users; and

• A collection of logical clusters set up for individual applications.

The aim of this report is to show the outcome of our study into the development of
a system service or set of services that are able to provide this functionality, through
which the current shortcomings of existing cluster operating systems can be
overcome. We propose a self discovery service in an attempt to meet these goals and
enable the cluster operating system to self manage autonomically.

2 Target Architecture

The basic system requirements for the deployment of the self discovery service are for
a microkernel, client-server (peer to peer) and distributed system architecture. Figure
1 shows a simplified block representation of a microkernel based cluster operating
system. At the lowest level, the microkernel forms a hardware abstraction layer that
provides only the bare minimum set of services needed to support the marshalling of
interrupts, context switching, local IPC and memory management. Operating system
functionality and application execution environment are provided by kernel and
system servers. Kernel Servers operate in the user context and “use a set of privileged
calls to manipulate microkernel data” [2] and provide much of the system
functionality. An instance of each of these servers is deployed per machine [5].

Fig. 1. Microkernel System Architecture

 Toward Self Discovery for an Autonomic Cluster 127

System Servers implement operating system functionality having system wide
applicability. The system servers in contrast to the kernel servers can be hosted on any
given computer within the cluster, as they are not bound to any specific microkernel.

The major servers that are related to the self-discovery service are as follows:

• Execution manger creates a process locally or remotely from a file or duplicates a
process on one or more computers simultaneously.

• Resource discovery manager collects system information about its host computer.

• Migration manager coordinates the relocation of either an active process or a set
of processes on one computer to another or a collection of computers.

• Process manager manages the processes on the local computer. It manipulates the
process queues and deals with parent and child process interactions. It cooperates
with the execution manager to set up the process’ state when the process is created,
and the migration manager to transfer a process’ state when it is migrated.

• IPC Manager is responsible for delivering all messages including group
communication services to both local and remote process and/or processes.

• Global Scheduler provides scheduling services in order to allocate/migrate
processes to idle and/or lightly computers to share and balance load.

• Recovery Server oversees the checkpointing of active processes across the system
and manages the recovery of these processes should one exit abnormally.

3 The Logical Structure of the Self Discovery Service

The self discovery service is provided by the system discovery server (SDS) and a
set of resource discovery servers (RDS). The system discovery server is deployed as
a single non-redundant instance for the entire physical cluster system, similarly to
the global scheduler (Figure 2) with which it interacts and cooperates closely.

Fig. 2. Architecture of the self discovery server

The five desirable attributes for cluster from section 1 are encapsulated within the
context of the three major duties of the self discovery service: managing the physical
cluster; managing the virtual cluster; and managing system self-awareness.

3.1 Roles of Servers

The actual roles to be attributed to each of the three components global scheduler,
resource discovery server and system discovery servers are as follows.

128 E. Dines and A. Goscinski

The global scheduler sets the policies for statically allocated work (remote
execution manager) and load balancing (migration manager). The global scheduler’s
view of the cluster is provided by the system discovery server who may alter the
presented topology in order to influence scheduling decisions (Figure 3).

The system discovery server implements the global scheduler’s policies by
managing the individual resource discovery servers, collating and analyzing the data
provided by the resource discovery server and manipulating the performance indices.
The system discovery server organizes functional groups of computers as private
virtual clusters (PVC); manages membership to the cluster and loss of a computer/s.

The resource discovery server captures computer performance parameters, pre-
processes the raw data where appropriate and supplies the collated and processed data
to the system discovery server.

3.2 Management of the Cluster

The self discovery service provides a stable fault tolerant platform for the execution
of parallel applications within a dynamic computer membership environment.

Fig. 3. Private virtual cluster management

Managing the Physical Cluster. The self discovery service has complete oversight
of the operation of the cluster system, with the system discovery server managing all
computers from the bootstrap to planned or unplanned departure.

Managing the Virtual Clusters. The private virtual cluster (PVC) is a logical
aggregation of computers to collectively manage a computing task.

At startup, all computers are in PVC0 (see figure 3). Once the first application has
been scheduled for execution, the system discovery server selects one or more
computers from PVC0 and allocates them to a new private virtual cluster (PVC1).
Processing commences once PVC1 has been successfully initialized.

 Toward Self Discovery for an Autonomic Cluster 129

Similarly configured computers are drawn from the ranked lists (CPU speed,
installed RAM and network interface speed, see figure 3) and allocated together in
PVC’s. The initial groupings are tentative, and act as a forward planning optimization.

Managing System Self-Awareness. The system discovery server maintains a logical
map of active computers, with details of current resource capability; updated from
periodically received RDS data. The SDS interrogates uncommunicative computers
directly and removes them if they do not respond within a timeout period.

3.3 Collection of Data

The attributes of most critical interest to the system discovery server and the resource
discovery mechanisms used to capture the required data are presented below.

Static and Dynamic Parameters. There are two general categories of data collected,
Static and Dynamic. Static parameters are set at boot-up time, and tend not to change:
(i) Processor: clock speed, number of individual CPU’s present; (ii) System Memory:
installed capacity, unallocated or free RAM; (iii) Hard disk: gross capacity, free disk
space, access speed, latency, throughput; and (iv) Installed Software: knowledge of
specialised software installations.

Dynamic parameters are not fixed at boot-up time, and tend to fluctuate or change
as processing and system load changes: (i) Number or process running; (ii) Available
memory; (iii) Free disk space; and (iv) Inter-process communication pattern and
volume, especially remote inter-process communication.

Factors Impacting Data Collection. When collecting the system data, the capture
must: (i) be conducted in real time, (ii) not adversely affect system performance, (iii)
not appreciably impact the network during transmittal.

4 Interaction of Servers

Systems designers have experimented with reporting individual system resource data
through the scheduler [Goscinski et al 2002], but at the expense of an overlap of the
roles of the individual resource discovery servers and the global scheduler.
Introducing the system discovery server simplifies the role and reduces the workload
of the global scheduler by removing the overhead of processing the resource-data.

Message 1 (M1) is the regular collection of performance data by the resource
discovery servers. M2 shows a dual interaction, where the resource discovery server
pushes data (including notification of changed workload) to the system discovery
server periodically and the system discovery server requests performance data updates
from a resource discovery server on demand. There is also a two way interaction
between the global scheduler and system discovery server (M3). The system
discovery server, after synthesizing the system’s state and global topology from data
provided by the individual computers’ resource discovery servers (Figure 4), then
provides this knowledge to the global scheduler. The global scheduler uses the
updated data to schedule the most lightly loaded computer within given PVC.

130 E. Dines and A. Goscinski

Fig. 4. Server Relationship

The system discovery server does not take part in load balancing or migration, but
indirectly influences the cluster operating system’s response to changing workloads
by dynamically resizing the physical cluster and the private virtual clusters.

The resource discovery server has the ability to act independently when rapid
action is required; responding to a user resuming control of their computer or to an
urgent directive from the system discovery server.

5 Implementation

The system discovery server has been successfully implemented and is capable of
communicating with the newly redeployed resource discovery server and the global
scheduler. The resource discovery servers gather the static parameters at system start up
and store them in a special area of RAM. Process loading and communication statistics
are then collected by the resource discovery server during run time. Some rudimentary
pre-processing such as calculating summary totals, and arithmetic means is undertaken
at this stage before the processed data is forwarded on to the system discovery server.

The system discovery server builds and maintains a map of the complete system
topology to manage the private virtual cluster membership and storage of static and
dynamic parameters (section 3.3) within a linked list of data structures.

The global scheduler uses this same map to make its scheduling and load
balancing decisions, but solely on the computers within a single private virtual cluster
at any time, scheduling each private virtual cluster in turn.

6 Conclusion

The introduction of the self discovery service effectively addresses the inherent
problems of existing cluster operating systems, namely their lack of self-regulation,
their static character and their need for manual management [8]. The self discovery
service has ensured that through improved self-awareness and more numerous points
of control, the clusters are able to be much more autonomic and self-configuring. By

 Toward Self Discovery for an Autonomic Cluster 131

maintaining a system wide awareness of the state of each member of the cluster, new
computers can join or others leave as required. The self discovery service also
provides a private virtual cluster construct, enabling the aggregation of similarly
configured computers together in dynamic units for ease of management.

References

1. Goscinski A & Zhou W, 1999. Client Server Systems. Wiley Encyclopedia of Electrical and
Electronics Engineering, JG Webster (Ed), John Wiley & Sons, Vol. 3, pp. 431-451.

2. Goscinski A “Finding Expressing and Managing Parallelism in programs executing on
clusters of workstations”. Computer Communications 22:998-1016, 1999.

3. Goscinski A “Towards and operating system managing parallelism of computers on
clusters. Future Generation Computer Systems 17:293-314, 2000.

4. Goscinski A., Fikkers P. and Zhou B. “A Global Scheduling Facility for Clusters Executing
Communication Bound Parallel Applications”. School of Computing and Mathematics.
Deakin University, 2002.

5. Geist A, Beguelin A, Dongarra J, Jiang W, Manchek R & Sunderam V, “PVM: A Users'
Guide and Tutorial for Networked Parallel Computing” MIT Press 1994

6. Merkey P “Beowulf History” http://www.beowulf.org/beowulf/history.html 2003
7. Sterling T and Savarese D “A Coming of Age for Beowulf-class Computing”. Center for

Advanced Computing Research. California Institute of Technology June 1999
8. Zaki M & Parthasathy S “Customised dynamic load balancing for a network of work

stations” Technical Report, The University of Rochester. New York 1995

Mining Traces of Large Scale Systems

Christophe Cérin and Michel Koskas

1 Université de Paris XIII, LIPN, UMR CNRS 7030,
F-93430 Villetaneuse - France
cerin@lipn.univ-paris13.fr

2 Université de Picardie Jules Verne, LaMFA/CNRS UMR 6140,
33, rue St Leu,F-80039 Amiens cedex 1 - France

koskas@laria.u-picardie.fr

Abstract. Large scale distributed computing infrastructure captures
the use of high number of nodes, poor communication performance and
continously varying resources that are not available at any time. In this
paper, we focus on the different tools available for mining traces of the ac-
tivities of such aforementioned architecture. We propose new techniques
for fast management of a frequent itemset mining parallel algorithm. The
technique allow us to exhibit statistical results about the activity of more
that one hundred PCs connected to the web.

Keywords: Parallel algorithms, global computing platforms, meta-data,
data mining application, high performance and distributed databases,
trace analysis, data management, resource management.

1 Introduction

Frequent itemset mining (FIM) consists in discovering patterns that appear fre-
quently. In this paper the itemsets are informations about the activity (the
CPU/MEMORY loads, the number of IP packets sent or received from/to a
dedicated node, timestamp of the measure. . .) of a set of PCs in a research
laboratory. The ultimate goal for that application is to extract information to
be pass to a scheduler in order to run jobs with a reasonable knowledge of the
“future state” of the global platform.

FIM algorithms are often used in search for other types of patterns (like se-
quences, rooted trees, boolean formulas, graphs). More than one hundred FIM
algorithms were proposed in the literature, the majority claiming to be the most
efficient. In any case, it is difficult to appreciate the experimental methodology.
For instance it is difficult to have answers to the following questions: what is the
part of the execution done in/out-of-core? What is the execution time for gener-
ating the 1-itemset (it corresponds in general to a full reading of the database)
and the execution time for generating the k > 1 itemsets?

Three algorithms play a central role due to their efficiency and the fact
that many algorithms are modifications or combinations of these basic methods.
These algorithms are APRIORI [1], ECLAT [2] and FP-growth [3].

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 132–138, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Mining Traces of Large Scale Systems 133

In this paper we introduce challenges, opportunities and technical solutions
that we believe to be important for mining the activities of large scale systems.
The discussion is conducted with our parallel algorithm for frequent itemset
generation [4] in mind. Besides the algorithmic and data-structure issues there
is a third factor that quite influences the effectiveness of the different approaches
found in the literature. It is the programming technique.

Thus, the organization of the paper is the following. In Section II, we intro-
duce the challenges and those we are concerned about in the paper. Section III
is about the data structure we use and section IV is about the problem descrip-
tion and the advantage of our approach. Section V concerns the programming
techniques and it shows experimental results. Section VI concludes the paper.

2 Building a FIM Algorithm for Large Scale Systems

Our target architecture is large scale systems. The main properties that we
require for large scale systems are:

– Scalability: the system must scale to 100000 nodes;
– Heterogeneity of nodes across hardware, OS and basic software;
– Availability: the owner of a computing resource must be able to decline a

policy that will limit the contribution of the resource (the resource will be
disconnected in a near future);

– Fault tolerance: the architecture must tolerate frequent faults while main-
taining performance;

– Security: all participating computers should be protected against malicious
or erroneous behaviors;

– Dynamicity: the system must accommodate to varying configuration; an
event may happen at any time;

– Usability: the system should be easy to deploy and to use.

In this paper we discuss only the advantage of our algorithm [4] in terms of
scalability, dynamicity, fault tolerance and performance at the large. We are also
concerning with an implementation.

3 The Data Structure

We estimate that the way we represent data will potentially enforce the efficiency
of mining algorithms. The parallel algorithm of [4] makes elementary operations
on radix-trees data-structures in order to compute the frequent episodes.

Let S be a set of integers written in basis b = 2 for instance (it is convenient to
chose as basis a power of 2). It is well known that the integers may be represented
in a radix tree. A radix tree is a tree which allows to store a set of words over
an alphabet A of same length (here the alphabet is the set of digits 0 . . . b − 1).

Consider the thesaurus of a column in a table. For instance, the lines where a
certain item appears are {1, 3, 4, 7}. A Radix Tree representation of set {1, 3, 4, 7}
is given on the next page.

134 C. Cérin and M. Koskas

Suppose that we have to check if key
5 = 1012 is present in the tree on the right
side. We descend along the tree until we en-
counter the prefix 10 after that, since the
last bit (1) is not present, we conclude that
5 does not belong to the tree. The previ-
ous scheme, explains also how to answer to
a SQL like query with an AND clause, for
instance this one:

SELECT ALL FROM Accident
WHERE

= Accident KindOfCont ’Car’
AND
>= Accident MaxAmount 12,000

GROUP {NULL}

^
/ \

0 / \ 1
/ \
/ \
o o

0 /\ 1 0 /\ 1
/ \ / \
o o o o
\ 1 \1 0/ \ 1
\ \ / \

1 3 4 7

It is just necessary to intersect the Radix Tree for the ’Car’ item with the
Radix Tree for the ’≥ 12000’ item.

4 Problem Description

The problem of association rule discovery can be formalized [5] as follows. Let
I = {i1, · · · , im} be a set of m distinct items. A transaction is any subset of I
and each transaction T in a database D of transactions has a unique identifier.
A transaction is a p-tuple < TID, i1, · · · , ik > and we call i1, · · · , ik an itemset
or a k-itemset.

An itemset is said to have a support of s if s% of the transactions in D contains
the itemset. An association rule is an expression of the form A ⇒ B where
A, B ⊂ I and A

⋂
B = ∅. The confidence of the association rule is simply the

conditional probability that a transaction contains B, knowing that it contains
A. It is computed as support(A

⋂
B)/support(A).

Given m items, there are potentially 2m itemsets whose support is above
a given support. Enumerating all itemsets is thus not realistic. However, for
practical cases, only a small fraction of the whole space of itemsets is above a
given support requiring special attention to reduce memory and I/O overheads.

The “Apriori” sequential algorithm forms the core of many variants of associ-
ation rules discovery algorithms. It uses the fact that a subset of frequent itemset
is also frequent, then only candidates found ”previously” are used to generate
a new candidate set. In [4] we have introduced new techniques for association
rules discovering. We have revisited the Apriori algorithm that serves as the
main conceptual block for such purpose in showing how to store and generate
candidates by the mean of Radix Trees.

From a “large scale point of view”, the main properties of the algorithm on
p processors is:

Mining Traces of Large Scale Systems 135

– The local database is read once. This step serves in building the 1-itemset,
that is to say the radix-trees coding “where” each item appears. The k > 1
itemsets are generated by intersections, locally on each node. If we assume
that a new itemset can arrive at any-time (a new measure in our application),
we should minimize its insertion time. In our case, the cost of inserting one
item is a constant time, independent of the number of data since it is based
on the tree high which is a constant in our implementation (for instance 40 if
we are working with tables with 240 lines). This property is important in the
case of the aforementioned property of dynamicity of large scale systems.

– When we exchange information about nodes, only the supports (integers)
are exchanged. There is (p − 1)2 messages during this steps and the length
of each message is proportional to the number of frequent itemsets that are
generated (k) multiply by the size of an integer. Thus the volume of in-
formation exchanged in any step of the parallel algorithm is exactly (p −
1)2 × k × sizeof(int). We note that it is independent of n the number of
data in the database. We may assume that in practical cases, this volume
is low. The consequence is that in the case of faults that are remedied by
checkpointing mechanisms, the checkpoint will contain not too much infor-
mation. For instance, if we use MPICH-V (a fault-tolerant MPI available on
http://www.lri.fr/~bouteill/MPICH-V/), the NAS Benchmark BT B on 25
nodes (32MB per process image size) leads to the average time of 68s to per-
form checkpoint with MPICH-V. The average time to recover from failure
with MPICH-CL is 65.8s. The application is much more communication in-
tensive than our frequent itemset algorithm. We are optimist to accomplish
a checkpoint in less than 1s on 25 nodes.

However, the number of generated itemsets varies from one iteration to an-
other one. In the context of heterogeneous computing (the candidate and fre-
quent itemset generations are computed on processors whith different CPU speed
and with different communication bandwidths) it is more difficult to estimate
the time cost of these two steps, hence potential unbalanced work. Techniques to
control the load balancing, such as the technique used in [6] in the case of sorting
and for a one-communication-step algorithm can not apply. Thus, the problem
of controlling load balancing is challenging both in theoretical and programming
terms. It is important to mention it at this time.

5 The Programming Technique Part

Let us now comment our implementation choices in the case of our sequential
prototype for mining frequent episode. Radix Trees can be implemented with
pointers (for the left and right children) when they are loaded into the RAM.
We know that pointers do not preserve spacial locality (the next item to be used
is “closed” in memory to the current item) and it is not also suited for temporal
locality (the current item will be re-used in a near future). To check this fact, we
have implemented tree operations (union, intersect) with the STL C++ library

136 C. Cérin and M. Koskas

and lists and with pointers. We have obtained better experimental results for
pointers than for lists (implemented under the STL C++ framework).

But the time completion for union or intersect operation is not good enough
for large scale computation. For instance, 600 intersection operations on trees
containing 150000 elements each last 58.39 seconds on a Sun bi-opteron v20z
system. These 600 operations involve 90M of items.

We decided to shift to bitset abstract data type in order to implement “the
line where an item occurs” concept. Remind that Radix Trees have been intro-
duced to store sets of integers. With a bitset, we set to 1 the k-th bit if integer
k is a member of the set and we set it to 0 otherwise. The STL C++ library
offers an interface to bitsets but after some tests with the library and under g++
release 3.4.1 we have decided to re-implement it, partially in assembler code.

The motivation is to use MMX, SSE-2 or Altivec technologies for 32 bits
processors. For such technologies, the processor can address 128 bits registers
and we can use them to implement union operation (i.e. ”or” operation on two
bitsets), intersect operation (i.e. ”and” operation on two bitsets. The STL C++
library under g++ does not use such technologies.

We have also introduced (by hand) prefetching memory instructions. Such
optimizations are essential to fully exploit 128 bits registers and to hide memory
latencies.

We obtain a gain of at least 30% for our MMX/SSE or Altivec implementa-
tions against the STL C++ codes. For instance, the cost of 5000 ”and” operations
on two bitsets of size 1048576 bytes (representing two sets of 8388608 elements)
is 7.75 second on a Duron at 1.9Ghz. It is a very good result comparing to our
implementations based on pointers (see above). The effort in coding the new
bitset interface is not too important for a great result. We have to use GCC 4.x
release. One improvement of GCC 4.x is the possibility to produce SSE2 and
Altivec codes in order to use 128 bits registers. Two new compiling options were
introduced: -ftree-vectorize and -ftree-loop-linear.

5.1 Trace Analysis

The trace that we have explored corresponds to a set of 110 stand alone PCs
under Windows in a laboratory of researchers, engineers and administration
people. The trace records 11 events every 15 min during the day and for a
period of 15 days. The trace represents about 50Mb of uncompressed data in
size. The name of the table is BigTable. We estimate that if we sample every
minute, the file size will be about 11Gb for 15 days and we are optimist.

A Frequent Episode sequential algorithm based on [4] and on bitsets has also
been implemented. We have chosen 40 items in the BigTable table of 685673 lines.
Our implementation uses libpcre1 for matching patterns. The PCRE library is
a set of functions that implement regular expression pattern matching using the
same syntax and semantics as Perl 5. PCRE has its own native API, as well as a
set of wrapper functions that correspond to the POSIX regular expression API.

1 http://www.pcre.org/

Mining Traces of Large Scale Systems 137

Since we have 685673 lines in the flat input table, we have set our bitset size
to 131072 bytes. The total memory size is thus about 40MB, that is to say closed
to the table size (47MB). So our implementation is an in-core one. Under GCC
3.3.4 (pre 3.3.5 20040809) the execution time on a Duron 1.8Mhz for counting
the occurrences of these 40 items and including the setting of bitsets with the
line numbers where they appear is 14.58 seconds.

This means that we need 14.58 seconds for generating 1-itemsets including one
pass over the input file. With a support equals to 68567, which represents 10%
of the number of lines in the input table, we get 13 1-itemsets. The number of 2-
itemsets is 17 (we compute it according to the same support) among potential 78
2-combinations. The number of 3-itemsets is 6 (we compute it according to the
same support) and these is no more frequent itemsets. One of the 3-itemsets cor-
responds to the event ”a CPU load greater than 90% and the number of running
processes is greater than 90 and the available memory is greater than 300MB”.

The total number of elements involved in intersect operations is 89342969.
The execution time from the end of the 1-itemset production to the end of
the program is less than 1 second (0.91s). This time includes the generation of
2-itemset, 3-itemset and 4-itemset. It is a very good result comparing to the
previous incomplete tests based on scripting languages. The number of elements
involved in intersect operations is quite impressive and the experiment confirms
that the data structure choice is a good one.

Under GCC 4.1 and the following option flags -O4 -fomit-frame-pointer

-fprefetch-loop-arrays -ftree-vectorize -msse2 -ftree-loop-linear we got
the same execution time. In fact, this test cannot allow us to distinguish the
performance of the bitset library alone because it uses the same ASM bitset
library.

5.2 Impact of the Statistical Results on Placement

The final aim of the experimental study is to discover trends in the behavior of
PCs connected on a large scale distributed system. The aim is to place tasks.
One of the frequent 3-itemset that we have generated according to our algorithm
is: “CPU load > 90% and Memory Available ‘> 300K and number of processes
> 90”. It shows that a high CPU load is frequent. Recommendation to place
tasks is difficult with this information. We have also another frequent 3-itemset
saying that “CPU load < 10% and Memory Available ‘< 20K and number of
processes < 40”.

It is a little bit surprising and it is due to the choice of the support. More
discriminant method should accompany the frequent episode algorithm. For
instance, in our result we have 5/6 frequent episodes saying that the load is
< 10% and only one frequent episode saying that the load is > 90′. We have
also 4/6 frequent episodes saying that the memory available is between 20 and
40K. The others occurrences of frequent items in the frequent episode is less or
equal to 2.

Moreover, if the application is not a critical one we could spend time on
collecting burst events to examine in deep this phenomenon. In this case, the

138 C. Cérin and M. Koskas

key challenge is to master the disk space to store and/or to factorize massive
information with common properties: if the burst occurs for the CPU usage,
others informations may not vary a lot.

6 Conclusion

In this paper we have presented how we are currently implementing in the “ACI
Masse de donnée Grid Explorer Project” a middleware in charge of controlling
common data structures used in order to store activities of participant PCs in a
large scale system. Different techniques have been explored for mining the trace
of the activity and in order to get performance.

Our Apriori algorithm is based on Radix Tree and/or Bitset data structures.
Such data structures have been proved efficient according to a pointer based im-
plementation but bitsets are more promising. We are currently developing a multi-
threaded version of our bitset library for clusters of SMP. The multithreaded ver-
sion of the intersect operation of twoRadixTrees, for instance, introduces problems
with balancing the work among threads. We are investigating such issues.

Concerning the Apriori algorithm, we will implement an out-of-core version
in order to deal with large tables and before implementing the parallel version
depicted in [4]. Our objective is to capture tables until 240 lines. A compro-
mise between space and efficiency for the Bitset data structures is currently
under concern.

Acknowledgements. We also address a special thank to Oleg Lodygensky from
LAL laboratory in Orsay - France for his tool that inspect and collect traces.

References

1. R. Srikant and R. Agrawal, “Fast algorithms for mining association rules,” in The
International Conference on Very Large Databases (VLDB), 1994, pp. 487–499.

2. O. Zaki, Parthasarathy and Li, “New algorithms for fast discovery of association
rules,” in In D. Heckerman, H. Mannila, D. Pregibon, R. Uthurusamy and Park
editors, Proceedings of the 3rd International Conference on Knowledge Discovery
and Data Miing - AAAI Press, 1997.

3. P. Han and Yin, “Mining frequent patterns without candidate generation,” in In
proceedings of the 2000 ACM SIGMOD International Conference on Management
of Data, 2000.

4. G. Cérin, Koskas and Le-Mahec, “Efficient data-structures and parallel algorithms
for association rules discover,” in 3rd International Conference on Parallel Comput-
ing Systems (PCS’04), Colima, Mexico, September 2004.

5. M. J. Zaki, “Parallel and distributed association mining: A survey,” IEEE Concur-
rency, vol. Vol. 7, No. 4, October-December 1999, pp. 14-25.

6. M. J. Christophe Cérin, Michel Koskas and H. Fkaier, “Improving parallel execution
time of sorting on heterogeneous clusters,” in Proc. 16th International Symposium
on Computer Architecture and High Performance Computing (SBAC’04), Foz-do-
Iguazu, Brazil, 2004.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 139 – 148, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Setup Algorithm of Web Service Composition∗

YanPing Yang1, QingPing Tan1, and Yong Xiao2

1 Computer College of National University of Defense Technology,
Changsha, Hunan, P.R. China

{yanpingyang, tan}@nudt.edu.cn
2 PDL Laboratory of National University of Defense Technology,

Changsha, Hunan, P.R. China
yongxiao@nudt.edu.cn

Abstract. A number of web services are now available and it therefore seems
natural to reuse existing web services to create composite web services. The
pivotal problems of web services composition are how to model the input and
output data dependency of candidate web services and how to satisfy that of a
service request by composition efficiently. In this paper we present the concept
of “invocation layer” based on data dependency between web services
invocation and design the algorithms to get the least invocation layers of
candidate web services satisfying the given service request.

1 Introduction

A web service is a software system designed to support interoperable machine-to-
machine interaction over a network. There might be frequently the case that a web
service does not provide a requested service on its own, but delegates parts of the
execution to other web services and receives the results from them to perform the
whole service. In this case, the involved web services together can be considered as a
composite web service.

All-sided development process for composite web services involves solutions to
several problems, which, generally speaking, are discovery of useful candidate web
services, calculation of their possible composition, and execution of the new
generated Web Service. The work presented in this paper is providing concrete
approaches to the problem of calculation of web services composition.

We propose the concept of “invocation layer” based on data dependency between
web services invocation. We design three algorithms to jointly get the least invocation
layers of candidate web services satisfying the given service request. Firstly, we find
the relevant web services from the repository. Secondly, we pick out the contributed
web services based on dataflow optimization. At last, we use a search algorithm based
on A* procedure to find the best composition setup.

The remainder of this paper is organized as follows: Section 2 introduces our
motivation and Section 3 describes our algorithms in details. Section 4 proposes to
use Bloom Filter to implement the set operations in the algorithms. Finally,
conclusions and future plans are given in Section 6.

∗ The work reported in this paper has been funded by the National Grand

Fundamental Research 863 Program of China under Grant No.2003AA001023.

140 Y. Yang, Q. Tan, and Y. Xiao

2 Motivation

We represent web services and service request in the standard way [3] as two sets of
parameters (inputs and outputs).

Definition 2.1 (Web Service). A web service ws is 2-tuples ws=<wsin,wsout>, where

wsin= {I1, I2,…, |in|wsI } is the set of input parameter, and wsout= {O1,O2,…, |out|wsO } is

the set of output parameters.

Input and output parameters of web service have the following semantics: In order
for the service to be invokable, a value must be known for each of the service input
parameters. Upon successful invocation the service will provide a value for each of
the output parameters.

A service request can be represented in a similar manner, but its input and output
parameter sets have different semantics: The request inputs are the parameters
available to the composition (e.g., provided by the user). The request outputs are the
parameters that a successful composition must provide. The solution must be able to
provide a value for each of the parameters in the problem output. Likewise, we can
define formally a composition request r as follows.

Definition 2.2 (Service Request). A service request r is 2-tuples r=<rin,rout>, where
rin ={A1,A2,…, |in|rA } is the set of available or existing input parameters and rout

={D1,D2,…, |out|rD } is the set of desired output parameters.

For manipulating web service or request descriptions we will make use of the
following helper functions:

Definition 2.3 (Function in and out). The functions are mapped from a web service
or service request to its set of input parameters and output parameters respectively.
That is, in(x)=xin and out(x)=xout where x is a web service or a service request.

We assume that both service and request descriptions (x) are well formed in that

they cannot have the same parameter both as input and output: in(x) out(x)= . The
rationale behind this assumption is that if a description had an overlap between input
and output parameters this would only lead to two equally undesirable cases: either
the two parameters would have the same type in which case the output parameter is
redundant or they would have different types in which case the service description is
inconsistent.

If we can discovery a web service ws satisfying a given service request r, then ws
can be invoked using the existing parameters of r and produce the desired parameters
of r. We define these conditions as a predication FullySatisfy.

Definition 2.4 (Predication FullySatisfy). Let WS be the set of all available web
services which can be found from a local file system, resources referenced by URIs or
provided by a repository such as UDDI. Let RQ be all service requests. ws∈WS and
r∈RQ. FullySatisfy is a predicate FullySatisfy: WS×RQ→ Bool having the following
definition: FullySatisfy (ws,r) = true iff (in(ws)⊆ in(r))∧ (out(ws)⊇ out(r))

 Setup Algorithm of Web Service Composition 141

In practice, however, it is often impossible that one web service can fully satisfy
the given request. Then, one has to combine multiple web services that only partially
satisfy the request. Given a request r and two web services x and y, for instance,
suppose one can invoke x using inputs in in(r), but the output of x does not have what
we look for in out(r). Symmetrically, the output of y generates what we look for in
out(r), but one cannot invoke y directly since it expects inputs not in in(r).
Furthermore, using initial inputs of in(r) and the outputs of x, one can invoke y (i.e.,
in(r)∪out(x)⊇in(y)). So the request r can be satisfied by the invocation layers of
r→{x}→{y}.We define the conditions above as a predication LayeredlySatisfy.

Definition 2.5 (Predication LayeredlySatisfy). Let r be as definition 2.4. n1 S,,S ,

(n ≥ 1) is a sequence of web services set and Si ⊆ WS 1≤ i≤ n . The predication

LayeredlySatisfy: BoolRQ(P(WS))Nat →× has the following definition.

LayeredlySatisfy((S1,S2,…,Sn),r) = true iff the following three conditions hold:

(a)∀ws∈S1 (in(ws) ⊆ in(r))

(b) ∀i 1≤ i ≤ n ((in(r)∪
1Sws∈ out(ws) ∪…∪ 1−∈Siws out(ws)) ⊇ Siws∈ in(ws))

(c) (
1Sws∈ out(ws)∪ …∪ Snws∈ out(ws)) ⊇ out(r)

Here, S1,S2,…,Sn is called an Invocation Layers Sequence (ILS for short) for r and
i 1≤ i≤ n is called Invocation Layer Number (ILN for short). Especially, n is called
the Greatest ILN (GILN for short). According to the definition of predication
LayeredlySatisfy, we can get out(r) by n layer invocations. Obviously, FullySatisfy is
special case of LayeredlySatisfy.

Fig. 1. LayeredlySatisfy(({s0},{s2,s3},{s5}),r) stands

In Fig.1, there are four web services so,s2,s3 and s5 with s0=<{a},{b,c}, s2 = < {b},
{d} >, s3=<{b},{e}>,s5=<{d,e,c},{f}> and a service request r with r=<{a},{f}>.
Obviously, LayeredlySatisfy ,},{s(({s 20 }),r)},{ss 53 stands and the GILN equals 3.

3 Composition Setup Algorithm

In this section, we introduce the algorithms to get the least invocation layers of
candidate web services to satisfy the given service request. Firstly, we find the
relevant web services from the repository. Secondly, we pick out the contributed web
services based on dataflow optimization. At last, we use a search algorithm based on
A* procedure to find the best composition setup.

e

S0

S2

S3

S5
Start End c

f a
b

b

d
3 2 1

142 Y. Yang, Q. Tan, and Y. Xiao

3.1 Relevant Web Services Finding Algorithm

The first part of our approach is to design an algorithm to find the relevant web services
satisfying the predication LayeredlySatisfy. The pseudo code of it is shown as follows.

Algorithm GetILS (Input: web services corpora WS, service request r; Output:
invocation layers layer)

1) visitedWs←∅
2) gottenPara← in(r)
3) n← 0
4) layer[n]←{start}
5) While ¬(gottenPara⊇ out(r)) do

5.1) S← {ws ws∈ WS,ws∉ visitedWs, in(ws)⊆ gottenPara}
5.2) if S =∅

5.2.1) then print “Failure!” and return
5.3) n←n+1
5.4) layer[n]←S
5.5) visitedWs← visitedWs∪ S
5.6)gottenPara← gottenPara ∪ (Sws∈ out(ws))

6) n←n+1
7) layer[n]←{end}

8) return

Variable visitedWs is a set and used to save the web services that have been visited
so far, and variable gottenPara is also a set and used to save the parameters that have
been available or generated so far. Array variable layer is used to save the web
services of each invocation layer. Constant WS represents a set of all available web
services which can be found from a local file system, resources referenced by URIs or
provided by a repository such as UDDI. Variable r denotes a given web services
composition request. Start and end nodes are virtual services that respectively provide
require the data from the problem.

At each iteration, some new web services that can be invoked using gottenPara are
found. At some point, if gottenPara ⊇ out(r), then it means that using the parameters
gathered so far, one can get the desired output parameters in out(r), thus finding the
web services invocation layers with the least GILN satisfying the predication
LayeredlySatisfy.

Fig. 2. Invocation layers returned by GetInvocationLayer

S0

S1

S2

S3

S4

S5

S6

Start End

3 2 1

 Setup Algorithm of Web Service Composition 143

For instance, now there is a request r as r=<{a},{f}> and in set WS, a fragment of
relevant web services as following: s0=<{a},{b,c}, s1=<{a},{g}>, s2=<{b},{d}>,
s3=<{b},{e}>, s4=<{g},{h}>, s5=<{d,e,c},{f}>, s6=<{a,h},{k}>. Then the algorithm
GetILS gets the invocation layers as Fig.2.

3.1.1 Analyzing Algorithm GetILS

Theorem 3.1 (Termination). GetILS will terminate at some point.

Proof. For any given service request r∈RQ:

1) If r can be satisfied by some composition of several available atomic web
services. Since there are only finite number of web services, and each of iteration
of while loop adds only “new” set of web services, the condition of gottenPara
⊇out(r) must be satisfied at some point. Then the iteration must end, so the
algorithm will terminate.

2) If r can not be satisfied by some composition of several available atomic web
services. From condition b) of Definition2.5 for LayeredlySatisfy, we can find
that the transition between Layer i-1 and i (Si-1 Si) is a partial order relationship,
and the greatest lower bound (glb) is in(r) and the least upper bound (lub) is
in(r)∪out(r). Meanwhile, the transition relationship between invocation layers is
monotonic, and therefore, as Knaster-Tarski Theorem [5] implies, there always
exists a fix point, ensuring that after this point, gottenPara will not change. That
also means that S will not change, then if sentence of Line 5.2) of the algorithm
will stand, causing the algorithm to return.

Theorem 3.2 (Least GILN) If the input service request can be satisfied by
composing existing web services, then GetILS can get the ILS n1 S,,S satisfying

),r),...,S,Satisfy((SLayeredlyS n21 and with the least GILN.

Proof. The former half part of Theorem can be proved by the exit condition of while
sentence in Line5. Next, we will proof the latter half part of theorem using counter-
evidence. Let ',S',S m1 be another ILS of r. That is to say, LayeredlySatify((S1’,

S2’,…,Sm’),r) stands and m<n. According to the iteration process of GetILS, it will
return after the n-th iteration, which is contradicted with the fact that algorithm will
return at the m-th iteration. So n1 S,,S is with the least GILN.

3.2 Further Optimization

The ILS S1,S2,…,Sn returned by GetILS may include some web services which have
no contributions to the service request. In order to delete these useless web services,
we must optimize the ILS further. So, in the second phase of our approach, we
perform dataflow analysis to remove unnecessary web services from each invocation
layer. The optimization algorithm begins with set of outputs and finds all the web
services that generate at least one output in the set of outputs. Next, the inputs to the
selected web services are added to the set of outputs and the process is repeated till no
more web services are needed. The web services in the resulting invocation layers are
the ones contributed to the service request.

144 Y. Yang, Q. Tan, and Y. Xiao

Fig. 3. Invocation layers after optimization

Algorithm ILSOptimization (input: invocation layers generated by GetILS layer;
output: invocation layers after optimization layer)

1) outputs←out(r)
2) for i=n to 1 do
2.1) for each ws∈layer[i] do

2.1.1) if out(ws)∩ outputs=∅
2.1.2) then layer[i] ←layer[i] /{ws}

2.2) for each ws∈layer[i] do
 2.2.1) outputs← outputs ∪ in(ws)
3) return layer

After applying algorithm ILSOptimization on variable layer (cf.Fig.2) returned by
GetILS, we get the invocation layers in Fig3.

3.3 Optimal Path Search

We can get an invocation path by selecting the minimal set of web services from each
invocation layer returned by ILSOptimization. If LayeredlySatisfy ((S1,S2,…,Sn),r),
and at i-th layer, there are mi web services that can be invoked. When we consider
invoke web services in parallel or sequentially, then there are 12 im − search choices

at this layer, leading to)12()12(1 −− nmm search paths. So, an effective search

algorithm is mandatory. In this paper, we propose to use A* procedure [6].
A* procedure is heuristics-based branch-bound search algorithm, with an estimate

of remaining distance, combined with the dynamic-programming principle. The
heuristics function of A* algorithm is based on the guesses about distances remaining
as well as facts about distances already accumulated. It is comprised into two parts as:
u(total path length) = d(already traveled)+u(distance remaining),where d(already
traveled) is the known distance already traveled and u(distance remaining) is an
estimate of the distance remaining. Since the performance of A* algorithm heavily
depends on the quality of the heuristics function, it is important to use the right
heuristics to strike a good balance between accuracy and speed.

Definition 3.1 (Heuristics Function). Given some candidate sets of web services S
])[(ilayerS ⊆ to visit next at Layer i, we design the heuristics function h as

h(S)=d(S)+u(S), where d(S) represents the set of available parameters and u(S)
represents the set of remaining parameters of out(r). Let output(S) = {s | s is output
parameter generated by the visited web services until S in the current search path}.
We define d(S) and u(S) as follows:

d(S) = | in(r) ∪ output (S) | and u(S) = | out(r)/output (S) |

 Setup Algorithm of Web Service Composition 145

The pseudo code of our search algorithm base on A*search idea is shown as
follows. G is the adjacency-list representation of the graph generated by algorithm
GetILS, whose vertices of layer i are the subsets of variable layer[i] except for ∅ and
edges are from one vertex of layer i to each of the next layer i+1 and the root node of
G is start.

Algorithm HeuristicsBasedSearch (Input: service request r, invocation layers layer,
heuristics functions d and u; Output: the optimal path)

1) Initialize OPEN list
2) Initialize CLOSED list
3) Add start node to the OPEN list
4) while the OPEN list is not empty do
4.1) Get node S off the OPEN list with the lowest h(S)

4.2) Add S to the CLOSED list
4.3) if d(S) ⊇ out(r)
4.3.1) then return the path from the start node to S according to the function π
4.4) for each S'∈Adj[S] do

4.4.1) S]'S[←π

4.4.2) d(S’)← d(S) ∪ ('Sws∈ out(ws))

4.4.3) h(S’)← d(S’) +u(S’)
4.4.4) if S' is on the OPEN list and the existing one is as good or better

4.4.4.1) then discard S' and continue
4.4.5) if S' is on the CLOSED list and the existing one is as good or better

4.4.5.1) then discard S' and continue
4.4.6) Remove occurrences of S' from OPEN and CLOSED list
4.4.7) Add S' to the OPEN list

5) return failure

4 Implementation Issues

When implementing the two algorithms above, there are many operations of sets
occurring frequently, among which are subset judgment, union, intersection and
difference operation. Their implementation efficiency is vital to that of whole
algorithm. The key of all these operation is to solve the implementation of
membership checking. In this paper, we propose to use Bloom Filter to finish the
membership checking operations.

A Bloom Filter is a simple space-efficient randomized data structure for
representing a set in order to support membership queries. The space efficiency is
achieved at the cost of a small probability of false positives, but often this is a
convenient trade-off. Therefore, Bloom Filters have received little attention in the
theoretical community. In contrast, for practical applications the price of a constant
false positive probability may well be worthwhile to reduce the necessary space. It
was invented by Burton Bloom in 1970 [4]. Broder in [1] presents a plethora of recent
uses of Bloom Filters in a variety of network contexts, with the aim of making these
ideas available to a wider community and the hope of inspiring new applications.

146 Y. Yang, Q. Tan, and Y. Xiao

A Bloom Filter for representing a set S={x1,x2,…,xn} of n elements is described by
an array of m bits, initially all set to 0. A Bloom Filter uses k independent hash
functions h1,…,hk with range. We make the natural assumption that these hash
functions map each item in {1,…,m} the universe to a random number uniform over
the range {1,…,m} for mathematical convenience. (In practice, reasonable hash
functions appear to behave adequately, e.g. [2].) For each element x∈S, the bits hi(x)
are set to 1 for i (1≤i≤k). A location can be set to 1 multiple times, but only the first
change has an effect. Fig.4 gives Bloom Filters example with three hash functions.

To check if an item y is in S, we check whether all hi(y) are set to 1. If not, then
clearly y is not a member of S. If all hi(y) are set to 1, we assume that y is in S,
although we are wrong with some probability. Hence a Bloom Filter may yield a false
positive, where it suggests that an element y is in S even though it is not. For many
applications, false positives may be acceptable as long as their probability is
sufficiently small.

Fig. 4. Bloom Filters with three hash functions

The salient feature of Bloom filters is that the probability of a false positive for an
element not in the set, or the false positive rate, can be calculated in a straightforward
fashion, given our assumption that hash functions are perfectly random. After all the
elements of S are hashed into the Bloom Filter, the probability that a specific bit is
still 0 is (1-(1/m))kn, hence the probability of a false positive in this situation
is kmknkkn em)1()))/1(1(1(/−≈−− , the right hand side is minimized for k=ln2×m/n,

in which case it becomes nmk /)6125.0()2/1(= .In fact, k must be an integer and in

practice we might chose a value less than optimal to reduce computational overhead.

5 Related Works

Service composition is an exciting area which has received a significant amount of
interest in the last period. Initial approaches to web service composition [7] used a
simple forward chaining technique which results in the discovery of large numbers of
services. There is a good body of work which tries to address the service composition
problem by using planning techniques based either on theorem proving (e.g., Golog

 Setup Algorithm of Web Service Composition 147

[9, 10] and SWORD [11]) or on hierarchical task planning (e.g., SHOP-2 [12]). The
advantage of this kind of approaches is that complex constructs like loops (Golog) or
processes (SHOP-2) can be handled. All these approaches assume that the relevant
service descriptions are initially loaded into the reasoning engine and that no
discovery is performed during composition.

Recently, Lassila[8] has addressed the problem of interleaving discovery and
integration in more detail, which is also our goal in this paper, but he has considered
only simple workflows where services have one input and one output.

6 Conclusions

This paper studies how web services are composed to provide more complicated
services. We propose the algorithms based on the concept of invocation layer to get
the least invocation layers of candidate web services to satisfy the given service
request. Thee algorithms have been applied to IntelliFlow system prototype developed
at CIT to find web services composition setup.

The idea presented in this paper can be extended in future from different points of
view. We are interested in solving the problem when specific costs such as time and
money are important. Weighted graphs might be a good option to address the problem
for these particular issues. As another extension, empowering the approach to support
pre-conditions and post-conditions as part of the request is one of our future plans.
This will help in specifying more accurate queries and providing more accurate
results. The main idea can also be extended to the composition of general software
services or even components. If we can somehow extract the required information
(inputs, outputs, input-output dependencies) for each available component, the same
approach could be used for other types of software services and components as well.
This would be considered as another strength of the proposed method.

One assumption in our paper is that the parameters having same name (properties
in the case of DAML-S [18] or strings in the case of WSDL [5]) have same types,
which simplifies our composition setup algorithm. We will consider the type-
compatible web services composition in next research plan.

References

1. A. Broder and M. Mitzenmacher, Network Applications of Bloom Filters: A Survey. Proc.
of the 40th Annual Allerton Conference on Communication, Control, and Computing,
pages 636-646, 2002.

2. M.V.Ramakrishna, Practical performance of Bloom Filters and parallel free-text searching,
Communications of the ACM, 32(10):1237-1239, October 1989.

3. E. Christensen, F. Curbera, G. Meredith, and S.Weerawarana, 2001, "web services
Description Language (WSDL) 1.1, W3C Note": www.w3.org/TR/wsdl

4. B. Bloom. Space/time tradeoffs in hash coding with allowable errors. CACM, 13(7):422-426,
1970.

5. A. Tarski. “A Lattice-Theoretical Fixpoint Theorem and its Applications”. Pacific J.
Math., 5:285–309, 1955.

148 Y. Yang, Q. Tan, and Y. Xiao

6. S. J. Russell and P. Norvig. “Artificial Intelligence: A Modern Approach (2nd Ed.)”.
Prentice-Hall, 2002.

7. S. Thakkar, C. A. Knoblock, J. L. Ambite, and C. Shahabi. Dynamically composing web
services from on-line sources. In Proceeding of the AAAI-2002 Workshop on Intelligent
Service Integration, pages 1–7, Edmonton, Alberta, Canada, July 2002.

8. O. Lassila and S. Dixit. Interleaving discovery and composition for simple workflows. In
Semantic Web Services, 2004 AAAI Spring Symposium Series, 2004.

9. S. McIlraith, T. Son, and H. Zeng. Mobilizing the semantic web with daml-enabled web
services. In Proc. Second International Workshop on the Semantic Web (SemWeb-2001),
Hongkong,China, May 2001.

10. S. A. McIlraith and T. C. Son. Adapting golog for composition of semantic web services.
In D. Fensel, F. Giunchiglia, D.McGuinness, andM.-A.Williams, editors, Proceedings of
the 8th International Conference on Principles and Knowledge Representation and
Reasoning (KR-02), pages 482-496, San Francisco, CA, Apr. 22–25 2002. Morgan
Kaufmann Publishers.

11. S. R. Ponnekanti and A. Fox. Sword: A developer toolkit for web service composition. In
11th World Wide Web Conference (Web Engineering Track), 2002.

12. D.Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S web services
composition using SHOP2. In Proceedings of 2nd International Semantic Web Conference
(ISWC2003), Sanibel Island, Florida, October 2003.

13. D.-S. C. A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila,D. Martin, D. McDermott, S.
A. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara. DAML-S: Web
service description for the Semantic Web. Lecture Notes in Computer Science, 2342,
2002.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 149 – 158, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Self Healing and Self Configuration in a
WSRF Grid Environment

Michael Messig and Andrzej Goscinski

School of Information Technology,Deakin University,
Geelong, Vic 3216, Australia

{messig, ang}@deakin.edu.au

Abstract. The move towards web services in Grid computing requires mecha-
nisms for services to maintain state. This is introduced by the Web Services Re-
source Framework which provides a basis for web services to access stateful re-
sources. While this allows access to stateful resources, the web services
themselves are not stateful. Currently, Grids require a lot of direct involvement
of application developers, who are, in general, not computing specialists. The
principles of autonomic computing introduce characteristics which are aimed at
automatic improvement of computing systems and can be applied to the Grid.
This paper addresses the principles of self healing and self configuration in a
Grid environment and implements a service using the WSRF.NET framework
to investigate the affect and applicability of the Web Services Resource Frame-
work on these principles and improve the WSRF specification.

1 Introduction

The evolution of Grid computing primarily focuses on heterogeneity and interopera-
bility to provide a system which can share resources and services among disparate
platforms [1]. Since the Grid's inception, the ability to provide heterogeneous, distrib-
uted computing has been a key goal to the acceptance of the Grid. Original implemen-
tations of Grid applications and middleware were developed using languages and
tools which offered support for multiple architectures, however interoperability was
not achieved due to the inflexible design of the underlying system. The introduction
of web services for Grid computing improves interoperability by utilising open stan-
dards for describing, discovering and interacting with services. Web services by na-
ture however do not provide the ability to maintain state and once a client’s request is
addressed by the web service, all knowledge of this interaction is lost. Therefore
every interaction with a web service by different clients or multiple interactions by the
same client have no native means to carry the state of the web service or the state of
any resources the web service is using across client interactions. Web services are in-
voked by the client, therefore when the client calls a method or function provided by
the web service, an instance of the web service is created and once the service com-
pletes the client’s request, the instance of the web service is destroyed.

To offer flexible, interoperable services in a Grid environment, the ability to maintain
state is desirable, especially for applications in high performance computing, industry
and business where transaction based systems are required. In systems such as Globus

150 M. Messig and A. Goscinski

this was offered by the Open Grid Services Infrastructure and with recent developments
in web services a revision of this infrastructure to include new web service standards has
resulted in the development of the Web Service Resource Framework (WSRF) [2]. The
WSRF provides the ability for web services to maintain stateful information by defining
parts of the web service, such as variables, data structures and classes as stateful re-
sources, which are then stored in stateful storage, for example a database, between inter-
actions with clients. The WSRF model allows web services to access stateful resources;
however the web services themselves are not stateful [3].

The current move toward autonomic principles for computing is being investigated
for their application within the Grid [4] and are addressed in cluster operating systems
[5, 6]. The development of the Holos operating system proves that it is possible to
provide autonomic principles at the operating system level [5, 6]. The aim of this pro-
ject is to investigate the ability to apply autonomic principles to Grid computing
which is moving towards a service oriented architecture, and more specifically web
services as the model for applications within the Grid. In particular the principles of
self healing and self configuration of web services in a Grid environment is being in-
vestigated. By providing the ability for services in a Grid to recover from problems
and reconfigure itself to avoid such problems allows the system to be a dependable,
robust and scalable platform which does not require complex maintenance [7]. This
will also allow the system as a whole to adapt and dynamically change in response to
events and changes within the system.

The aim of this paper, however, is to carry out a preliminary study and examination
of the WSRF specification by creating a web service using an implementation of
WSRF. Particular attention is paid to the architecture of WSRF, what is provided, the
ability for WSRF to contribute to the autonomic principles of self healing and self
configuration, and a possible improvement of the WSRF specification to adhere to
these principles. The platform used is the WSRF.NET implementation, which is writ-
ten for the Microsoft .Net environment and extends C# and ASP.Net web services to
incorporate stateful resources [8]. An auction service is constructed using the
WSRF.NET toolkit which allows a client to bid on an item at auction. The web ser-
vice exploits WSRF by allowing the current bid on the item to reflect a stateful re-
source and maintain state across client bids and is used to highlight the possibility of
providing self healing and self configuration in a WSRF Grid environment.

The report is structured as follows. In section 2 we examine stateful resources in
Grid applications. In section 3 the logical design of the auction service is proposed to
highlight the need for state in a WSRF environment. Section 4 discusses the imple-
mentation of the auction service using the WSRF.NET platform. Section 5 discusses
the experiences with using the framework and provides testing of the service. Finally,
section 6 concludes this study and presents future work.

2 Stateful and Stateless Resources

Web services are applications which support standardized, interoperable interaction
over a network using well defined interfaces and messaging techniques which exploit
XML [9]. The runtime environment responsible for hosting the web service is the ap-
plication server. The application server is responsible for accepting requests from cli-

 Self Healing and Self Configuration in a WSRF Grid Environment 151

ent applications, invoking the service and if necessary providing a response to the cli-
ent [10]. Web services by nature are stateless services, that is, they do not natively
provide any mechanisms to maintain the state of the resources they are using, or the
state of the service itself. The Web Services Resource Framework introduces a stan-
dard which provides the ability for web services to access stateful resources. A state-
ful resource, in terms of the WSRF, is defined as a resource which has a specific set
of state data, has a well defined lifecycle and is known to and acted upon by a web
service [10]. A resource can be any system component, such as objects, files, data-
bases even printers or groups of other resources [10].

The WSRF’s view on stateful resources implies that the web service representing
the stateful resource to the client is still regarded as a stateless service and merely
delegates responsibility of managing the stateful resource to another component or
even the resource itself. By taking the approach where the web service itself remains
stateless and the resource maintains its state, the location of the stateful resource must
be provided either explicitly by the client or implicitly by a known location or system
component known to the web service [10]. The WSRF uses the WS-Addressing stan-
dard for this.

The WSRF takes advantage of several standards to provide mechanisms for web
services to access stateful resources. The WS-Addressing standard is used to describe
a web service in terms of its address, called an End Point Reference (EPR). The WS-
Addressing specification also allows additional properties to be described within its
XML schema which is utilized by the WSRF which stores information about where
the stateful resource is located within the XML schema [11]. The client specifies an
EPR when invoking the web service, allowing the web service to locate the stateful
resource. This is simply providing the address of a resource to the web service; the
WSRF provides the web service with an interface to the resource allowing it to access
and manipulate the resource on behalf of the client’s request [10].

Whilst the WSRF introduces a standard method for accessing stateful resources,
this can be achieved by any web service by using database connectors to access a da-
tabase, store the data in a file or any other stateful storage mechanism. The WSRF ex-
tends the web service model to provide a simple way of accessing the resource while
hiding the underlying mechanisms required access the resource and presenting simple
functions to the user. The WSRF also provides a standard for describing the data type
of the resource or the resource’s interface in the web service’s interface description
document (WSDL) and providing the address of the resource through an EPR.

Autonomic principles are focused on providing system wide mechanisms for in-
creasing reliability, scalability and robustness of systems and are seen as the next step
in the evolution of computing [7]. Systems such as Holos address these principles at
the operating system level and promote autonomic principles being applied to the sys-
tem as a whole [6]. To provide support for these principles in a Grid environment, the
system must be viewed as a whole, where individual components interact with each
other and providing mechanisms such as self healing and self configuration must ap-
ply to all components across the entire system. The WSRF implies that WSRF re-
sources are responsible for managing themselves, therefore providing self healing or
self configuration properties for these resources is the responsibility of the resource it-
self. In an autonomic Grid environment, the system as a whole should address these
principles rather than individual components.

152 M. Messig and A. Goscinski

3 Logical Design of an Auction Service

To examine the design of the WSRF an auction service was developed to accept bids
on an item from clients. This service uses the WSRF to maintain the state of the cli-
ent’s bid, allowing multiple clients to bid and outbid each other on items. The auction
service must be implemented as a web service and will have a single attribute, the bid
value, which is defined as a WSRF Resource. The service provider is responsible for
hosting the service, this includes an application server which contains the web service
and is responsible for its execution and a WSRF Resource. The location of the actual
WSRF resource does not necessarily have to physically be on the same service pro-
vider as the auction service however is represented as such for simplicity. The interac-
tion between the client, the auction service and the WSRF Resource is shown in
Figure 1.

Fig. 1. Logical design of a WSRF Service

The client is able to invoke the auction service’s bid method, which is the only
publicly accessible method. The web service advertises this method in the WSDL
document of the web service and provides an End Point Reference (EPR) to specify
the location of the WSRF Resource it requires. When the client invokes the auction
service, the auction service connects to the WSRF resource, retrieves the value for the
current bid by using the EPR, checks the value and either returns false in the case
where the bid is not a valid bid (i.e. bid <= current bid), or true, in which case the cli-
ent’s bid is accepted and the current bid value is set to the client’s bid and stored back
as a WSRF Resource.

Autonomic principles of self healing and self configuration can be applied to the
WSRF web services model. By doing so and applying these principles system wide,
reliability of the system is increased. Although the actual WSRF resource used by the
auction service may be made reliable due to the underlying storage system used to
store the value of the current bid, for example a cluster of distributed databases, the
web service itself is still vulnerable to failure. For example, if the client is interacting
with the auction service and before the auction service is able to save the state of the
WSRF resource the service provider fails, the client’s bid is unsuccessful. In a busi-
ness environment, this could introduce service reliability issues, or legal problems in-

Client

Service Provider

Application Server

Auction
Service

W
SR

F
R

es
ou

rc
e

bid()

Success or failure

get current bid

current bid

If successful
set current bid

 Self Healing and Self Configuration in a WSRF Grid Environment 153

volved in bidding systems. Although this is a simple example, and the auction service
is not used to fully justify the incorporation of autonomic principles for web services,
more complex services can apply these constructs in more applicable areas, such as
high performance computing environments, mission critical applications, business or
industry applications. Web services may perform a large number of operations be-
tween interactions with clients and if a failure occurs during this time, important in-
formation or processing time may be lost.

Fig. 2. Self healing and self configuration in a WSRF environment

To support self healing and self configuration in a WSRF environment, the auction
service would have to create saved states of the service as well as the resources it is
using at specific intervals. Therefore if the service fails it can be resumed from the
last saved state and all interactions with resources restored. The information saved
about a service must be stored in persistent storage to ensure the information is not
susceptible to failure. In terms of providing a facility to support self configuration,
this save state can be used to move the service from one machine to another within
the Grid, if for example, the machine is being decommissioned, indefinitely fails, or
to remove bottlenecks and increase performance of the Grid as a whole. Theoretically
it would be possible to save an image of the entire service provider, thus preserving
the web service and all of its interactions with other services and resources, however
there would be a very large overhead associated with saving, updating and restoring
an image of an entire service provider at given intervals. It is possible to introduce a
protocol where the service providers notify a broker of their state. Therefore as the
state of the web service or the WSRF resource changes, or at specific intervals, the
service provider can update the state information with the broker. This provides a
snapshot of the service at a given time and will allow a recreation of the service from
this information, and only requires saving, updating and restoring a footprint of the
service, rather than the entire provider. The frequency of taking a snapshot of a ser-

Client

Service Provider 1

Application Server

Auction Ser-

W
SR

F
R

es
ou

rc
e

get current bid

current bid

Service Provider N

Application Server

Auction Service

W
SR

F
R

es
ou

rc
e

get current bid

current bid

Se
lf

 H
ea

lin
g

C
om

po
ne

nt

Se
lf

 C
on

fi
gu

ri
ng

C

om
po

ne
nt

Restore

Save State

Invoke service

Invoke service
Request location
of service.

System Management Broker

154 M. Messig and A. Goscinski

vice should be configurable as it is a parameter which changes with each service de-
pending on the service’s requirements or quality of service agreements between the
service and the client.

As shown in Figure 2, it is possible to reconstruct the state of the auction service
by using a broker to manage the state of both the service and the resources which the
service is interacting with. Service providers within the system must periodically pro-
vide the broker with adequate information about each service’s state and interactions
with other services and resources allowing any of these services to be reconstructed
from this information.

Instead of directly accessing the auction service, the client initially submits a re-
quest to the system management broker. The broker then provides the client with the
address of the auction service. The client can then interact with the auction service di-
rectly, however if the auction service fails and is unreachable, as Service Provider 1 in
Figure 2, the client then forwards its request to the system management broker. The
system management broker is then responsible for providing the address of the auc-
tion service. This address may locate a copy of the original auction service which has
been reconstructed from the saved states of the original auction service, or an address
which locates the original auction service which has been moved to an alternate
trusted location due to some reconfiguration of the system. The system management
broker includes mechanisms to discover services which have failed by polling ser-
vices known to the broker at intervals to determine if they are available and respon-
sive. The broker reconstructs failed services either at the same location as it was pre-
viously executing, or at a different location. Doing so renders the service unreachable
by clients and therefore the client must make a request to the broker for the service’s
new location, ensuring that the client will always have the correct and most up to date
location of the service.

By providing the ability for services to save their state and not only the state of the
resources the service is using, reliability is improved. Services are able to provide a
reliable, robust service to clients in environments where a service’s interaction with
clients is critical, in the case of the auction service, or where services may require
large amounts of processing time between interacting with clients and stateful re-
sources. Introducing the principles of self healing and self configuration for Grid en-
vironments is possible and the system management broker provides the ability to offer
these principles to the Grid as a whole. While the WSRF provides access to stateful
resources by web services, the systems responsible for providing the resources are
also responsible for their reliability. The Grid should provide system wide support for
self healing and self configuration rather than each component in the system. This al-
lows services and resources to be resumed when components within the Grid fail or
are moved when the system must be reconfigured to adapt to change. By introducing
a system management broker responsible for self healing and self configuration, this
is achieved.

4 Implementation

The auction service is implemented using the WSRF.NET implementation of the web
services resource framework. WSRF.NET is developed for the Microsoft Visual

 Self Healing and Self Configuration in a WSRF Grid Environment 155

Studio .NET environment and uses the IIS application server to execute web services.
The WSRF.NET extends the web services model offered by the Microsoft .NET lan-
guages by providing classes, methods and attributes for the web service resource
framework in the .Net environment [8]. The WSRF.NET implementation uses the
Apache Xindice database server to store data related resources, for example, vari-
ables, structures and classes which are serializable and converted into XML then
stored in the database.

To allow WSRF resources to be used in within Microsoft .Net web services, sev-
eral attributes are used to identify resources and methods which will be used to create
the stateful resources. The auction service is implemented as a web service which ac-
cepts a bid from a client application. The bid is compared with the current highest bid
(current bid) and if the client’s bid is higher, the current bid is updated to reflect the
client’s bid and the service returns true, otherwise the service returns false.

The single resource which is used for the auction service is the current bid variable
which holds the value for the current highest bid. The current bid variable is attributed
with the [Resource] attribute to signify that it is a WSRF resource as specified by the
WSRF.NET developers guide [12]. The auction service implements several methods
which are required by the language and the WSRF.NET implementation. These meth-
ods form the constructor for the auction service as well as some initialization meth-
ods. The auction service however contains only a single method available through its
interface to clients:

public bool bid(int clientBid)

As previously discussed, the bid method is responsible for returning true or false
based on the clients bid. Within the bid method however, the auction service must ac-
cess the WSRF resource. This is done by using the get {} and set {} attributes to re-
trieve and store the values of the resource to and from stateful storage. The interaction
with the underlying database is transparent and handled by the WSRF.NET imple-
mentation.

To allow the client application to exploit the WSRF.NET auction service, it re-
quires the ability to get resource properties from the auction service, create end point
references and access the auction service’s bid method via SOAP. The WSRF.NET
implementation allows the majority of this functionality to remain hidden from the
developer. The client application is written in C# and includes the libraries required
by WSRF.NET. The client application implements a single function, itembid() which
is responsible for connecting to the web service, placing a bid on behalf of the client
and printing the result of the bid. The itembid() function simply creates a proxy which
is responsible for the connection to the auction service, calls the auction service’s bid
function and prints the result of the bid to the screen.

5 Testing

To test the implementation of the auction service and the ability for the WSRF.NET
implementation to maintain stateful resources, several auctions were set up for client
bids. The testing environment consisted of two machines, one being the service pro-
vider and the other executing the client applications. The first test involved starting a

156 M. Messig and A. Goscinski

bid where only a single client invoked the auction service and executed several bid at-
tempts, while the second test involved two client applications accessing the auction
service in succession.

Test 1

Client 1:
 Client bid: 25
 Bid Successful
 Current Bid is $25

 Client bid: 75
 Bid Successful
 Current Bid is $75

 Client bid: 15
 Bid Unsuccessful
 Current Bid is $75

Test 2

Client 1:
 Client bid: 25
 Bid Successful
 Current Bid is $25
Client 2:
 Client bid: 10
 Bid Unsuccessful
 Current Bid is $25
 Client bid: 35
 Bid Successful
 Current Bid is $35
Client 1:
 Client bid: 30
 Bid Unsuccessful
 Current Bid is $35
 Client bid: $40
 Bid Successful
 Current Bid is $40

Fig. 3. Testing of the auction service

As can be seen in Figure 3, Test 1 shows the single client performing several bids
and thus invoking the auction service several times. The client invokes the auction
service with the itembid() method passing values of 25, 75 and 15. Each of these bids
is an individual invocation of the auction service, showing the ability for the auction
service to maintain the state of the current bid across interactions with the client. The
client’s bid is successful the first two times the auction service is invoked , this is due
to the bid initially beginning at zero when the resource is initiated and as each bid is
greater than the previous bid, the result is successful. The final bid however invokes
the auction service with a bid that is less than the current bid and therefore is
unsuccessful.

To test the WSRF.NET implementation to retain the state of the current bid re-
source across multiple clients, two clients were used to access the auction service, as
shown in Test 2. The auction service is reinitialized to contain a current bid of zero.
This test begins with client 1 initiating a bid which is successful as it is greater than
zero. Client 2 attempts submit a bid to the auction service with a lower bid than client
1 has previously bid, as the current bid resource has already been updated to reflect
the bid of client 1, the bid is unsuccessful. Client 2 then invokes the service with a
larger bid, this time the bid is successful. Client 1 imitates this behavior by first at-
tempting to invoke a bid of a smaller value than that of client 2, then a second suc-
cessful bid which is greater than the bid of client 1.

 Self Healing and Self Configuration in a WSRF Grid Environment 157

The tests performed on the auction service show the ability of the WSRF.NET im-
plementation to maintain the state of the current bid resource across client
interactions. The WSRF.NET implementation transparently retrieves the current bid
value from a database at each invocation of the service and saves the state of the cur-
rent bid variable to a database at each successful client bid. While this provides the
ability to use stateful resources, the web services, application servers and service pro-
viders have no means to provide state, or provide any reliability. If the underlying da-
tabase makes no attempt to provide reliability, the system as a whole does not ensure
the reliability of the WSRF resource. Therefore, without introducing any self healing
or self configuration mechanisms to support the auction service, reliability cannot be
guaranteed.

6 Conclusion and Future Work

Grid computing is moving towards web services as the architecture for applications
within the system. By introducing web services, the problem of state is generated and
to address this WSRF was developed to deal with the access of stateful resources by
web services. The WSRF however, implies that the responsibility of managing state-
ful resources is that of the resource itself rather than the web service. By taking this
approach, the WSRF does not provide a system wide approach to addressing reliabil-
ity and application developers must be experts in the field of Grid computing to create
reliable Grid applications.

The introduction of autonomic principles for Grid computing has addressed the
ability for a Grid system to adapt and change as a whole, improving reliability and re-
ducing the complexity of the system. The WSRF does not support the ability to pro-
vide reliability to the system as a whole, therefore the introduction of self healing and
self configuration must be addressed. The logical design of a self healing and self
configuration broker for web services in a WSRF Grid environment outlines the abil-
ity to provide reliable web services which are able to be manipulated by the system
and adapt to change. The system management broker shows that it is possible to ad-
dress the issue of stateless web services while providing reliable access to web ser-
vices and stateful resources. The broker also highlights the ability to improve the cur-
rent WSRF specification.

The development of an auction service exploiting the WSRF.NET implementation
of the Web Services Resource Framework highlights the features of the WSRF speci-
fication as well as a need to address the reliability of web services and not simply
WSRF resources. The introduction of autonomic principles in a WSRF Grid environ-
ment will provide a robust, reliable system which is able to dynamically adapt as the
system changes.

Future work on autonomic principles for Grid computing would involve the inves-
tigation of new techniques to provide autonomic principles to web services. There are
many ways in which self healing and self configuration can be applied holistically to
web services and resources within the Grid. Additionally, there are other autonomic
principles which may be investigated for their application in a web service environ-
ment and their affect on Grid computing.

158 M. Messig and A. Goscinski

References

1. Foster, I., C. Kesselman, and S. Tuecke, The Anatomy of the Grid - Enabling Scalable Vir-
tual Organizations, in Grid Computing - Making the Global Infrastructure a Reality, F.
Berman, G.C. Fox, and A.J.G. Hey, Editors. 2001, John Wiley and Sons Ltd. p. 171-197.

2. Czajkowski, K., et al., From Open Grid Services Infrastructure to WS-Resource Frame-
work: Refactoring & Evolution. 2004.

3. Czajkowski, K., et al., The WS-Resource Framework Version 1.0. 2004.
4. Messig, M., Grids and Globus and Where to Now? 2004, Deakin University: Geelong. TR

C4/11.
5. Goscinski, A., J. Silcock, and M. Hobbs. Building Autonomic Clusters: A Response to

IBM's Autonomic Computing Challenge. in The 5th International Conference on Parallel
Processing and Applied Mathematics. 2003. Czestochowa, Poland: Springer-Verlag.

6. Goscinski, A., J. Silcock, and M. Hobbs. Cluster Operating System Support for Parallel
Autonomic Computing. in 18th Annual ACM International Conference on Supercomput-
ing. 2004. Saint-Malo, France.

7. Horn, P., Autonomic computing: IBM's Perspective on the State of Information Technol-
ogy. 2001.

8. Wasson, G. and M. Humphrey. Exploiting WSRF and WSRF.NET for Remote Job Execu-
tion in Grid Environments. in International Conference of Parallel and Distributed Sys-
tems. 2005. Denver, Colorado.

9. Booth, D., et al., eds. Web Services Architecture W3C Working Draft. 2003.
10. Foster, I., et al., Modeling Stateful Resources with Web Services Version 1.1. 2004.
11. Box, D., et al., Web Services Addressing (WS-Addressing) W3C Member Submission.

2004.
12. Morgan, M. and G. Wasson, WSRF.NET Developer Tutorial. 2005, University of Virginia.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 159 – 164, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Study on Life Cycle Model of Dynamic
Composed Web Services*

Chen Yanping, Li Zengzhi, Jin Qinxue, and Wang Chuang

Department of Computer Science and Technology,
Xian Jiaotong University, 710049, China

yanping@tom.com, lzz@mail.xjtu.edu.cn

Abstract. Modern requirement of dynamic Web Services rely increasingly on
composing concurrent, distributed, mobile, re-configurable and heterogenous
services, and substantial progress has already been made towards composed
Web Services. In this paper, first, we proposed a life cycle of composed Web
services, then designed a model named Service-Cloud model based on the
process of forming clouds in nature. Finally, based on Service-Cloud model, we
design and implement a prototype.

Keywords: Service management, dynamic Web service composition, life cycle
model of composed Web services.

1 Introduction

The real challenge in Web Services composition lies in how to provide a complete
solution. This means to develop a tool that supports the entire life cycle of service
composition, i.e., discovery, consistency checking and composition in terms of reuse
and extendibility. This paper proposes a whole life cycle of composed Web Services,
and then provides a Service-Cloud model, which provides a metaphor for composed
Web Services to provide. Through the Service-Cloud model, we can not only describe
the picture of composed Web Services better but also give the whole life cycle of
composed Web Service.

2 Life Cycle of Composed Web Services

W3C provided a life cycle of Web Service, but dynamic composed Web Services are
more complex than use pre-existing Web Services directly, and the courses of
providing a composed Web Service are also different of providing a pre-existing Web
Service. So, here based on the life cycle of Web Services in [2]. We present a whole
life cycle of composed Web Services.

* This paper is Supported by National Natural Science Foundation of China (No. 90304006)

and Research Fund for Doctoral Program of Higher Education of China (No.2002698018).

160 C. Yanping et al.

States:

getReq: the provider agent has accepted a request to provide a service.
doReq: the provider agent does some process to fulfill the requests.
 done: the provider agent successfully completed the requests and return the
results to request agent.
failed: the provider agent encounter some errors and cannot fulfill the request,
and return errors to request agent.

getReq doReq

done

failed

{OR} {OR}

Fig. 1. State transition diagram of request processing of a composed web service

Transitions:

A composed service starts getReq when it accepts a request.
A composed service starts execution after it received a request.
A composed service transitions to either done or failed state depending on the
outcome of the doReq stage.

A composed service exits doReq from either done or failed state.

Substrates transition diagram of doReq is given in figure 2.

{OR}

{OR}

{OR}
doSea doComp doChe doPub

seaFail

compFail

cheFail

pubFail

{OR}{OR}

Fig. 2. Substate transition diagram of doReq

States:

doSea: the provider agent is doing searching to fulfill the requests.
doComp: the provider agent is doing composition to fulfill the requests.
doChe: the provider agent is doing checking to meet the requests.
doPub: the provider agent is doing publication for reuse.
seaFail: the provider agent encountered a searching error and didn’t complete
the requested functions, returning a searching error to the request agent.
compFail: the provider agent encountered a composing error and didn’t
complete the composition, returning a composing error to the request agent.
cheFail: the provider agent encountered a checking error and didn’t complete
the requested functions, returning a checking error to the request agent.
pubFail: the provider agent encountered a publishing error and didn’t complete
the publication, returning a publishing error to the request agent.

 Study on Life Cycle Model of Dynamic Composed Web Services 161

Transitions:

A composed service starts execution doSea after it accepts a request.
A composed service transitions to doComp, compFail, or doSea depending on
the outcome of the doSea stage.
A composed service transitions to either doChe or compFail depending on the
outcome of the doComp stage.
A composed service transitions to either doPub or cheFail depending on the
outcome of the doChe stage.
A composed service exists doReq from doPub, failed, or doSea state which are
mutually exclusive.

3 Metaphorizing Composed Web Services into Clouds

There are following reasons we metaphorize the Service-Cloud model into clouds in
nature. In conclusion: the aim of Service-Cloud model is to describe the all phases in
a composed Web Services life cycle. This model possesses the ability to rapidly and
autonomously adapt even to change situations that were not envisioned during the
design time and keeping the running software system constantly available to users,
and also makes the creation, reusing, and deployment become even simpler.

Based on the above features of clouds we present a Service-Cloud model. In this
Service-Cloud model, the way to compose Web Services is similar to the process of
forming clouds on the following five aspects:

Pre-existing services in Internet corresponds to water in the earth,
Discovery the needed services from Internet corresponds to the course of water
evaporation,
Web Services in a composed service corresponds to the water drips in
a cloud,
Composition logic of composed service corresponds to the course of service
drips augment, and
The way of decomposition a Web Service into several element services is
similar to rains in nature.

4 The Service-Cloud Model

4.1 Types of Services

In our Research, Service-Cloud distinguishes two types of services: service drips and
service clouds:

 Service Drip. A service drip is an individual accessible Internet application that
provides some functions by itself. An example of a service drip might be a Web
flight-verification interface in a travel-mark information system. The details about
Service Drip are given in [3,4] in this paper we only give details about Service Cloud.

 Service Cloud. The concept of service cloud is a solution to the problem of dynamic
composing a potentially large number of Web Services. At runtime, when a provider

162 C. Yanping et al.

agent receives a request for a new Web Service, then it can composing several pre-
existing services to fulfill the requirements.

4.2 Service Cloud

In the Service-Cloud model, the composed service is named as a service cloud. The
service cloud is a service container, and it can provide both a whole application and
parts of its functions through a standard interface.

4.2.1 Characters
Specially, a service cloud also can be looked as a special service drip when it is being
used. So, a service cloud has all the characters of the service drip, and a Service cloud
also has the following features besides the characters of a service drip:

A service cloud can be dynamically composed at run time,
A service cloud is mainly created for an unanticipated and critical requests,
A service cloud can be decomposed into several service drips when needed.

4.2.2 Description
A reusable service cloud is a container of certain functions and management, and it
includes three main parts: input functions, output functions, and internal composition
logic.

Definition 1. Let Service Cloud has the form))(),(),(),(()(iFiSiLiFiC outin= ,

Where: inF is a set of input functions, which include parameters got from user

directed, results from other service drips (clouds), or required functions from other

service drips (clouds), L is a set of internal composition logic (e.g. state Chart,
TLA), the logic ensures the composition, S is the state of this service cloud, and the
value of S is one of {0,1,2}, where:0: represents the service is idleness; 1: represents
the service is working correct at present,2: represents the service run into a wrong
state. This parameter will be changed with the perform instances of included service

drips, outF is a set of output functions, which include output to user directed, and

results to other clouds.

4.3 Service Cloud Generator

There two kinds of service cloud generators: Forward Service Cloud Generator and
Backward Service Cloud Generator.

Forward service cloud generator (FCG)
Forward service cloud generator is a black box, which inputs are divided into three
types: static input parameters, dynamic input parameters, and an composition logic, and
FCG outputs are only dynamic parameters. As to user, they need not to understand the
details in the generator, and they care only for the outputs. Noted, the inputs and outputs
are not only parameter values, but also service drips and service clouds.

 Study on Life Cycle Model of Dynamic Composed Web Services 163

Backward service cloud generator (BCG)
Backward service cloud generator can decompose a complex service into several
outputs according to decomposition logic, and the BCG is more complex than FCG.
FCG and BCG can describe the reversible relationship between service cloud and
service drips. Actually, our researches are emphasis on the designing and
implementing the FCG at present because the BCG is more complex than the FCG.

Figure 3 gives the graphical description of the forward and backward cloud generator.

Forward Cloud
Generator

Composing
Logic

Output(s)

Static Input(s)

Dynamic Input(s)

Backward Cloud
Generator

Decomposing
Logic

Output(s)

Static Input(s)

Dynamic Input(s)

Fig. 3. Graphical description of the forward & backward cloud generator

Definition 2. Let Forward Service Cloud Generator FCG has the form:

()

=
∈∈

= =
∈

=
∈∈∈

→

2

1
__

2

1

2

1
_,

2

1
_,__,_,_

l

ll

lPdoutdoutPdoutpY

i

ii

k

kk

kPlinlinP
j

jj

jPdindinPinPsiinsPlinPdinPinsPX

YXFCG

Where: sinP _ is a set of static inputs,)(_ outdindP is a set of dynamic inputs

(outputs), linP _ is a set of input logic.

4.4 Composition Logic

Composition logic presents how the services functions can be synchronized and
coordinated combined. Composition logic is beyond the conversation logic (which is
modeled as a sequence of interactions between two services) and become a sound
basis for expressing the business logic that underlies business applications.

Definition 3. The composition depth has direct correlation with the composition
length of the longest composition route.

As clouds have high-cloud, mid-cloud, and low-cloud, there are also three kinds of
composition levels

High-level composition. There should exist at least one route which
composition depth is no less than two.

164 C. Yanping et al.

Mid-level composition. There should exist at least one route which
composition depth is no less than one and less than two.
Low-level composition. Users use the service directly without composition.
The composition depth is zero.

5 Prototype Service-Cloud Based on SMN

In this section, we give a prototype of Service-Cloud based on SMN. This
implementation has shown that the ideas behind Service-Cloud fit together, are
consistent with one another, and are realizable using existing technologies.

The SMN (Service Management Network) is built on the Internet. The aim of SMN
is to accomplish the following key functions of services: apply, create, run, supervise,
and edit. SMN is composed of Service Proxies (SPs), Service Controllers (SCs),
Service Management System (SMS), Service Create Environment (SCE), and
Database etc. SMN offers five main functions: service logic management, service data
management, user data management, service performance management and service
quantity management, in addition, SMN maintenance a central DB. SMS
communicate with Distributed Service Control Point (DSCP) and proxies, this
implements the service management. Distributed Service Creation Environment
(DSCE) permits manager to create a new service according to certain rules, after been
tested, the new service will be imported into SMS and deployed by DSCP. Our
fundamental ideas behind the Service-Cloud model are: SMN can realize rapid and
auto adaptation even to changes that were not envisioned during design time. In SMN,
the Service Create Environment (SCE) is used to create new services, and SCE based
on Service-Cloud model prototype architecture is composed of a registry, service
cloud generators, and service drips pool.

6 Conclusions

In this paper, we present a whole life cycle of composed Web services, and based on
this whole life cycle, we present a Service-Cloud model by metaphorizing discovery,
compose, publish, and terminate into evaporate, adhere, augment, and rain separately.
We also give a way to plan dynamic compositions in Service-Cloud model. Finally, a
prototype based on the concepts of Service-Cloud model is given.

Reference

[1] Jian Yang and Mike. P. Papazoglou, Web Component: A Substrate for Web Service Reuse
and Composition, Lecture Notes in Computer Science, Vol. 2348, p21-36, Springer, 2002.

[2] Web Service Management: Service Life cycle. http://www.w3.org/TR/2004/NOTE-wslc-
20040211/.

[3] Chen Yanping, etc. Service-Cloud Model of Composed Web Services. In proc. of ICITA
2005. In press.

[4] Chen Yanping, etc. A Whole Life Cycle Model to Dynamic Composed Web Services In
proc. of ICMLC 2005. In press.

Fault-Tolerant Dynamic Job Scheduling Policy

J.H. Abawajy

School of Information Technology,
Deakin University, Geelong, VIC., Australia

Abstract. In this paper, we propose a scalable and fault-tolerant job
scheduling framework for grid computing. The proposed framework
loosely couples a dynamic job scheduling approach with the hybrid repli-
cations approach to schedule jobs efficiently while at the same time pro-
viding fault-tolerance. The novelty of the proposed framework is that
it uses passive replication approach under high system load and active
replication approach under low system loads. The switch between these
two replication methods is also done dynamically and transparently.

1 Introduction

The Grid [5] offers scientists and engineering communities high performance
computational resources in a seamless virtual organization (VO) capable of run-
ning the most demanding scientific and engineering applications required by
researchers and businesses today. However, a number of major technical hurdles
must be overcome before this potential can be realized. One of the main problems
to be addressed is that of efficient Grid jobs scheduling. A critical aspect of any
distributed processing system is the algorithm that maps jobs to resources. Poor
scheduling can leave most of the grid resources sitting idle while one bottleneck
application is performed.

A wide variety of scheduling approaches for grid computing are currently
available. While they all offer capabilities for resource allocation and distribu-
tion, they do not support integrated dynamic scheduling and fault-tolerance pro-
cessing of Grid applications. Also, all these systems use static scheduling policy
whereas we focus here on the dynamic fault-tolerant scheduling approach. With
the momentum gaining for grid computing systems and as grids are increasingly
used for applications requiring high levels of performance and reliability, the
ability to tolerate failures while effectively exploiting the variably sized pools
of grid computing resources in an scalable and transparent manner must be an
integral part of grid computing systems [7],[19], [6], [2], [16].

In this paper, we propose a fault-tolerant dynamic scheduling policy that
loosely couples dynamic job scheduling with job replication scheme such that
jobs are efficiently and reliably executed. The novelty of the proposed algorithm
is that it employs a hierarchical scheduler as well as hybrid replications approach
to schedule jobs efficiently while at the same time providing fault-tolerance to
the grid applications. A hierarchical scheduler is used to match a user’s job
requirements against grid resources at available grid sites, efficiently balancing

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 165–173, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

166 J.H. Abawajy

the system load and provide scalability as well as fault-tolerance. The algorithm
uses passive replication approach under high system load and active replication
approach under low system loads. The switch between these two replication
methods is also done dynamically and transparently.

The rest of the paper is organized as follows. In Section 2, a formal definition
of the fault-tolerant scheduling problem is given. This section also establishes the
fact that, to a large extent, the problem considered in this paper has not been
fully addressed in the literature. Section 3 presents the proposed fault-tolerant
scheduling policy. Preliminary performance results of the proposed algorithm is
disucssed in Section 4. Finally, the conclusion and future directions are presented
in Section 5.

2 Problem Statement and Related Work

2.1 Problem Statement

The fault-tolerant scheduling problem (FTSP) addressed in this paper can be
formally stated as shown in Figure 1. Devising a proper schedule to satisfy a set
of constraints is fundamental to effective utilization of grids resources, efficient
resource sharing, and improved user job response time. However, the problem of
scheduling parallel jobs on a set of nodes is NP Complete problem and heuristics
are commonly used to solve it.

Given: A set of n jobs, J={J1, ...,Jn}, where each job, Ji, arrives in a stochastic
manner into a system composed of m independent clusters, S= {C1,...,Cm}.

1. Each job, Ji, can be decomposed into t tasks, T={T1,...,Tt}. Each task Ti executes
sequential code and is fully preemptable.

2. Each site, Sj , is composed of R shareable (i.e., community-based) resources. Each
resource may fail with probability f, 0 ≤ f ≤1, and be repaired independently.

Objective: Our goal is to design an on-line scheduling policy such that:

1. applications are efficiently and reliably executed to their logical termination;
2. mean response time is minimized; and
3. the scheduler has no knowledge of: (1) the service time of the jobs or the tasks;

(2) the job arrival times; (3) how many processors each job needs until the job
actually arrives; (4) and the set of processors available for scheduling the jobs.

Fig. 1. Fault-tolerant grid scheduling problem

Access to remote resources was the main motivation for building Grid com-
puting, and it remains the primary goal today. To this end, a variety of successful
Grid infrastructures that focuses on simplifying access and usage of Grid comput-
ing has been developed over the past few years (e.g., [8]). However, the ability to

Fault-Tolerant Dynamic Job Scheduling Policy 167

execute applicationswhose computational requirements exceed local resources and
the reduction of job turnaround time through workload balancing across multiple
computing facilities requires efficient Grid job scheduling. Also, as the system in-
creases both in size and complexity, the possibility of a component (e.g., a node,
link, scheduler) failure also increases. Thus, the ability to tolerate failures while
effectively exploiting the Grid computing resources in a scalable and transparent
manner must be an integral part of Grid computing infrastructure. In the following
section, we establish the fact that, to a large extent, the problem considered in this
paper has not been fully addressed in the literature.

2.2 Related Work

Although job scheduling and fault-tolerance are active areas of research in Grid
computing environments, these two areas have largely been and continue to
be developed independent of one another each focusing on a different aspects
of computing. Research in scheduling has focused on efficiency by exploiting as
much parallelism as possible while assuming that the resources are 100% reliable
[1],[12]. Also, existing solutions for grid computing systems, to a large extent, are
based on requiring static and dynamic application and system resource informa-
tion, and performance prediction models. This kind of information is not always
available and is often difficult to obtain. Moreover, most of the conventional
grid-based systems use a static scheduling model (e.g., LSF [20]).

Recently, interest in making Grid computing systems fault tolerant has been
receiving attention [3], [7], [19], [18]. For example, several fault detection service
architecture have been developed for grid computing systems (e.g., [4], [14], [15].
Similarly, checkpoint-recovery [9] and job replication [18] techniques are popular
fault-tolerance approaches on distributed systems. However, as noted in [10],
these fault-tolerant approaches typically ignore the issue of processor allocation.
This can lead to a significant degradation in response time of the applications
[10] and to counter this effect an efficient job scheduling policy is required.

In this paper, we assume that the system components may fail and can
be eventually recovered from failure. Also, we assume that both hardware and
software failures obey the fail-stop [13] failure mode. As in [9], we assume that
faults can occur on-line at any point in time and the total number of faulty
processors in a given site may never exceed a known fraction. We also assume
that node failures are independent from each other [19]. In addition, we assume
that every grid scheduler in the system is reachable from any other grid scheduler
unless there is a failure in the network or the node housing the grid scheduler.
A scheme to deal with node, scheduler and link failures is discussed in [3].

3 Dynamic Fault-Tolerant Scheduling Policies

The proposed scheduling policy is called Dynamic Fault-Tolerant Scheduling
(DFTS) policy. In DFTS, the core system architecture is designed around N-
levels of virtual hierarchy as shown in Figure 2. At the top of the hierarchy, there

168 J.H. Abawajy

is a grid super scheduler (GSN,1) while at the leaf level there is a local scheduler
(LS) for each site. In between the grid super scheduler and the local schedulers,
there exists a hierarchy of grid schedulers (GSs). The GSs at level 1 are solely
responsible for scheduling jobs whereas the (GSN,1) and the GSs above level 1
are responsible for load balancing.

Grid Scheduler
(GSN,1)

Grid Scheduler
(GSN-1,2)

Grid Scheduler
(GS1,2)

Schedule

tim
e

qu
eu

e

Grid Scheduler
(GS1,3)

qu
eu

e

Schedule

tim
e

qu
eu

e

Grid Scheduler
(GS1,1)

Schedule

tim
e

Site 1

Local
Scheduler

Level 1

Level 0

Level N-1

Level N

Grid Scheduler
(GSN-1,1)

Grid Scheduler
(GSN-1,3)

Site 2

Local
Scheduler

Site N

Local
Scheduler

Site 3

Local
Scheduler

JRA RSSA RMF JRA RSSA RMF JRA RSSA RMF

Fig. 2. Basic blocks for a Grid scheduling architecture

Each grid scheduler in the hierarchy is uniquely identified as GSi,j where
0 ≤ i ≤ N denotes the level in the hierarchy and j denotes the grid scheduler
id (GID). For example, GS1,1 denotes grid scheduler 1 located at level 1. Each
GSi,j in the hierarchy also controls a set of sites in the system. For example,
sites 1 and 2 in Figure 2 are under the control of GS1,1 scheduler. In this case,
we say that GSi,j is the parent of LS1 and LS2. Similarly, GSN−1,2 is the parent
of GS1,1, GS1,2 and GS1,3. Finally, when jobs directly submitted to GS1,1 are
assigned to sites 1 or site 2 or both, we say that the assignment is a local job
placement.

As shown in Figure 2, the DFTS policy has three main components namely;
Resource Selection and Scheduling Algorithm (RSSA), Replica Management and
Failover (RMF), and Job Replication Algorithm (JRA). These three compo-
nents collectively schedule parallel jobs on the appropriate sites, automatically
replicate jobs and tasks over several sites and processors, keep track of the num-
ber of replicas, instantiate them on-demand and delete the replicas when the
primary copies of the jobs and tasks successfully complete execution. DFTS

Fault-Tolerant Dynamic Job Scheduling Policy 169

maintains some state information for failure and recovery detections in Ap-
plication Status Table (AST). Also, a fail-over strategy is used when a link
or a node failure is detected. A detailed discussion of the fail-over strategy is
given in [2], [3]. In the following subsections, we describe these three components
in detail.

3.1 Resource Selection and Scheduling Algorithm

The Resource Selection and Scheduling Algorithm (RSSA) is responsible for
scheduling grid jobs on sites that match the resource request of the jobs. Without
lose of generality, we assume that all incoming jobs are submitted to the GS1,j

grid scheduler (i.e., GSs at level 1) where j denotes GID of the the submitting
node. We assume the existence of Resource Specification Language (RSL) that
provides a common interchange language to describe resources required by the
jobs [8]. The code of the job, which has to be executable in the remote resource
environment as well as other information such as stdin, stdout, and the name
and port used on the remote node, are specified in the job request, written using
the RSL.

When a job arrives at a GS1,j for execution, it can either be scheduled to run
locally or remotely. The decision to run the job locally or send it to a remote
site is made by GS1,j based on the job requirements and the load level of the
local sites. For example, if GS1,1 receives a job for which the required resources
and services is not present within the scope of its control (i.e., site 1 and site
2), it flags the job as possible for remote execution. It then sends a Request for
Execution (RFE) message on behalf of the job to its parent at the next level of
the hierarchy (i.e., GSN−1,2). After sending RFE message to its parent, GS1,1
updates its base load level to ensure that jobs with similar requests will not be
sent to the appropriate site.

When GSN−1,2 receives the REF request, it tries to see if the request can be
satisfied by any of GSN−1,2 children excluding GS1,1. This process is recursively
followed up the hierarchy until a site with the required services or resources
is found or no sites can satisfy the request. If a site that can satisfy the REF
request is found, the candidate site makes arrangement with GS1,1 for the job
to be sent over for execution. Upon receiving the message, GS1,1 will send the
job details to the candidate site.

After dispatching the job request to the candidate site, GS1,1 then informs
the backup GS scheduler about the assignment and then updates the application
status table (AST) to reflect the new assignment.

3.2 Job Replication Algorithm

The replica creation and placement ensures that a job and its constituent task
are stored in a number of locations in the hierarchy. Jobs are replicated over sites
while tasks are replicated over processors. Specifically, When a job with fault-
tolerance requirement arrives into the system, DFTS undertakes the
following steps:

170 J.H. Abawajy

1. create a replica of the job;
2. keep the replica and send the original job to a child that is alive and reach-

able; and
3. update the application status table (AST) to reflect where the job replicas

are located. This process recursively follows down the cluster tree until we
reach the lowest level cluster scheduler (LCS) at which point the replica
placement process terminates.

3.3 Replica Management and Failover

The DFTS monitors applications at job-level (between non-leaf nodes and their
parents) and at task-level (between leaf nodes and their parents). A monitoring
message exchanged between a parent and a leaf-level node is called a report while
that between non-leaf nodes is called a summary. A report message contains sta-
tus information of a particular task running on a particular node and sent every
REPORT-INTERVAL time units. In contrast, the summary message contains a
collection of many reports and sent every SUMMARY-INTERVAL time periods
such that REPORT-INTERVAL < SUMMARY-INTERVAL.

When a processor completes execution of a task, the report message contains
a FINISH message. In this case, the receiving scheduler deletes the corresponding
replica and informs the backup scheduler to do the same. When the last replica
of a given job is deleted, the job is declared as successfully completed. In this
case, the cluster scheduler immediately sends a summary message that contains
the COMPLETED message to the parent scheduler, which deletes the copy of
the job and forward the same message to its parent. This process continues
recursively until all replicas of the job are deleted.

After each assignment, the children periodically inform their parents the
health of the computations as discussed above. If the parent does not receive
any such message from a particular child in a given amount of time, then the
parent suspects that the child has failed. In this case, it notes this fact in the
AST and sends a request for report message to the child. If a reply from the
child has not been received within a specific time frame, the child is declared
dead. The replica of a job is then scheduled on a health node.

4 Performance Analysis

We used simulation to study the performance of the proposed fault-tolerant
scheduling policy. We compared the proposed DFTS scheduling policy with
FTSA policy [18] and AHS policy [1].

4.1 Experimental Setup

We used a Grid system composed of eight sites and each site is managed by a
grid scheduler. We then create a 4-level hierarchy with the root as the super
scheduler, four second-level grid schedulers that act as children of the super

Fault-Tolerant Dynamic Job Scheduling Policy 171

scheduler, and 8 local schedulers at the bottom. The workload used is a synthetic
matrix multiplication application characterized by arrival time, service demand
time in a dedicated environment, maximum parallelism, and size in Kbytes. The
cumulative service demand is generated using hyper-exponential distribution
with mean 14.06 [1] and the maximum parallelism is uniformly distributed over
the range of 1 to 64. The default arrival CV is fixed at 1 and the default service
time CV is fixed at 3.5 as empirical observations at several supercomputer centers
indicated this to be a reasonable value. In all experiments, we configured the
system with two replicas as in [18].

We set processor and link time-to-failure to 0.00321 hours and 0.005 hours,
respectively. The time-to-repair the link is set to 30 seconds while that of the
processors is set to 0.00321 hours. The processor failure and recovery figures
are based on the data collected on the experimental assessment of workstation
failures in [10]. As in [18], [11], [10], we assume that inter-occurrence times of
failures for each processor are independent and identically distributed as expo-
nential random variables with the same failure rate. Also, we assume that the
times to failure of workstations and their repair times are mutually independent
random variables [10]. As in [1],[17], we used a simple model to capture the
communication overhead as follows:

Tcomm = Startup +
Message size
Bandwidth

(1)

In all the experiments discussed here, the communication network latency to be
50μsec with the transfer rate of 100Mbits/sec. These values are typical of modern
light-weight messaging layers running on top of gigabit switched LANs [17].

4.2 Validation

A batch strategy is used to compute confidence intervals (at least 30 batch runs
were used for the results reported in this paper).

4.3 Results and Discussion

Figures 3 shows the mean response time of the jobs for the three scheduling
policies. In the experiments, we assumed that the probability of network failure
is zero and the case in which network failure is an issue will be addressed in
the extended version of the paper. Also, every 3000 seconds, a non-idle node is
randomly selected in each site and made to fail for 6 seconds.

From the data on the graph, we observe that at low system load, FTSA and
DFTS are marginally better than AHS policy. This is because of the fact that
at this load level, there are many idle processors. This means both FTSA and
DFTS can schedule a job on several clusters and at least one of the replicas
could finish without being interrupted by a node failure. However, as the load
increases, performance of FTSA deteriorates in all three environments while
DFTS performs marginally worse (about 4%) than the AHS policy in most
instances. This can be explained by the fact that as load increases the number
of idle processors decreases. As a result, finding n idle clusters for FTSA to

172 J.H. Abawajy

 0

 10

 20

 30

 40

 50

 60

 70

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
Re

sp
on

se
 T

im
e

Average Utilization

W1-Heterogeneous-Dedicated

AHS
DFTS
FTSA

Fig. 3. Performance of the policies in dedicated heterogeneous environments

schedule jobs becomes harder. In contrast, DFTS uses demand-driven approach
as in AHS and multiple replicas of a job are only scheduled when there are
ample free processors. For the workload type we studied, it seems that the DFTS
approach is better than the active replication approach used in FTSA.

5 Conclusion and Future Directions

In this paper, we presented a scalable framework that loosely couples the dy-
namic job scheduling approach with the hybrid (i.e., passive and active repli-
cations) approach to schedule jobs efficiently while at the same time providing
fault-tolerance. The main advantage of the proposed approach is that fail-soft
behaviour (i.e., graceful degradation) is achieved in a user-transparent manner.
Furthermore, being a dynamic algorithm estimations of execution or communi-
cation times are not required. An important characteristic of our algorithm is
that it makes use of some local knowledge like faulty/intact or busy/idle states
of nodes and about the execution location of jobs.

Acknowledgement. I appreciate the help of Maliha Omar without whom this
paper would not have been completed. This research is partially funded by
Deakin University.

References

1. Jemal H. Abawajy and Sivarama P. Dandamudi. Parallel job scheduling on multi-
cluster computing systems. In Proceedings of IEEE International Conference on
Cluster Computing (CLUSTER’03), pages 11–21, 2003.

2. Jemal H. Abawajy and Sivarama P. Dandamudi. A reconfigurable multi-layered
grid scheduling infrastructure. In Hamid R. Arabnia and Youngsong Mun, editors,
Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications, PDPTA ’03, June 23 - 26, 2003, Las Vegas, Nevada,
USA, Volume 1, pages 138–144. CSREA Press, 2003.

3. Jemal H. Abawajy and Sivarama P. Dandamudi. Fault-tolerant grid resource man-
agement infrastructure. Journal of Neural, Parallel and Scientific Computations,
12:208–220, 2004.

Fault-Tolerant Dynamic Job Scheduling Policy 173

4. J.H. Abawajy. Fault detection service architecture for grid computing systems. In
Lecture Notes in Computer Science, volume 3044/2004, pages 107 – 115. Springer-
Verlg, 2004.

5. Ian Foster. The grid: A new infrastructure for 21st century science. Physics Today,
55(2):42–47, 2002.

6. Jrn Gehring and Achim Streit. Robust resource management for metacomput-
ers. In HPDC ’00: Proceedings of the Ninth IEEE International Symposium on
High Performance Distributed Computing (HPDC’00), page 105. IEEE Computer
Society, 2000.

7. Soonwook Hwang and Carl Kesselman. Gridworkflow: A flexible failure handling
framework for the grid. In 12th International Symposium on High-Performance
Distributed Computing (HPDC-12 2003), 22-24 June 2003, Seattle, WA, USA,
pages 126–137. IEEE Computer Society, 2003.

8. I. Foster and C. Kesselman. Globus: A Toolkit-Based Grid Architecture. In The
Grid: Blueprint for a Future Computing Infrastructure, pages 259–278. MORGAN-
KAUFMANN, 1998.

9. Leon Juan, Fisher Allan L., and Steenkiste Peter. Fail-safe PVM: A Portable
Package for Distributed Programming with Transparent Recovery. Technical re-
port, CMU, Department of Computer Science, Feb 1993.

10. James S. Plank and Wael R. Elwasif. Experimental assessment of workstation
failures and their impact on checkpointing systems. In Symposium on FTC’98,
pages 48–57, 1998.

11. James S. Plank and Michael G. Thomason. Processor allocation and checkpoint
interval selection in cluster computing systems. Journal of Parallel and Distributed
Computing, 61(11):1570–1590, 2001.

12. Anuraag S., Alok S., and Avinash S. A scheduling model for grid computing
systems. In Proceedings of Grid’01, pages 111–123. IEEE Computer Society, 2001.

13. Fred B. Schneider. Byzantine generals in action: Implementing failstop processors.
ACM Transactions on Computer Systems, 2(2):145–154, 1984.

14. P. Stelling, I. Foster, C. Kesselman, and G. von Laszewski. C.Lee. A fault detection
service for wide area distributed computations. In Proc. 7th Symposium on High
Performance Computing, pages 268–278, 1998.

15. Brian Tierney, Brian Crowley, Dan Gunter, Mason Holding, Jason Lee, and Mary
Thompson. A monitoring sensor management system for grid environments. In
HPDC, pages 97–104, 2000.

16. Namyoon W., Soonho C., Hyungsoo J., and Park Y. & Park H. Jungwhan M., Heon
Y. Y. Mpich-gf: Providing fault tolerance on grid environments. In Proceedings
of 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid,
2003.

17. H. Wabnig and G. Haring. Perfromance Prediction of Parallel Systems with Scal-
able Specifications-Methedology and case Study. Performance Evaluation Review,
22(2-4):46–62, 1995.

18. J. B. Weissman. Fault-tolerant wide area parallel computation. In Proceedings of
IDDPS’2000 Workshops, pages 1214–1225, 2000.

19. Jon B. Weissman. Fault tolerant computing on the grid: What are my options? In
HPDC ’99: Proceedings of the The Eighth IEEE International Symposium on High
Performance Distributed Computing, page 26. IEEE Computer Society, 1999.

20. Ming Q. Xu. Effective metacomputing using LSF multicluster. In CCGRID ’01:
Proceedings of the 1st International Symposium on Cluster Computing and the
Grid, pages 100 – 106. IEEE Computer Society, 2001.

An Efficient Dynamic Load-Balancing Algorithm
in a Large-Scale Cluster�

Bao-Yin Zhang1, Ze-Yao Mo1, Guang-Wen Yang2, and Wei-Min Zheng2

1 Institute of Applied Physics and Computational Mathematics,
Beijing, 100088, P.R. China

2 Department of Computer Science and Technology,
Tsinghua University, Beijing, 100084, P.R. China

zby@tsinghua.edu.cn

Abstract. Random stealing is a well-known dynamic load-balancing al-
gorithm. However, for a large-scale cluster, the simple random stealing
policy is no longer efficient because an idle node must randomly steal
many times to obtain a task from another node. This will not only in-
crease the idle time for all nodes but also produce a heavy network com-
munication overhead. In this paper, we propose a novel dynamic load-
balancing algorithm, Transitive Random Stealing (TRS), which can make
any idle node obtain a task from another node with much fewer steal-
ing times in a large-scale cluster. A probabilistic model is constructed to
analyze the performance of TRS, random stealing and Shis, one of load
balance policies in the EARTH system. Finally, by the random baseline
technique, an experiment designed to compare TRS with Shis and ran-
dom stealing for five different load distributions in the Tsinghua EastSun
cluster convinces us that TRS is a highly efficient dynamic load-balancing
algorithm in a large-scale cluster.

Keywords: Dynamic load balancing, large-scale cluster, transitive ran-
dom stealing, probabilistic model.

1 Introduction

Large-scale clusters are playing an important role in the supercomputing field.
The scale of the clusters is becoming more and more large, which is up to hun-
dreds of or thousands of nodes. In order to achieve scalable performance, it is
important to evenly distribute the workload among the processing nodes. Two
basic approaches [5] to dynamically schedule task loads can be found in current
literature - random stealing and work sharing.

Random Stealing (RS) attempts to steal a task from a randomly selected
node when a node finds its own task queue empty, repeating steal attempts until
it succeeds. Random stealing is provably efficient in terms of time, space, and
communication for the class of fully strict computations [3,11], and the natural
� This work is supported by Chinese NSF for DYS granted by No. 60425205 and

National Postdoctor Science Foundation of China.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 174–183, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Efficient Dynamic Load-Balancing Algorithm 175

random stealing algorithm is stable [1]. Communication is only initiated when
nodes are idle. When the system load is high, no communication is needed,
causing the system behave well under high loads.

Previous works [2,7] have shown that simple random stealing policy can bal-
ance load efficiently for a fine-grain multithreaded execution model in a parallel
computer or in a small-scale cluster with high speed networks. Cilk [2] provides
an efficient C-based runtime system for multithreaded parallel programming
with a random stealing scheduler on the Connection Machine CM5 MPP, the
Intel Paragon MPP, the Sun Sparcstation SMP, and the Cilk-NOW network of
workstations. The EARTH runtime system [7] supports several dynamic load
balancer policies, whose goal is to design simple balancers that deliver good load
distribution with minimum overheads for a fine-grain multithreaded execution
model on the high-performance distributed memory machine MANTA [6].

Satin [8,9] presents a system for running divide-and-conquer programs on
wide-area systems with an efficient load balancing algorithm, Cluster-aware Ran-
dom Stealing (CRS). CRS mainly focuses on the performance optimization for
wide-area networks with high latency and low bandwidth, yet simple random
stealing policy is still used in single cluster systems.

In this paper, we focus on the dynamic load balancing policies in a large-scale
cluster. For simple random stealing policy, there exists a problem that an idle node
must randomly steal many times to obtain a task from another node. To solve
this problem, some policies have been developed. Shis, one of load balance poli-
cies based on RS in the EARTH system [4] slightly modifies random stealing by
remembering the originating node (history information) from which a task was
last received, and sending requests directly to that node (the short-cut path). The
authors of the paper [10], present two relatively complicated adaptive location poli-
cies which record more history information for global scheduling algorithms.

Here we propose a dynamic load-balancing algorithm, Transitive Random
Stealing (TRS), which further improves Shis with a transitive policy. With its
transitive policy, TRS can make any idle node obtain a task from another node
with much fewer stealing times in a large-scale cluster, so as to reduce the idle
time for all nodes and the network communication overhead, and to improve the
scalable performance of the system.

In the rest of this paper, we present the transitive random stealing algorithm
in the next section. Section 3 constructs a probabilistic model to analyze the
performance of TRS, Shis and RS. We evaluate the performance of TRS, Shis
and RS by the random baseline technique in the Tsinghua EastSun cluster in
Section 4 . Finally, Section 5 concludes our works.

2 Transitive Random Stealing Algorithm

Our design philosophy for dynamic load balancing algorithms is to reduce the
idle time for all nodes, rather than balancing work loads equally on all nodes. A
node is said to be in the idle state when it has no tasks to execute. Distributing
the workload during application execution is achieved by sending the tokens to

176 B.-Y. Zhang et al.

the schedulers on the other nodes. A token contains all the necessary information
to create a new task. A Task is a piece of code which is to be executed, possibly
in parallel with other tasks. Tokens are stored in the task queue on each node.

Here we present our dynamic load-balancing algorithm, Transitive Random
Stealing (TRS), which not only remembers the originating node (history infor-
mation) from which a task was last received and sends requests directly to that
node (the short-cut path), but also forwards this history information to other
nodes which want to steal a task from it (the transitive policy).

Pseudo code for the algorithm is illustrated in Figure 1. (The transId is a
variable which remembers the history information, the nodeId of another node.
Every node has a local task queue which stores the tokens.)

/* The main-loop function for TRS: */
void transitive random stealing(){
While(NOT exiting){

if(idle of node){
if(local task queue has tokens){

get a token to execute;
}else{

if(transId is blank){
select a node from other nodes uniformly at random,
and request for a token from it;

}else{
request for a token from the node whose nodeId is transId;

}
wait to receive an replying message;
update its transId with the transId in the replying message;
if(the replying message includes a token){
execute the token;

}
}

}else{
wait for some task running over;

}
}

}
/* The function for handling the request: */
Message handle_request(){
if(local task queue has tokens){

return a message with its own nodeId as transId and a token
from its local task queue;

}else{
return a message with its transId and no tokens;

}
}

Fig. 1. Pseudo code of the transitive random stealing algorithm

An Efficient Dynamic Load-Balancing Algorithm 177

In TRS, a simple request-reply-update protocol is implemented between the
thief and the victim. Whenever an idle node has no tokens in its local task
queue, it becomes a thief. The thief selects a victim by its history information or
randomly selects a victim if no history information available (transId is blank),
then it requests for a token from this victim. If the local task queue of the
victim has tokens, the victim replies a message which contains a token from its
local task queue and its own nodeId as transId. Otherwise, the victim replies
a message which only contains its transId (if no history information, a blank
transId is included). When the replying message arrives, the thief updates its
transId with the new one (a blank transId is permitted) in the replying message
and execute the token if a token is included in the replying message.

The transitive policy is simple and TRS can be easily implemented. But with
this simple transitive policy, TRS can make any idle node obtain a task from
another node with fewer stealing times in a large-scale cluster. As a result, this
will greatly reduce the idle time for all nodes and the network communication
overhead, and improve the scalable performance of the system. At the same
time, TRS inherits the advantages of simple random stealing policy: communi-
cation is only initiated when nodes are idle. When the system load is high, no
communication is needed, causing the system behave well under high loads.

As we can see, a few more bytes (transId) is sent in the replying message
for TRS than Shis and RS. But the time and bandwidth of the communication
are very similar for those messages with little different sizes. In a sense, the
key factor which influences the network communication overhead is the times of
sending messages.

Note. In some very special conditions, there may be a loop transition of the
transId. In order to avoid this case, the implementation of the algorithm can
limit the times of transition of the transId. In fact, in the later experiments, we
empirically limit the times of transition of transId by max{[log2n−3], 1}, where
n is the number of the nodes in the cluster.

3 Probabilistic Model for System States

In this section, we construct a probabilistic model for system states to analyze
the performance of TRS, Shis and RS.

The probabilistic model.

1. There are N + 1 nodes which are connected by some network topology and
can exchange messages with each other.

2. Assume that there are m nodes with nodeId 1, 2, . . . , m which are busy and
their task queues have enough tokens. Other nodes with nodeId m + 1, m +
2, . . . , N + 1 are idle and no tokens in their task queues.

3. Assume that all the nodes have no history information in the initial state
and no new tasks are spawned dynamically in the whole process.

178 B.-Y. Zhang et al.

4. Assume that once one node becomes busy, it will not become idle in the
whole process.

5. The evolution of the system can be described by a probabilistic chain X ,
the chain state Xt after step t is a tuple (Xt(1), Xt(2), . . . , Xt(N + 1)) in
which Xt(i) represents the probability that the i’th node is busy after step
t. Initially, only m node is busy and other nodes are idle, so the start state
X0 is (1, . . . , 1︸ ︷︷ ︸

m

0, . . . , 0︸ ︷︷ ︸
N−m+1

).

From the assumption 3 and 4, one idle node only needs to steal one task to
become busy in the whole process. The history information, preserved by Shis
when the node becomes busy, will not be used again, hence Shis is identical to
RS for this probabilistic model.

In the following, we give the transition from the state Xt to the state Xt+1
for TRS and Shis, then compare their performance.

Transition from the state Xt to the state Xt+1 for Shis: Each idle node
chooses a requested destination uniformly at random from other N nodes (From
the assumption above, we know that each idle node has an empty task queue
and no initial history information). Every node that receives a request replies a
message of no tasks except that one of the nodes with nodeId 1, 2, . . . , m replies
a token from its task queue. Every node that receives a token from one of the
nodes with nodeId 1, 2, . . . , m becomes busy.

Formally, since the node with nodeId m+1, m+2, . . . , N +1 is symmetric, all
Xt(i) are equal for m + 1, m + 2, . . . , N + 1. The probability that an idle node can
choose one of the nodes with nodeId 1, 2, . . . , m and becomes busy is m/N , so

Xt+1(i) = Xt(i) + (1 − Xt(i)) · m

N
(1)

for i = m + 1, m + 2, . . . , N + 1.
Transition from the state Xt to the state Xt+1 for TRS: Each idle node

chooses a requested destination uniformly at random from other N nodes (From
the assumption above, each idle node has an empty task queue and no initial
history information). Every node that receives a request replies its transId except
that the nodes with nodeId 1, 2, . . . , m reply a token from its task queue and its
own nodeId as transId. Every node that receives a token from one of the nodes
with nodeId 1, 2, . . . , m becomes busy and records the transId. At the same time,
every node, that receives a message only including a non-blank transId, requests
for a token from the node with nodeId (non-blank transId), then becomes busy
and records the transId (from the assumption above, the non-blank transId must
be one of 1, 2, . . . , m).

Formally, as the same above, since the node with nodeId m+1, m+2, . . . , N+
1 is symmetric, all Xt(i) are equal for m + 1, m + 2, . . . , N + 1. The probability
that an idle node can choose one of the nodes with nodeId 1, 2, . . . , m is m/N ,
the probability that an idle node can obtain a non-blank transId from other
nodes except the nodes with nodeId 1, 2, . . . , m is

N − m

N
· Xt(i).

An Efficient Dynamic Load-Balancing Algorithm 179

Thus

Xt+1(i) = Xt(i) + (1 − Xt(i))
(

m

N
+

N − m

N
· Xt(i)

)
(2)

for i = m + 1, m + 2, . . . , N + 1.
We reform the formulas (1) and (2) to the following form

Xt+1(i) =
(N − m)Xt(i) + m

N
for Shis and RS,

Xt+1(i) =
(2 − Xt(i))(N − m)Xt(i) + m

N
for TRS,

for i = m + 1, m + 2, . . . , N + 1.
Comparing the two recurrence formulas for Xt(i) of Shis and TRS, we easily

find that the probability that an idle node becomes busy increases more rapidly
by ascending step t for TRS than Shis, because there is an extra factor (2−Xt(i))
in the numerator for TRS.

In the following, we compute two examples by the two recurrence formulas
to compare the performance of TRS, Shis and RS.

For N = 128, m = 4, we compute the probability according to the two
recurrence formulas, and have for i = m + 1, m + 2, . . . , N + 1

Step t 1 2 3 4
Shis Xt(i) 0.031 0.062 0.091 0.119
TRS Xt(i) 0.031 0.091 0.199 0.379

Step t 5 6 7 8
Shis Xt(i) 0.147 0.173 0.199 0.224
TRS Xt(i) 0.626 0.865 0.982 0.999

For N = 256, m = 4, we compute the probability according to the two
recurrence relations, and have for i = m + 1, m + 2, . . . , N + 1

Step t 1 2 3 4
Shis Xt(i) 0.016 0.031 0.046 0.061
TRS Xt(i) 0.016 0.046 0.104 0.210

Step t 5 6 7 8
Shis Xt(i) 0.076 0.090 0.104 0.118
TRS Xt(i) 0.386 0.629 0.865 0.982

As we can see, the probabilities that an idle node obtains a task from another
node rapidly increase for TRS by ascending step t. This means that TRS can
make an idle node obtain a task from another node with much fewer stealing
times than Shis and RS. At the same time, comparing the cases between N = 128
and N = 256, it shows that the larger the scale of the cluster is, the more efficient
TRS is than Shis and RS.

180 B.-Y. Zhang et al.

4 Performance Evaluation Based on Random Baseline
Technique

In this section, using the random baseline technique, we experimentally com-
pare TRS with Shis and RS for five different load distributions in the Tsinghua
EastSun cluster which has 32 nodes (4×Xeon III 700s, Fast Ethernet, Redhat
8.1). Here we implement each of the three algorithm in an MPI application in
which a process simulates a node. The processes implement two threads except
the process with rank 0, one thread for dealing the main loop, the other for han-
dling the request. The process with rank 0, by the random baseline technique,
implements a task generator which distributes the same load distributions to the
other processes for the three algorithms respectively.

In order to stress to test the performance of these algorithms on different load
distributions, we make use of the task generator randomly generating five dif-
ferent load distributions instead of scheduling some real parallel programs. The
task generator generates three types of load distributions uniformly distributed
on all nodes, half of all nodes and 1/8 of all nodes, two types of binomial dis-
tributions, Bi(n, 1/3) and Bi(n, 1/8), where n is the number of the nodes. From
the knowledge of Statistics, the binomial distribution Bi(n, p) approaches the
Poisson distribution, when the number n is large and the probability p is small.
All of the five types of load distributions distribute 5n tasks to the nodes of 10
times in the runtime. We assume that every task has the same executing time.

We compare the performance of the three algorithms by counting the total
times of stealing from other nodes for each algorithm (the total times includes the
times of stealing nothing from other nodes). The experiments are implemented
in the Jcluster environment [12], a high performance Java parallel environment
which provides the MPI-like message passing interface. Figure 2,3,4,5,6 illustrate
the results for the five type of load distributions.

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

1

2

3

4

5

6

7
x 10

4

No. of Nodes

T
ot

al
 ti

m
es

 o
f s

te
al

in
g

Uniformly Distributed on all nodes

 RS
Shis
TRS

Fig. 2. Task load uniformly distributed on all nodes

An Efficient Dynamic Load-Balancing Algorithm 181

For the task load distribution uniformly distributed on all nodes, the difference
of the performance for the three algorithms is not so distinct in the small-scale clus-
ter. However, along with the increase of the size of the nodes, TRS behaves a good
performance. For the other four task load distributions, several ten thousands of or
several hundred thousands of stealing times are economized for TRS than Shis and
RS in the large-scale clusters. This greatly reduces the idle time for all nodes and
the network communication overhead, so as to improve the scalable performance
of the system. These experimental results convince us that TRS is a highly efficient
dynamic load balancing algorithm in a large-scale cluster.

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

2

4

6

8

10

12

14
x 10

4

No. of Nodes

T
ot

al
 ti

m
es

 o
f s

te
al

in
g

Uniformly Distributed on half of all nodes

 RS
Shis
TRS

Fig. 3. Task load uniformly distributed on half of all nodes

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

1

2

3

4

5

6

7

8
x 10

5

No. of Nodes

T
ot

al
 ti

m
es

 o
f s

te
al

in
g

Uniformly Distributed on 1/8 of all nodes

 RS
Shis
TRS

Fig. 4. Task load uniformly distributed on 1/8 of all nodes

182 B.-Y. Zhang et al.

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

No. of Nodes

T
ot

al
 ti

m
es

 o
f s

te
al

in
g

Distributed on Bi(n,1/3)

 RS
Shis
TRS

Fig. 5. Task load distributed on Bi(n, 1/3)

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

0.5

1

1.5

2

2.5

3
x 10

5

No. of Nodes

T
ot

al
 ti

m
es

 o
f s

te
al

in
g

Distributed on Bi(n,1/8)

 RS
Shis
TRS

Fig. 6. Task load distributed on Bi(n, 1/8)

5 Conclusions

In this paper, we propose the Transitive Random Stealing algorithm (TRS)
which provides an efficient dynamic load balancing policy, the transitive policy.
With this policy, TRS can make any idle node obtain a task from another node
with much fewer stealing times in a large-scale cluster. Consequently, this will
greatly reduce the idle time for all nodes and the network communication over-
head, so as to improve the scalable performance of the system. Both analytical
and experimental results convince us that TRS is a highly efficient dynamic load
balancing algorithm in a large-scale cluster.

An Efficient Dynamic Load-Balancing Algorithm 183

References

1. P. Berenbrink, T. Friedetzky, L.A. Goldberg, “The Natural Work-Stealing Algo-
rithm is Stable”, SIAM Journal on Computing, Vol. 32(5), 2003, pp. 1260-1279.

2. R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, and Y.
Zhou, “Cilk: An efficient multithreaded runtime system”, Proceedings of the 5th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP’95, Santa Barbara, California, July 1995, pp. 207-216.

3. R.D. Blumofe, and C.E. Leiserson, “Scheduling Multithreaded Computations by
Work Stealing”, Proceedings of the 35th Annual IEEE conference on Foundations
of Computer Science (FOCS’94), Santa Fe, New Mexico, November 20-22, 1994.

4. H. Cai, Olivier Maquelin, Prasad Kakulavarapu, and G.R. Gao, “Design and Eval-
uation of Dynamic Load Balancing Schemes under a Fine-grain Multithreaded
Execution Model”, Proceedings of the Multithreaded Execution Architecture and
Compilation Workshop, Orlando, Florida, January 1999. Delaware, May 1999.

5. Eager, D.L., Lazowska, E.D., and Zahorjan, J., “A Comparison of Receiver-
Initiated and Sender-Initiated Adaptive Load Sharing”, Performance Evaluation,
Vol. 6, 1986, pp. 53-68.

6. W.K. Giloi, U. Bruning, and W. Schroderpreikschat, “MANTA: Prototype of a
distributed memory architecture with maximized sustained performance”, Pro-
ceedings of Eurornicm PDP96 Workshop, 1996.

7. Herbert H.J. Hum, Olivier Maquelin, Kevin B. Theobald, Xinmin Tian, Xinan
Tang, Guang R. Gao, Phil Cupryk, Nasser Elmasri, Lau-rie J. Hendren, Al-
berto Jimenez, Shoba Krishnan, Andres Marquez, Shamir Merali, Shashank S.
Nemawarkar, Prakash Panangaden, Xun Xue, and Yingchun Zhu. “A design study
of the EARTH multiprocessor”, Proceedings of the IFIP WG 10.3 Working Confer-
ence on Parallel Architectures and Compilation Techniques, PACT ’95 (Lubomir
Bic, Wim Bohm, Paraskevas Evripidou, and Jean-Luc Gaudiot, eds.), Limassol,
Cyprus, ACM Press, June 27-29, 1995, pp. 59-68.

8. Rob V. van Nieuwpoort, T. Kielmann, and Henri E. Bal, “Satin: Efficient Parallel
Divide and Conquer in Java”, Proceedings of Euro-Par 2000, Munich, Germany,
August 29-September 1, 2000, pp. 690-699.

9. Rob V. van Nieuwpoort, Thilo Kielmann, and Henri E. Bal, “Efficient Load Bal-
ancing for Wide-area Divide-and-Conquer Applications”, Proceedings of Eighth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’01), Snowbird, UT, June 18-19, 2001.

10. N.G. Shivaratri, and P. Krueger, “Two Adaptive Location Policies for Global
Scheduling Algorithms”, IEEE International Conference on Distributed Comput-
ing Systems (ICDCS), 1990.

11. I.C. Wu, and H. Kung, “Communication Complexity for Parallel Divide and Con-
quer”, 32nd Annual Symposium on Foundations of Computer Science (FOCS’91),
San Juan, Puerto Rico, Oct. 1991, pp. 151-162.

12. B.Y. Zhang, “A Java paralle environment”, available at
http://vip.6to23.com/jcluster/

Job Scheduling Policy for High Throughput
Grid Computing

J.H. Abawajy

School of Information Technology,
Deakin University, Geelong, VIC, 3217, Australia

Abstract. The growing computational power requirements of grand
challenge applications has promoted the need for merging high through-
put computing and grid computing principles to harness computational
resources distributed across multiple organisations. This paper identifies
the issues in resource management and scheduling in the emerging high
throughput grid computing context. We also survey and study the perfor-
mance of several space-sharing and time-sharing opportunistic scheduling
policies that have been developed for high throughput computing.

Keywords: Grid computing, high throughput computing, resource man-
agement, job scheduling, opportunistic scheduling.

1 Introduction

Grid computing [6] is emerging as a new paradigm for Internet-based parallel and
distributed computing. Until recently, the focus of high throughput computing
(HTC) [11] have been to provide convenient access to a pool of remote machines
within a single administrative domain for execution of batch jobs while fully
preserving the rights of their owners [3].

However, the demand for more computing resources coupled with advances
in Grid middleware technologies have mandated the marriage of HTC and grid
technologies resulting in High Throughput Grid Computing (HTGC). Condor-
G [7] and Nimrod/G [5] are examples of resource management and scheduling
systems built using the Globus toolkit services [10]. The result is very beneficial
for the end user, who is now enabled to utilize large collections of resources that
span across multiple domains as if they all belonged to the personal domain of
the user [12].

The focus of this paper is on the job management and scheduling problem
for high throughput grid computing platforms. The motivation for this work is
that the distributed systems that solve large-scale problems will always involve
aggregating and scheduling many resources. Also, the number of jobs to be exe-
cuted in high throughput grid computing nearly always outnumbers the available
resources [12]. A wide variety of scheduling approaches for grid computing are
currently available [2]. As the main goal of grid scheduling is to find an optimal
or near optimal schedule to allocate jobs to computational resources for execu-
tion to achieve a high performance, they are not suitable for high throughput
platforms, which we are interested in.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 184–192, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Job Scheduling Policy for High Throughput Grid Computing 185

Therefore, an effective and efficient resource management and job scheduling
mechanisms that decide how to allocate resources to jobs in a fair manner is
a key requirement for the success of high throughput grid computing. In this
paper, we survey several space-sharing and time-sharing opportunistic schedul-
ing policies that have been developed for high throughput computing. Using
simulation, we study the performance of these policies. Our results demonstrate
that timesharing scheduling policies can be used in an opportunistic setting to
improve both mean job slowdowns and mean response times with little or no
throughput reduction.

The remainder of this paper is organized as follows. In Section 3, we present
the system model used in this paper. The scheduling problem and related works
are discussed in Section 3. A detailed description of five opportunistic schedul-
ing policies are discussed in Section 4. The performance evaluation models are
discussed in detail in Section 5. The simulation results and performance compar-
isons of the five scheduling policies is presented in Section 6. concluding remarks
and future directions are discussed in Sections 7.

2 High Throughput Grid Computing

Figure 1 shows the high throughput grid computing architecture used in this
paper. The core of the system includes a set of independent distributed storage
and computing resources, job and resource management services, a broker, a grid
middleware infrastructure, local resource management and scheduling. These
services collectively allow users to execute large-scale applications over many
resources in the grid.

The system has N independent and autonomously administered sites (i.e,
Site1, Site2,..., SiteN). Each site, Sitei, has one or more clusters. Each cluster is
composed of high performance commodity hardware, software, and networking
designed to provide the most economic computing power for a large number
of users at a single site. Access to the resources is abstracted via a common
interface. Different individuals or organizations own each one of them and they
have their own access policy, cost, and mechanism. An example of common usage
policy states that external jobs are only run in a cluster or workstation when
resources are not in use by the local users [4].

The resource owners manage and control resources using their favorite re-
source management and scheduling system such as PBS [9], Condor [4] and
LSF [13]. These systems are collectively referred to as local resource manage-
ment and scheduling in Figure 1. These software are completely under the control
of the local site administrators. The resources, depending upon a site policy and
capabilities, can be run and configured to operate in a variety of different ways.

The information management service keeps track of resource specific informa-
tion such as machine availability. It also perform resource status detecting and
recruiting. It can also interact with the Grid Information Service (GIS) to receive
resource specific information (such as hardware and software capabilities).

186 J.H. Abawajy

Condor

G
rid

 In
fr

as
tr

uc
tu

re

Jo
b

M
an

ag
em

en
t

Se
rv

ic
e

Grid Middleware Infrastructures

Resource
Status

job101

Queue

Information
Management Service

Scheduling
Service

Brokering
Service

PBS LSF

Site 1 Site 2 Site N

R
es

ou
rc

es
 &

Se
rv

ic
es

R
M

S

Fig. 1. High throughput grid computing architecture

The job management service (JMS) provides services such as accepting job
submissions from users, registers them to the job wait queue, forwarding jobs
to resources, monitoring of jobs and prioritizing jobs in queues using a range of
techniques. Users interact with the system via the client components. The user
generates a request and submits it to the job management service, which in turn
invokes the scheduling broker service.

The main task of the broker service is to to find a suitable allocation of resources
to the applications by utilizing information from job parameters, resource status,
file locations, and system state. Once an application schedule has been chosen, the
job scheduling service map it onto the selected resource configuration.

The broker also interacts with grid middleware infrastructures that sit between
the users environment and the actual resources. The purpose of the grid middle-
ware infrastructures is to expand the reach of a user to any sort of batch system
such as Condor [4] and LSF [13]. The aim is to achieve the same objectives as ex-
isting grid computing (e.g., [10]), which is to present users and developers with a
simple, uniform, interface to distributed, heterogeneous computing resources.

3 Scheduling Problem

The scheduling problem can be formulated as follows:
Given: A set J = {j1, j2, ..., jm} of applications in ready queue and a set R =
{r1, r2, ..., rn} of available grid resources.

Job Scheduling Policy for High Throughput Grid Computing 187

Objectives: The goal of the scheduler is to construct a mapping from elements
of J onto elements of R with the goal of optimizing throughput.

The scheduling problem is well known to be intractable and heuristics are
commonly used to find a scheduling algorithm that is guided by an objective
function that it tries to optimize. Regardless, the solution for the scheduling
problem in high throughput grid computing must encompasses the following
phases:

1. Brokering - this enables the selection of appropriate resources to each re-
quests.

2. Selection - as high throughput computing allows each user to submit many
jobs at the same time, the scheduler must ensure that each user receives a
fair allocation of service. Therefore, a good selection algorithm is required
to implement a fair allocation of service among the users.

3. Placement - the placement decision is based upon a policy governing the
usage of the resources. In high throughput computing, the owners of the
resources will rightfully retain ultimate control over their own machines.
In addition, the owners may change scheduling policies according to local
decisions. For this reason, an opportunistic placement of batch jobs on idle
machines for execution is used.

4. Rescheduling - high throughput grid computing resources are shared and
their availability and load varies from time to time. Based on the usage
policy, an executing job can be suspended and must be re-assigned to the
next available resource.

In the rest of thepaper,we focus on the jobplacement componentof the schedul-
ing problem. Although HTC is quite an active area of research and opportunistic
scheduling policies are in common use in real installations, very little work address-
ing opportunistic scheduling of batch jobs exist other than ensuring that eachbatch
user receives a fair allocation of service. Recently, a number of opportunistic batch
job scheduling approaches have beenproposed [8] [3] [1]. The following section gives
details of five opportunistic batch job placement approaches.

4 Opportunistic Job Scheduling Policies

Opportunistic scheduling policies for high thrughput computing can be generally
divded into space-sharing and time-sharing approaches. In time-sharing policies,
processors are temporally shared by jobs. In space-sharing policies, however,
processors are exclusively allocated to a single job until its completion. In this
section, we review some of the existing opportunistic policies.

4.1 Space Sharing Policies

First Come First Served Scheduling Policy. - The FCFS policy is the
most commonly used opportunistic scheduling policy in HTC environments (e.g.,
Condor [4]). In the FCFS scheduling policy, all new jobs are added to the job

188 J.H. Abawajy

wait queue in the order of their arrival. At scheduling point, a job at the head of
the queue is assigned to the idle processors where it executes until completion
or until it is evicted by the arrival of the workstation owner process. When a job
is evicted from the workstation, it is checkpointed and placed at the head of the
job wait queue where it waits for re-scheduling.

FCFS is very easy to implement and incurs very little scheduling overheads.
Moreover, allocating resource to jobs in the order that the jobs arrive is fair and
predictable, but suffers from severe performance degradation, as large jobs may
block the execution of the small jobs.

Job Rotate Scheduling Policy. - The job rotate (JR) scheduling policy [8] is
essentially the same as as the FCFS policy described above with the exception
that when an executing job is evicted, it is placed at the end of the job wait
queue. The JR algorithm offers low overhead like FCFS and has shown to be
better able to serve short jobs in preference to long jobs regardless of arrival
order [8]. It is also easy to implement given existing opportunistic scheduling
mechanisms. The problem with this policy is that its based on the frequency of
the workstation owner activity. Note that in the absence of eviction, this policy
reduces to the FCFS policy.

Multilevel Opportunistic Feedback Policy. - In the Multilevel Opportunis-
tic Feedback (MQF) [1] policy, jobs that have arrived to the system for execution
are classified into new jobs and evicted jobs where new and evicted mean that
the new job has not received any service since arrival while evicted refers to the
fact that the job has received services already. To represent these two classes of
jobs, MQF keeps two queues one for holding new jobs that has arrived to the
system but not yet scheduled and another queue for holding evicted jobs. We
refer to these queues as New and Evicted respectively.

The New queue entries are sorted in the order of the arrival while entries in the
Evicted queue are sortedbased on the size of the CPUconsumption of the jobs from
the arrival point in descending order. The job at the head of the Eviction queue is
with the smallest CPU consumption while the job at the tail of the queue is with
the largest CPU consumption. Scheduling is done such that the job at the head of
the New queue is always scheduled first and only if the New is empty then the job
at the head of the Evicted queue is assigned to the workstations.

4.2 Time Sharing Policies

Global Round Robin Scheduling Policy. - The Global Round Robin [8]
policy uses a central global batch queue, hence the name global round robin,
where ready batch jobs are held and scheduling is done round robin on this
queue. All new jobs are added to the job wait queue in the order of their arrival.
There is a fixed quantum length per job and at each scheduling point the job at
the head of the global queue is assigned to an idle workstation where it executes
for one-time quanta. When a job completes its quantum of service on a processor,
the job is preempted and placed at the tail of the global queue. Then the job

Job Scheduling Policy for High Throughput Grid Computing 189

at the head of the global queue is scheduled. This process is repeated until all
the jobs in the global queue complete execution. When a job is evicted from the
workstation before completion, it is checkpointed and placed at the tail of the
job wait queue where it waits for re-scheduling.

Proportional Local Round Robin Scheduling Policy. - The Proportional
Local Round Robin policy [3] combines the best features of both JR policy [8]
and the global RR [8] policy while avoiding their shortcomings. Moreover, it can
be used in both dedicated and shared environments, as it is not dependent on
the frequency of the evictions.

The proportional local round robin policy is similar to the global RR [8]
policy in that there is a central queue for holding unscheduled jobs. Also, all
new jobs are added to the job wait queue in the order of their arrival. Similarly,
evicted jobs are added at the tail of the user’s batch queue. However, proportional
local round robin policy differs from global RR [8] policy in that the policy
associates with each processor a local ready queue, a quantum length and a
multiprogramming level (MPL). The MPL parameter controls the number of jobs
that can be actively executing in the workstation at any given time. Moreover,
jobs from the user’s batch queue are assigned to each idle workstation in groups
of equal in number to workstations multiprogramming level.

Each processor applies the RR policy only on the jobs that are in their local
queues and preempted jobs are inserted back in the processor’s local ready queue
and not to the central queue. In addition, we assign variable quantum length to the
jobs in the local ready queue based on the proportion of CPU consumption since
the arrival of the job to the system. The quantum size, , of the job j is computed as
follows:

qj =
Tmax

max(1, T j
usage

× qlocal (1)

where qlocal is the default workstation quantum size, Tmax is the maximum CPU
time used by resident batch job and is the CPU time so far consumed by job j.

Note that whenever the number of jobs in a workstation falls beyond the
multiprogramming level, the workstation can be assigned another job from the
user’s batch queue. This allows overlapping the execution and the communication
processes as such increasing the utilization of the workstation while decreasing
scheduling overheads as opposed to the global RR [8] policy.

5 Performance Analysis

We used a discrete event simulation to evaluate the performance of the five
scheduling policies. We used the same system and workload models as in [8] [3]
which fairly represents the actual activities of the high throughput system. The
workload essentially consists of a mix of small and large jobs while the com-
puting resources consist of a mixture of interactive workstations and clusters
controlled by batch schedulers (i.e., Condor). If a local job arrives while grid
job is executing, the grid job will be preempted and will be moved to another
available resource in the pool.

190 J.H. Abawajy

We used the mean slowdown time as chief metrics to compare the perfor-
mance of the scheduling policies discussed in this paper. We define the mean
slowdown time as follows:

Slow down =

∑N
j=1 SD(j)

N
(2)

wher SD(j) is the slowdown of job j and defined as the response time of a job j
(i.e., the difference between completion and submission times of the job) divided
by the service demand of job j as follows:

SD(j) =
Tfinish(j) − Tsubmit(j)

Tservice
(3)

where Tfinish(j) completion and submission times of the job, Tsubmit(j) is the
submission time of the job and Tservice is the service demand of job.

In all experiments performed in this paper, a batch strategy is used to com-
pute confidence intervals (at least 31 batches used, each batch contains 3000
jobs). At 90% confidence level, this strategy produced between 4.5% - 10.2%
confidence intervals for the five policies. For the sake of clarity, we have not
included the confidence interval information on the plots. However, wherever
possible, we verified the results in this paper with previously published results.
The next section discusses the results of the simulation.

6 Results and Discussion

In this section, we report the preliminary set of results obtained with the aim
of testing the effectiveness of the proposed scheduling strategy. Due to space
limitations, only a subset of the results is presented.

Figure 2 shows the mean slowdown (vertical axis) as the function of the batch
size (horizontal axis) for the five policies. In the figure, ”CG” refers to FCFS
policy, ”Local” refers to Proportional Local Round Robin Scheduling Policy,
”Global” refers to Global Round Robin Scheduling Policy, ”JR” to the job rotate
policy, and ”MQF” refers to the multilevel feedback policy.

From the data on the graph we observe that as the batch size increases, the
mean slowdown of all the policies also increases. Note that there is no difference
between the two policies with respect to the MRT but the slowdown under the
MOP policy is much better especially as the batch size increases. The poor
performance of the RR policy can be explained by the fact that as the batch
size increases the queue length also increases and hence the wait times for short
jobs is much greater than the other policies.

The result also demonstrates that timesharing scheduling policies can be
used in an opportunistic setting to improve both mean job slowdowns and mean
response times with little or no throughput reduction. Also we observed that
timesharing scheduling policies performs better than the exiting scheduling poli-
cies. Furthermore, this improved slowdown can be achieved without a significant
loss of throughput results in a more interactive nature of the system thus in-
creasing its appeal.

Job Scheduling Policy for High Throughput Grid Computing 191

0

50

100

150

200

250

30 40 50 60 70 80 90 100

Batch size

S
lo

w
d

o
w

n

Global MOF
JR CG
Local

Fig. 2. An Architecture of the job scheduling policy

7 Conclusion and Future Directions

The purpose of high throughput grid computing is to enable community of users
(e.g., scientific and engineering) to solve large-scale problems on a pool of shared
resources by offering high throughput computational resources [11] in a seamless
virtual organization (VO). However, high throughput grid computing is evolv-
ing and will ultimately require the support of efficient scheduling strategies.
This paper have identified the issues in resource management and scheduling
in the emerging high throughput grid computing context. It also surveyed and
studied the performance of several space-sharing and time-sharing opportunistic
scheduling policies that have been developed for high throughput computing.

Although we have looked at one facet of the scheduling problem of the high
throughput grid computing, solutions that encompasses all four aspects (i.e.,
Brokering, Selection, Placement and Rescheduling) are needed for effectively
utilizing the resources while optimizing throughput. We are currently working
to achieve this goal.

Acknowledgement. I appreciate the help of Maliha Omar without whom this
paper would not have been completed. This research is partially funded by
Deakin University.

192 J.H. Abawajy

References

1. J. H. Abawajy. An Opportunistic Job Scheduling Policy for High Throughput Com-
puting Environments. In Proceedings of the 11th IEEE International (ICPAD’02),
pages 336–343, 2002.

2. J. H. Abawajy. Survey of Grid Resource Scheduling Approaches. Technical report,
Deakin University, 2005.

3. Jemal. H. Abawajy. Preeemptive job scheduling policy for distributively-owned
workstation clusters. Parallel Processing Letters, 14(2):255–270, 2004.

4. J. Basney and M. Livny. Managing network resources in condor. In Proceedings of
the Ninth IEEE Symposium on High Performance Distributed Computing (HPDC),
pages 298–299, San Francisco, California, August 2000.

5. R. Buyya, Abramson D., and J. Giddy. Nimrod/G: An architecture for a resource
management and scheduling system in a global computational grid. In Proceedings
of the HPC ASIA2000, the 4th International Conference on High Performance
Computing in Asia-Pacific Region, San Francisco, California, 2000.

6. Ian Foster. The grid: A new infrastructure for 21st century science. Physics Today,
55(2):42–47, 2002.

7. James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steve Tuecke.
Condor-G: A computation management agent for multi-institutional grids. Cluster
Computing, 5:237–246, 2002.

8. G. D. Ghare and S. T. Leutenegger. Improving Small Job Response Time for Op-
portunistic Scheduling. In Proceedings of the 8th IEEE/ACM International Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommunications
Systems (MASCOTS’00), pages 557–564, August 2000.

9. Robert L. Henderson. Job scheduling under the portable batch system. In Job
Scheduling Strategies for Parallel Processing, pages 279–294. Springer-Verlag, 1995.

10. I. Foster and C. Kesselman. Globus: A Toolkit-Based Grid Architecture. In The
Grid: Blueprint for a Future Computing Infrastructure, pages 259–278. Morgan
Kaufmann, 1998.

11. Miron Livny and Rajesh Raman. High-throughput resource management. In Ian
Foster and Carl Kesselman, editors, The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 1998.

12. Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the grid. In
Fran Berman, Geoffrey Fox, and Tony Hey, editors, Grid Computing: Making the
Global Infrastructure a Reality. John Wiley & Sons Inc., December 2002.

13. Ming Q. Xu. Effective metacomputing using LSF multicluster. In Proceedings of
the 1st International Symposium on Cluster Computing and the Grid, pages 100 –
106. IEEE Computer Society, 2001.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 193 – 203, 2005.
© Springer-Verlag Berlin Heidelberg 2005

High Performance Task Scheduling Algorithm for
Heterogeneous Computing System

E. Ilavarasan, P. Thambidurai, and R. Mahilmannan

Department of Computer Science & Engineering and Information Technology,
Pondicherry Engineering College, Pondicherry – 605014, India

eilavarasan@yahoo.com

Abstract. A key issue in obtaining high performance from a parallel program
represented by a Directed A-cyclic Graph (DAG) is to efficiently mapping it
into the target system. The problem is generally addressed in terms of task
scheduling, where the tasks are the schedulable units of a program. The task
scheduling problems have been shown to be NP-complete in general as well as
several restricted cases. In order to be of practical use for large applications,
scheduling algorithms must guarantee high performance by minimizing the
schedule length and scheduling time. In this paper we propose a new task-
scheduling algorithm namely, High Performance task Scheduling (HPS)
algorithm for heterogeneous computing system with complexity O (v + e) (p+
log v), which provides optimal results for applications represented by DAGs.
The performance of the algorithm is illustrated by comparing the schedule
length, speedup, efficiency and the scheduling time with existing algorithms
reported in this paper. The comparison study based on both randomly generated
graphs and graphs of some real applications shows that HPS algorithm
substantially outperforms existing algorithms.

1 Introduction

Heterogeneous Computing (HC) system is a suite of distributed processors
interconnected by high-speed networks, thereby promising high speed processing of
computationally intensive applications with diverse computing needs. A well-known
strategy behind efficient execution of a huge application on HC system is to partition it
into multiple independent tasks and schedule such tasks over a set of available
processors. A task-partitioning algorithm takes care of efficiently dividing an
application into tasks of appropriate grain size and an abstract model of such a
partitioned application can be represented by a Directed A-cyclic Graph (DAG). This
paper deals with DAG structured parallel applications. Each task of a DAG corresponds
to a sequence of operations and a directed edge represents the precedence constraints
between the tasks. Each task can be executed on a processor and the directed edge
shows transfer of relevant data from one processor to another. Task scheduling can be
performed at compile-time or at run-time. When the characteristics of an application,
which includes execution times of tasks on different processors, the data size of the
communication between tasks, and the task dependencies, are known a priori, it is
represented with a static model. The objective function of this problem is to map the
tasks on the processors and order their execution so that task precedence requirements

194 E. Ilavarasan, P. Thambidurai, and R. Mahilmannan

are satisfied and a minimum overall completion time is obtained. The problem of
scheduling of tasks with required precedence relationship, in the most general case, has
been proven to be NP-complete [1] [2] and optimal solutions can be found only after an
exhaustive search. The motivation behind our work is to develop a new task-scheduling
algorithm to deliver high performance in terms of both performance metrics (schedule
length ratio, speedup, efficiency) and a cost metric (scheduling time). We have
improved the work done in [5] [6] and proposed a new task scheduling algorithm.

The rest of the paper is organized as follows: In the next section, we define the task
scheduling problems. In Section 3 we present the related works, Section 4 introduces
HPS algorithm and Section 5 provides performance analysis and discussions. Finally
Section 6 concludes the paper with some final remarks.

2 Task Scheduling Problems

A scheduling system model consists of an application, a target computing system and
criteria for scheduling. An application program is represented by a Directed Acyclic
Graph (DAG), G=(V, <, E), where V={vi, i=1…n) is the set of n tasks. < represents a
partial order on V. For any two tasks vi, vk ∈ V, the existence of the partial order vi <
vk means that vk cannot be scheduled until task vi has been completed, hence vi is a
predecessor of vk and vk is a successor of vi. The tasks executions of a given
application are assumed to be non-preemptive. E is the set of directed edges. Data is
a n x n matrix of communication data, where datai,k is the amount of data required to
be transmitted from task vi to task vk. In a given task graph, a task without any parent
is called an entry task and a task without any child is called exit task. Without loss of
generality, it is assumed that there is one entry task to the DAG and one exit task from
the DAG. In an actual implementation, we can create a pseudoentry task and
pseudoexit task with zero computation time and communication time.

Heterogeneous computing system consists of a set P = {pj : j =0,…, m-1} of m
independent different types of processors fully interconnected by a high-speed
arbitrary network. The bandwidth (data transfer rate) of the links between different
processors in a heterogeneous system may be different depending on the kind of the
network. The data transfer rate is represented by an m x m matrix, Rm x m. The data
transfer rate for each link is assumed to be 1.0 and hence communication cost and
amount of data to be transferred will be the same. W is a n x m computation cost
matrix in which each wij gives the Estimated Computation Time (ECT) to complete
task vi on processor pj where 0<=i<n and 1<=j<=m. The ECT value of a task may be
different on different processor depending on the processors computational capability.
The communication cost between two processors px and processor py, depends on the
channel initialization at both sender processor px and receiver processor py in addition
to the communication time on the channel. This is a dominant factor and can be
assumed to be independent of the source and destination processors. The channel
initialization time is assumed to be negligible. The communication cost of the
edge(i,k), which is for transferring data from task vi (scheduled on processors px) to
task vk (scheduled on processor py) is defined by

 Ci,k = data i,k / R x,y (1)

 High Performance Task Scheduling Algorithm 195

Otherwise, Ci,k = 0 when both the tasks vi and vk are scheduled on the same
processor. A task graph with 10 tasks, and its computation cost matrix given in [6] are
shown in Fig.1 and Table 1.

Fig. 1. Task graph with 10 tasks given in [6]

Table 1. Computation cost matrix
given in [6]

Task P1 P2 P3

1 14 16 9
2 13 19 18
3 11 13 19
4 13 8 17
5 12 13 10
6 13 16 9
7 7 15 11
8 5 11 14
9 18 12 20
10 21 7 16

Let ST(vi,pj) and EFT(vi,pj) are the Earliest Start Time and Earliest Finish Time of
task vi on pj, respectively. For the entry task ventry, EST(ventry, pj) = 0, and for the other
tasks in the graph, the EST and EFT values are computed recursively, starting from
the entry task, as shown in Eq. (2) and (3). In order to compute the EFT of a task vi,
all immediate predecessor tasks of vi must have been scheduled.

 EST(vi,pj) = max {avail[j], max (AFT(vt+Ct,i))} , Where v
t
∈ pred(

v

i
) (2)

 EFT(vi,,pj)=Wij+EST(vi,pj) (3)

Where pred(vi) is the set of immediate predecessor tasks of task vi and avail[j] is the
earliest time at which processor pj is ready for task execution. If vk is the last assigned
task on processor pj, then avail[j] is the time that processor pj completed the
execution of the task vk and it is ready to execute another task when we have a non
insertion-based scheduling policy. The inner max block in the EST equation returns
the ready time, i.e., the time when all the data needed by vi has arrived at processor pj.
After a task vt is scheduled on a processor pj, the earliest start time and the earliest
finish time of vt on processor pj is equal to the actual start time AST(vt) and the actual
finish time AFT(vt) of task vt, respectively. After all tasks in a graph are scheduled, the
schedule length (i.e. the overall completion time) will be the actual finish time of the
exit task vexit. Finally the schedule length is defined as

 max{ ()}exitSchedule Length AFT v= (4)

The objective function of the task-scheduling problem is to schedule the tasks of an
application to processors such that its schedule length is minimized.

 1

 7 9

 10

18 12 9 11 14

 2 4 5 6

19

23

16
27

15
23

 3

13

17 11 13

 8

196 E. Ilavarasan, P. Thambidurai, and R. Mahilmannan

3 Related Works

Efficient application scheduling is critical for achieving high performance in
heterogeneous computing system, because of its key importance on performance, the
scheduling problem has been extensively studied and various heuristics have been
proposed in the literature [3-12]. These heuristics are classified into a variety of
schemes such as priority-based [4,5,6], cluster-based [7], guided random search based
[8] and task duplication based schemes [9,10,11].

Priority-based schemes [5,6,7] assume a priority for each task that is utilized to
assign the tasks to the different processors. Priorities based scheduling algorithms,
such as Mapping Heuristics (MH) [4], Levelized Min Time (LMT) [5],
Heterogeneous Earliest Finish Time (HEFT) [6] and Critical-Path-On a Processor
(CPOP) [6] have been proposed in the literature for heterogeneous systems. The
complexity of MH, LMT, HEFT, and CPOP algorithms is O (v2 x p), O (v2 x p2), O
(v2 x p) and O (v2 x p) respectively. HEFT and CPOP algorithms are proved to be
improvement over MH and LMT algorithms in terms of average Schedule Length
Ratio (SLR), speedup, and run time. We have chosen the recently proposed
algorithms [5,6] for improvement.

4 High Performance Task Scheduling (HPS) Algorithm

In this section we present the proposed HPS algorithm. The framework of the HPS
algorithm is shown in Fig. 2. The algorithm consists of three phases, namely, level
sorting, task prioritization, and processor selection. The detailed explanation of the
HPS algorithm is given below:

In the level-sorting phase, the given DAG is traversed in a top-down fashion to sort
task at each level in order to group the tasks that are independent of each other. As a
result, tasks in the same level can be executed in parallel. Given a DAG G = (V, E),
level 0 contains entry tasks. Level i consist of all tasks vk such that, for all edges
(vj,vk), task vj is in a level less than i and there exists at least one edge(vj,vk) such that vj
is in level i-1. The last level comprises of some of exit tasks.

In the task prioritization phase of the algorithm, priority is computed and assigned
to each task. The attributes used to calculate the priority of a task are Down Link Cost
(DLC), Up Link Co st (ULC) and Link Cost (LC) of the task. The DLC of a task is the
maximum communication cost among all the immediate predecessors of the task.
The DLC for all task at level 0 is 0; for all other tasks at level l, the DLC is computed
by using Eq. (5)

DLC(vj)=Max{Ci,j}, where i=1 to x, and ’x’ is the number of immediate parents vj (5)

The ULC of a task is the maximum communication cost among all the immediate
successors of the task. The ULC for exit task is 0; for all other tasks at level l, it is
computed by using Eq. (6)

ULC(vj)=Max{Cj,k} where k=1 to x, and ’x’ is the number of immediate child’s vj (6)

 High Performance Task Scheduling Algorithm 197

 1. Read the DAG, associated attributes values, and the number of processor P;
2. For each level Li do
3. Begin
4. Initialize the priority queue with entry tasks in level (Li);
5. For all tasks vk in the queue do
6. Begin
7. LC(vk) = max {LC(vj)} + ULC(vk) + DLC(vk),
 Where vj pred(v pred(vk);
8. Update the tasks in priority queue based on LC;
9. End;
10. While there are unscheduled tasks in the queue do
11. Begin
12. Select the highest priority task, vk from the queue for scheduling;
13. For each processor pk in the processor set P do
14. Begin
15. Compute EFT (vk,pk) value using insertion based
 Scheduling policy;
16. Assign the task vk to the processor pk, which minimizes the EFT;
17. End;
18. End;
19. End

Fig. 2. HPS Algorithm

The LC of a task is the sum of DLC, ULC and maximum LC of all its immediate
predecessor tasks. The LC of a task is calculated by using Eq. (7)

()

max{ ()} () ()()
()

j

j jj

ULC v For entry task

LC v ULC v DLC v ForallothertasksLC v i
v pred vi jε

+ += (7)

Priority is assigned to all task at each level i, based on its LC value. At each level, the
task with highest LC value receives the highest priority followed by task with next
highest LC value and so on in the same level. While assigning priority if two tasks are
having same LC, priority will be given according to the order in queue. For example,
for the task graph in Fig. 1, the LC value for task 1 is 18 and for task 2, it is {max
(18)+18+19}=55. For task 8, LC value is {max (55,54,47)+27+11}= 93. Similarly LC
value is calculated for all the tasks of the graph given in Fig. 1.

In the processor selection phase, the processor, which gives minimum EFT for a
task is selected for executing that task. It has an insertion-based policy, which
considers the possible insertion of a task in an earliest idle time slot between two
already scheduled tasks on a processor. At each level, the earliest start time and
earliest finish time of each task on every processor is computed using Eq. (2) and (3).
Calculation of EST and EFT value for the task graph in Fig. 1 is illustrated below: For
example, for the task 8, EST (8, P1) = max {39, max (46,53,51)} = 53, EFT (8, P1)

198 E. Ilavarasan, P. Thambidurai, and R. Mahilmannan

 = 5+53=58, EST(8, P2) = max{39, max(46, 51, 39)}=51, EFT(8, P2) = 15+51=66,
EST(8, P3) = max{36, max(36, 53, 36)}=53 and EFT(8, P3) =14+53=67. Similarly
EST and EFT value for all task of the graph given in Fig. 1 is calculated.

The tasks are selected for execution based on their priority value. Task with highest
priority is selected and scheduled on its favorite processor for execution followed by
the next highest priority task in that level. Similarly all the tasks in all the levels are
scheduled on to the suitable processors. The processors selected for executing the
tasks of task graph in Fig. 1 is as follows: For example, task 1 is the entry task; hence
its data arrival time is 0 and P3 gives the minimum EFT for task 1. Hence processor P3

is selected for executing task 1. For task 2, the data arrival time from its predecessor
(task 1 in P3) is 9 and the EFT of this task on P1, P2 and P3 are 40, 36, and 27. Since P3
gives minimum EFT for task 2, it is selected for executing task 2. Similarly the
processor best suited to execute every task in the graph given in Fig. 1 is determined.

1

4
2

3

6
57

8

9

10

0

10

20

30

40

50

60

70

80

90

p1 p2 p3

Processor

S
ch

ed
ul

e
L

en
gt

h

1

2

4 3

6 5

8

7

9

10

0

10

20

30

40

50

60

70

80

90

p1 p2 p3
Processor

Sc
he

du
le

 L
en

gt
h

1

4 2
3

5 67
9

8

10

0

10

20

30

40

50

60

70

80

90

p1 p2 p3
Processors

Sc
he

du
le

 L
en

gt
h

 (a) CPOP Algorithm (b) HEFT Algorithm (c) HPS Algorithm

Fig. 3. The schedule length generated by CPOP, HEFT and HPS algorithms

The time complexity of HPS algorithm is equal to O (v + e) (p + log v) where v is
the number of tasks, e number of edges and p number of processors. For
implementation, we used breadth first search for level sorting which takes O (v + e)
time complexity. A binary heap was used to implement the priority queue, which has
time complexity of O (log v). Each task in the priority queue is checked with all the p
processors in order to select a processor that gives the earliest finish time. Hence the
complexity of the algorithm is O (v + e) (p+log v). As an illustration, Fig. 3 presents
the schedules obtained by the CPOP, HEFT and HPS algorithms for the sample DAG
of Fig. 1. The schedule length, which is equal to 76, is shorter than the schedule
lengths of the related work; specifically, the schedule lengths of HEFT, CPOP and
LMT Algorithms are 80, 86, and 91 respectively.

5 Performance Analyses and Discussion

In this section, we present the comparative evaluation of proposed HPS algorithm and
the existing algorithms for heterogeneous systems such as LMT, HEFT and CPOP for

 High Performance Task Scheduling Algorithm 199

DAGs with various characteristics by simulation. For this purpose, we consider two
sets of graphs as the workload for testing the algorithms: randomly generated task
graphs and the graphs that represent some of numerical real world problems.

5.1 Randomly Generated Application Graphs

A random task graph generator has been developed, which allows the user to generate
a variety of test DAGs with various characteristics that depends on several input
parameters and they are number of tasks in the graph (v), out degree (), in degree (),), in degree (),),
shape parameter of a graph () and Communication to Computation Ratio (CCR) and
Range percentage of computation cost (η). By varying value we can generate value we can generate
different shape of the task graph. The height of the graph is randomly generated from

a uniform distribution with a mean value equal to /v α and the width for each
level is randomly selected from a uniform distribution with mean value equal

to *v α . A dense graph (shorter graph with high parallelism) and a longer graph
(low parallelism) can be generated by selecting >>1.0 and >>1.0 and <<1.0 respectively.
CCR is the ratio of the average communication cost to the average computation cost.
The computation intensive applications may be modeled by assuming CCR = 0.1,
whereas data intensive applications may be modeled assuming CCR = 10.0. Range
percentage of computation costs on processors, (η). It is basically the heterogeneity
factor for processors speeds. A high percentage value causes a significant difference
in a task’s computation cost among the processors and a low percentage indicates that
the expected execution time of a task is almost equal on any given processor in the
system. The average computation cost of each task vi in the graph, i.e., Wi, is
randomly selected from a uniform distribution with range [0 , 2*Wdag], where Wdag
is the average computation cost of the given graph, which is set randomly in the
algorithm. Then, the computation cost of each task vi on each processor pj in the
system is randomly set from the following range:

 Wi*(1-η/2)<=Wi,j<=Wi*(1+η/2) (8)

 For experiments, we set the following range of values for the parameters. v =
{30,40,50,60,70,80,90,100}, = {0.5,1.0,2.0}, = {1,2,3,4,5}, = {1,2,3,4,5}, CCR= = {0.5,1.0,2.0}, = {1,2,3,4,5}, = {1,2,3,4,5}, CCR= = {1,2,3,4,5}, = {1,2,3,4,5}, CCR= = {1,2,3,4,5}, CCR=
{0.1,0.5,1.0,5.0,10.0} and η={0.1,0.5,1.0}.

5.2 Experimental Results

The experimental results are organized in two major test suites.

Test Suite 1: In this test suite, we evaluated the quality of schedules generated by the
algorithms with respect to the graph characteristics values given in section 5.1. We
have generated around 620 random task graphs with different characteristics and
scheduled these graphs on to a HC system consists of 15 processors. The average SLR
and speedup generated by each of the algorithm are plotted and are shown in Fig. 4a
and Fig. 4b. Each data point in the reported graph is the average of the data obtained
in 30 experiments. The average SLR value based ranking (starting with minimum
ending with maximum) of the algorithms is {HPS, HEFT, CPOP, and LMT} and the
Speedup value based ranking (starting with maximum and ending with minimum) of

200 E. Ilavarasan, P. Thambidurai, and R. Mahilmannan

the algorithms is {HPS, HEFT, CPOP, and LMT}. The average SLR value of the HPS
algorithm on all generated graphs is better than the HEFT algorithm by 6 percent, the
CPOP algorithm by 13 percent and the LMT algorithm by 33 percent.

The performance of the algorithm is also evaluated with respect to the graph
structure, by varying the value from 0.5, 1.0 and 2.0 and it is shown in Fig. 5a. The
simulation studies confirm that HPS algorithm substantially outperforms reported
algorithms. Further, we evaluated the efficiency of the algorithms by scheduling task
graphs consists of fixed numbers of tasks (120) on to HC system consists of varying
number of processors (4,8,12,16,20). For this experiment, we have used 100 numbers
of randomly generated task graphs. The results obtained by this experiment are shown
in Fig.5b. As expected the average SLR is reduced while increasing the number of
processors and at the same time HPS outperforms LMT, CPOP and HEFT algorithms.

0

1

2

3

4

30 50 70 90
Number of tasks

A
ve

ra
ge

 S
L

R

LMT

CPOP

HEFT

HPS

0.00

2.00

4.00

6.00

8.00

30 50 70 90

Number of Tasks

A
ve

ra
ge

 S
pe

ed
up

HPS

HEFT

CPOP

LMT

 (a) Average SLR (b) Average speedup

Fig. 4. Performance of the algorithms for random generated task graph

0.00
1.00

2.00
3.00

4.00
5.00

6.00

0.5 1 2
Shape parameter

A
ve

ra
ge

 S
L

R

HPS
HEFT
CPOP
LMT

0.00

0.50

1.00

1.50

2.00

2.50

4 8 12 16 20
Number of processors

A
ve

ra
ge

 S
L

R

HPS

HEFT

CPOP

LMT

 (a) Average SLR for varying () (b) For varying number of processors

Fig. 5. Performance of the algorithms for shape parameter and varying processors

Test Suite 2: In this test suite, we are considering application graphs of three real
world problems such as Gauss Elimination algorithm, Fast Fourier Transformation
and molecular dynamics code given in [6][12]. For the experiment of Gauss
elimination applications, heterogeneous computing systems with five processors and
CCR and ECT value given in section 5.1 are used. Since the structure of the
application is known, the parameters such as number of tasks, in degree and out

 High Performance Task Scheduling Algorithm 201

degree are not needed. A new parameter matrix size (m) is used in place on number of
tasks (v). The total number of task in a Gaussian elimination graph is equal to (m2+m-
2)/2. We evaluated the performance of the algorithms at various matrix sizes from 5
to 15 with an increment of one. The smallest size graph in this experiment has 14
tasks and the largest one has 119 tasks. The simulation results are given in Fig. 6a and
Fig. 6b for various matrix sizes shows that HPS outperforms other reported
algorithms. For FFT related experiment the graph characteristic such as CCR, ECT
value given in section 5.1 is used. Since the structure of the application is known,
other parameters such as number of tasks, in degree and out degree are not needed.
The number of data points in FFT is another parameter in our experiments, which
varies from 2 to 32 incrementing powers of 2. Fig.7a and Fig.7b presents the average
SLR values for FFT graphs at various sizes of input points.
 The combined column shows the percentage of graphs in which the algorithm on
the left gives a better, equal or worse performance than all other algorithms combined.
The ranking of the algorithms based on the occurrences of best results is HPS, HEFT,
CPOP and LMT.

0.00

1.00

2.00

3.00

4.00

5.00

5 7 9 11 13 15
Matrix size

A
ve

ra
ge

 S
L

R

HPS

HEFT

CPOP

LMT

0.00

0.20

0.40

0.60

0.80

1.00

2 4 8 16
Number of Processors

E
ff

ic
ie

nc
y

HPS

HEFT

CPOP

LMT

 (a) Average SLR (b) Efficiency

Fig. 6. Average SLR and efficiency comparison for Gaussian Elimination Graphs

0

0.5

1

1.5

2

2.5

3

3.5

2 4 8 16 32
Input po ints

HP S

HE FT

C P OP

LM T

0

0.2

0.4

0.6

0.8

1

2 4 8 16

Number of Processors

E
ff

ic
ie

nc
y

HPS

HEFT

CPOP

LMT

 (a) Average SLR (b) Efficiency

Fig. 7. Average SLR and efficiency comparison for FFT applications

202 E. Ilavarasan, P. Thambidurai, and R. Mahilmannan

The task graph of the molecular dynamics code given in [6][12] is also part of our
experiment since it has an irregular task graph. Since the number of task is fixed in
the application and the structure of the application is known, the graph characteristics
CCR and ECT values given in section 5.1 are alone used. Fig. 8a and Fig. 8b shows
the performance of the algorithms (Average SLR and Efficiency) with respect to five
different CCR values when the number of processor is equal to seven. The simulation
results shows that HPS algorithm substantially outperforms HEFT, CPOP and LMT
algorithms.

With respect to the experiments conducted for the above study, we have counted
the number of times that each scheduling algorithm in the experiments produced
better, worse or equal schedule length than every other algorithm. Each cell in Table 2
indicates the comparison results of the algorithm on the left with the algorithm on
the top.

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

0.1 0.5 1.0 0.5 10.0
CCR

A
ve

ra
ge

 S
L

R

HPS

HEFT

CPOP

LMT

0.00

0.20

0.40

0.60

0.80

1.00

2 3 4 5 6 7
Number of Processors

E
ff

ic
ie

nc
y

HPS

HEFT

CPOP

LMT

 (a) Average SLR (b) Efficiency

Fig. 8. Average SLR and efficiency comparison for Molecular dynamics code

Table 2. Pair-Wise Comparison of the Scheduling Algorithms

Algorithm HPS HEFT CPOP LMT COMBINED
HPS Better

Equal
Worse

* 441
198
81

498
140
82

607
72
41

71%
19%
10%

HEFT Better
Equal
Worse

81
198
441

* 556
38

126

657
27
36

61%
12%
27%

CPOP Better
Equal
Worse

82
140
498

126
38

556

* 634
40
46

39%
10%
51%

LMT Better
Equal
Worse

41
72

607

36
27

657

46
40

634
*

7%
9%

84%

6 Conclusion

The HPS algorithm proposed here has been proven to be optimal for DAGs by
reducing the schedule length with low complexity. The performance of this algorithm

 High Performance Task Scheduling Algorithm 203

has been observed experimentally by using large set of randomly generated task
graphs with various characteristics and application graphs of several real world
problems such as Gaussian Elimination, Fast Fourier Transformation and Molecular
dynamics code. The simulation result confirms that HPS algorithm substantially better
than the existing algorithms such as LMT, CPOP and HEFT in terms of performance
matrices (average schedule length ratio, speedup, efficiency, frequency of best results)
and scheduling time. The complexity of HPS algorithm is O (v + e) (p+log v), which
is less when compared with other scheduling algorithms reported in this paper. We
have planned to extend this algorithm for arbitrary-connected networks and also for
the dynamic networks.

References

[1] R.L. Graham, L.E. Lawler, J.K. Lenstra, and A.H. Kan, “Optimization and
Approximation in Deterministic Sequencing and Scheduling: A Survey”, Annals of
Discrete Mathematics, pp. 287-326, 1979.

[2] T. Cassavant and J.A. Kuhl, “Taxonomy of Scheduling in General Purpose Distributed
Memory Systems”, IEEE Trans. Software Engineering, vol.14, no. 2, pp. 141-154, 1988.

[3] C.C. Hui and S.T. Chanson, “Allocating Task Interaction Graphs to Processors in
Heterogeneous Networks”, IEEE Trans. Parallel and Distributed Systems, vol. 8, no. 9,
pp. 908-926, Sept. 1997.

[4] H.EI-Rewini and T.G.Lewis, “Scheduling Parallel Program Tasks onto Arbitrary Target
Machines,”, Journal of parallel and Distributed Computing, vol.9, pp.138-153, 1990.

[5] M.Iverson, F.Ozguner and G.Follen, “Parallelizing Existing Applications in a Distributed
Heterogeneous Environments”, Proc. Heterogeneous Computing Workshop, pp.93-100,
1995

[6] H. Topcuglou, S. Hariri and M.Y. Wu, “Performance Effective and Low-Complexity
Task Scheduling for Heterogeneous Computing”, IEEE Trans. on Parallel and
Distributed Systems, vol. 13, No.3, Feb’ 2002.

[7] M. Kafil and I. Ahmed, “Optimal Task Assignment in Heterogeneous Distributed
Computing Systems,” IEEE Concurrency, vol. 6, no. 3, pp. 42-51, July- Sept. 1998.

[8] M.K. Dhodhi, I.Ahmad, A. Yatama, “An Integrated Technique for Task Matching and
Scheduling onto Distributed Heterogeneous Computing Systems”, Journal of parallel
and distributed computing “, 62,pp.1338-1361, 2002.

[9] Atakan Dogan and Fusun Ozguner, “LDBS: A Duplication Based Scheduling Algorithm
for Heterogeneous Computing Systems”, Proc. Int’l. Conf. Parallel Processing
(ICPP’02).

[10] Sanjeev Basker and Prashanth C.SaiRanga, “Scheduling Directed A-cyclic Task Graphs
On Heterogeneous Network of Workstations to Minimize Schedule Length”, Proc.
ICPPW, 2003.

[11] Rashmi Bajaj and D.P. Agrawal, “Improving Scheduling of Tasks in a Heterogeneous
Environments,”, IEEE Trans. on Parallel and Distributed Systems, vol. 15, No.2, Feb’
2004.

[12] S.J. Kim and J.C. Browne, “A General Approach to a Mapping of Parallel Computation
upon Multiprocessors Architectures,” Proc. int’l Conf. parallel processing, vol. 2, pp.
1-8,1988.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 204 – 213, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Execution Environments and Benchmarks for the Study
of Applications’ Scheduling on Clusters

Adam K.L. Wong and Andrzej M. Goscinski

School of Information Technology, Deakin University,
Geelong, Vic 3216, Australia

{aklwong, ang}@deakin.edu.au

Abstract. In this paper, we have demonstrated how the existing programming
environments, tools and middleware could be used for the study of execution
performance of parallel and sequential applications on a non-dedicated cluster.
A set of parallel and sequential benchmark applications selected for and used in
the experiments were characterized, and experiment requirements shown.

1 Introduction

Many parallel applications can be executed on very cost-effective parallel computer
systems, non-dedicated clusters, which are already owned by many universities, and
business and industry institutions. To do this, they can be used of course as dedicated
clusters during weekends and at nights. Although individual PCs of such clusters are
normally used by their owner users to run sequential applications (local jobs), the
cluster as a whole or its subsets could also be employed by users to run parallel
applications (cluster jobs) even during working hours. The reason is that PCs in their
working environments are on average idle for much more than 50% of time [2, 5, 19].
Therefore, a cluster has the potential of supporting the concurrent execution of a
mixture of parallel and sequential applications or a set of parallel applications, which
could lead to the improvement of the overall execution performance of applications.

When multiple parallel applications need to share a cluster, both space- and time-
sharing scheduling approaches can be used. Static space-sharing [8, 23] is a simple
approach that involves finding enough idle computers in a cluster and mapping
processes of a parallel application onto these computers. Although owner-users would
be protected from any possible performance loss, utilization of cluster computers is
usually far from optimal because of fragmentation. For instance, a parallel application
needs to wait until enough idle computers are available before it can be started;
otherwise, it has to sacrifice the level of its parallelism. Even worse, a sacrificed
parallel application cannot utilize the excessive computational power from any
occupied but lightly loaded computer where a sequential application is running.

Time-sharing is intrinsically supported in a cluster via local scheduling. In this
case, the local scheduler is responsible for time sharing of the CPU among all the
processes which have been allocated to that computer. Processes from a parallel
application can be placed into some or all of the computers in the cluster depending
on the required parallelism. However, processes belonging to the same parallel
application would not be guaranteed to execute at the same time across the computers

 Execution Environments and Benchmarks for the Study of Applications 205

in the cluster. Previous studies [1, 3, 21, 24] have found that if the parallel application
is communication intensive, this uncoordinated scheduling of processes would lead to
a great loss of performance in the cluster since a process stalls when it communicates
with a non-scheduled process. [21] and [17] have presented the results of co-
scheduling of multiple parallel applications on a cluster using local scheduling but the
results are quite different. [21] shows that co-scheduling of parallel applications on a
cluster worsens their execution performance. That result is difficult to assess as the
experiment is not described and applications used in the experiment are not defined.

Our research shows that concurrent execution of parallel and sequential
applications and concurrent execution of multiple parallel applications on a non-
dedicated cluster improves the execution performance of parallel applications, and
makes the execution performance of sequential applications only slightly worse [22,
12]. We carried out the study by using the well known and widely used benchmarks:
NAS Parallel Benchmarks [15] and BYTE’s Unix Sequential Benchmarks [7].
However, [22, 12] mainly address execution aspects, experiments carried out,
experimental results achieved and their interpretation. The execution environment and
benchmark preparation was only addressed to satisfy the aims of those papers.
Because these two elements have formed a wide and general platform of benchmark-
based study of high-performance computing on clusters and could be useful to other
researchers, we decided to describe them in detail.

The aim of this paper is to show (i) how the existing programming environments,
tools and middleware could be used for the study of execution performance of parallel
and sequential applications and multiple parallel applications executing concurrently
on a non-dedicated cluster; and (ii) the way how the publicly available and frequently
used benchmarks should and could be adapted to carry out such performance study.

2 The Performance Study Results Achieved

The results of executing NAS parallel applications with BYTE-based sequential
applications of various workloads on a non-dedicated cluster have demonstrated that
parallel applications benefit from having its processes migrating from heavily loaded
computers to lightly loaded computers which are executing sequential applications
[12]. Such a dynamic load-balancing based scheduling of a mixture of parallel and
sequential applications works particularly well for both the owner-users and the
cluster-user of a non-dedicated cluster when the workload of the computers generated
by their corresponding owner-users is low (I/O-Bound sequential workload) and the
number of such computers is large. By sharing the computers of owner-users, which
are normally not accessible in a dedicated cluster, parallel applications can gain extra
processing power to perform `CPU-hungry’ computations. On the other hand, owner-
users of their computers could suffer from a slight degradation of the execution
performance, which tends to be insignificant when the sequential workload of the
computers move towards I/O-bound applications and the number of owner-users is
large in the cluster. Although the relative slowdown generated in each case may be
noticeable to an owner-user, we think that it would be acceptable to most of the users,
whose computers are sitting idle for more than 50% of time during working hours.

206 A.K.L. Wong and A.M. Goscinski

Contrary to the results obtained by other researchers, we have found that even if a
parallel application is communication intensive, there is no performance loss of the
parallel application due to uncoordinated communications and synchronizations of
processes. Our study of the scheduling of a parallel application executing
concurrently with sequential applications does not confirm the results reported in [3,
21, 24], which recommend synchronized scheduling of parallel and sequential
applications. We have demonstrated that there is no need for synchronization and that
its lack does not decrease the execution performance. Concurrent execution of a
parallel application and sequential applications on a cluster did not make the
execution performance of a parallel application worse, especially when a slow but
commonly found network such as 100 Mbits Ethernet is used.

We have also demonstrated that co-scheduling of parallel applications on cluster
does not lead to deterioration of the execution performance as it was shown in [21].
Although we cannot fairly judge [21]’s results due to the incomplete experimental
detail provided, we are strongly convinced that their poor performance on co-
scheduling for multiple parallel applications could be caused by factors such as the
network type in use as well as the physical memories available in the computers.

3 The Execution Environment of the Scheduling Study

In this sections, we describe how to employ a dynamic load balancing system and the
implementation of MPI [9] to construct a cluster that can support the execution and
scheduling of a mixture of a parallel application and sequential applications.

3.1 The OpenMosix Dynamic Load-Balancing System

Dynamic load balancing is an efficient method of scheduling processes on a cluster as
it can provide a unified way to utilize both space- and time-sharing for scheduling
processes of sequential and parallel applications. By taking advantage of a process
migration facility, allocation of parallel processes to computers of a cluster can be
changed dynamically according to the actual workload on each of the computers [11].

The openMosix system [16] is a Linux kernel extension which can turn a network
of ordinary computers into an openMosix cluster. It is in fact an open source version
of Mosix [6] developed by Barak et al. as a part of the Mosix Distributed Operating
System project. In a nutshell, the openMosix/Mosix technology consists of the PPM
(Preemptive Process Migration) mechanism and a set of algorithms for adaptive
resource sharing. The PPM can migrate any process, at any time, to any available
computer in the cluster based on the information provided by resource sharing
algorithms or triggered by the users.

There are two resource sharing algorithms used in openMosix/Mosix: dynamic
load-balancing and memory ushering. The former can reduce the load difference
between pairs of computers by migrating processes from a heavily loaded computer to
a lightly loaded one. The memory ushering algorithm is triggered when a computer
suffers heavily from paging due to running out of free memory to hold processes. It
then overrides the dynamic load-balancing algorithm and attempts to migrate a
process to a computer that has sufficient free memory.

 Execution Environments and Benchmarks for the Study of Applications 207

3.2 LAM/MPI

Currently, most existing clusters are managed by centralized operating systems such
as Unix/Linux and Windows. This implies that executing parallel applications on a
cluster requires some support from a run-time environment so that the parallel
applications can utilize distributed computers. One of the most important supports is
provided by the IPC mechanism that allows processes of a parallel application to
communicate. LAM/MPI [4] was selected for our project because it could be used
with the openMosix system without too much difficulty.

To take advantage of the higher communication speed between processes on the
same SMP computer, LAM provides three different client-to-client transport layers:
tcp, usysv and sysv [13]. The tcp transport uses TCP sockets for all interprocess
communication. The usysv and sysv transports are multi-protocol, i.e., processes
located on the same node communicate via shared memory and processes on different
nodes communicate via TCP sockets. When integrating the LAM/MPI into the
openMosix, care must be taken to select the tcp transport layer in LAM/MPI. If either
the usysv or sysv transport layer is selected, automatic process migration from
openMosix would be prevented. We used in our project LAM/MPI-6.5.9 [13] that
requires a compile-time selection of such a transport layer communication protocol.

3.3 The Global Scheduling System

Since the openMosix package exists as a kernel patch of the Linux operating system,
an openMosix cluster can be constructed by installing a copy of the openMosix-
enabled Linux kernel in each of the computers in the selected cluster. Once an
openMosix cluster is set up, the executions of computer applications can be started on
any computer of the cluster and the distribution and balance of workloads will be
done automatically. The current version of the openMosix-enabled Linux kernel used
in our project is openMosix-2.4.20 [16]. We have set openMosix to make load
balancing decisions based only on the workload of each of the computers.

One way to execute an MPI parallel application on our openMosix cluster is to
place all the processes of a parallel application on one computer initially and allow
the openMosix system to migrate processes from that computer to other computers in
order to balance the workload of the cluster [6]. The actual processor-to-processor
communication mechanism for the distributed processes is relied on the IPC
subsystem of openMosix rather than the LAM/MPI daemon1. The drawback of this
approach of executing parallel applications on our openMosix cluster is in the
overhead caused by the single MPI daemon in the cluster. Since communications of a
migrated process to any other processes are handled by its handler (created by
openMosix) located on the machine where it is started, a single MPI daemon for the
cluster implies that all handlers are concentrated on one computer, which becomes a
communication bottleneck of the processes.

Alternatively, an MPI parallel application can be executed by providing a MPI
daemon for each of the computers of the cluster. In such a way, processes from an
MPI application are initially placed to different computers and therefore the handlers

1 The MPI daemons are responsible for process initialization and handling of communications

among processes of a parallel application.

208 A.K.L. Wong and A.M. Goscinski

created by openMosix for handling inter-process communications would be spread
evenly across different computers of the cluster. However, adopting this approach to
execute MPI applications in our openMosix cluster imposes a restriction that the
identity of the computers being used must be known prior to the execution.

In summary, the system exploits two level scheduling. The higher level scheduling,
which offers global scheduling, exploits load balancing that is provided by the
openMosix systems. This level only schedules processes of a parallel application
taking into consideration load of each individual PC of the cluster. The lower level
scheduling offers local scheduling for processes running on a given PC of the cluster.

4 The Selection and Preparation of Application Benchmarks

This section addresses the issues of the selection and the preparation of the
benchmark applications for our experiments

4.1 Selection of the Parallel Application

The behaviour and scheduling requirements led us to the specification of program
attributes that must be present because they influence the execution performance of a
parallel application. These attributes form a basis of the selection of benchmarks for
our experiments. They are as follows.

• Computation attributes: In general, the problem size of a parallel program is
directly proportional to its execution time. It can be broadly classified into a
computation bound program and a communication bound program.

• Communication attributes: Different parallel programs have different
communication features. The common communication features in parallel
programs are communication volume and communication pattern.

• Memory attributes: The main memory of a program required for its execution
affects the scheduling behaviour, as it could lead to memory swapping.

• Topology attributes: The topology in process-to-processor mapping of a parallel
program defines the size (number of processes) and the structure (the connections
of processes) of the program.

Table 1. A classification of the selected parallel applications

Selection Attributes
Program

Computation Comm. Volume Comm. Pattern Topology

MPI-Povray Comp. Bound Low Point-to-point Any

PTSP Comm. Bound Medium Point-to-point Any

EP Comp. Bound Negligible Negligible Any

LU Comm. Bound Medium Point-to-point Power-of-2

BT Comm. Bound High Collective Square-of-n

MG Comm. Bound High Collective Power-of-2

To evaluate the impact of concurrent execution of parallel and sequential
applications on their performance, we carried out an analysis of the NAS programs as

 Execution Environments and Benchmarks for the Study of Applications 209

well as other parallel applications to identify those that posses the attributes addressed
above. We have found that EP, LU, BT and MG, of the NAS Parallel Benchmarks
[15], MPI-Porvay [20] and Parallelized TSP [14], and the sequential benchmark:
BYTE’s Unix Bench [7] can represent real world parallel applications with a broad
range of program attributes in terms of computation, communication and topology.
We have carefully confined the problem size of the selected programs such that their
requirement on main memory during execution would be satisfied and that memory
swapping would not occur. The features of these programs are summarized (also
using the results presented in [10, 15, 18] for NPB) in Table 1.

4.2 Sequential Applications and the Construction of Workload Benchmarks

To achieve the aim of our research, there was a need to identify and determine the
influence of sequential applications with different workloads (ranging from CPU-
bound to I/O-bound) executing concurrently with a parallel application on a cluster.
The sequential applications must meet the following requirements:

• Controllability: The amount of workload of the sequential application must be
easily and precisely adjusted.

• Repeatability: The exactly same amount of workload of the sequential application
can be repeated for different experiments.

• Durability: The execution time of the sequential application must be comparable
(usually fairly long) with the parallel application when they run concurrently.

Controllability, repeatability and durability can be achieved by using sequential
benchmarks. Following our study of sequential benchmarks, we have selected the
BYTE’s Unix Benchmark Suite [7].

The BYTE’s Unix Benchmark Suite consists of a set of sequential applications,
which were designed to test the performance of a single-processor computer system in
the dimensions such as arithmetic operations, memory operations, disk operations,
system calls as well as system loading. Each application contained in the benchmark
suite is classified as either I/O-bound or CPU-bound as shown in Table 2.

Table 2. Classification of the BYTE Unix Benchmark applications

Category Program

CPU-bound
dhry2reg, whetstone-double, pipe, spawn, shell, syscall, arithoh, short, int, long, float,
double, C, dc, Hanoi

IO-bound execl, fstime, fsbuffer, fsdisk, context1

To benchmark a computer system using the BYTE Unix Benchmark, users are
required to specify a fixed time period for the execution of a sequential application.
Performance of the computer system is calculated based on the amount of work that
the sequential application has completed within the declared time period [7].
Therefore, an assumption made in each measurement is that the sequential application
being tested must fully occupy the CPU of a computer.

Our earlier performance studies with the BYTE suite has shown that the use of a
fixed time period to measure system performance would produce incorrect results if
time sharing of a single computer by multiple applications is in place. This occurs
because running other applications concurrently with a sequential application from

210 A.K.L. Wong and A.M. Goscinski

the benchmark suite on a computer leads to the reduction of the execution time
allocated to that sequential application. Therefore, this execution model of the
benchmark suite did not allow us to carry out our scheduling experiments by mixing
and running a parallel application and sequential applications from the benchmark
suite directly on a computer cluster. Consequently, we modified the execution model
of the benchmark suite to a workload based model, in the sense that each of the
sequential applications would finish an amount of work in the time period of
execution of a parallel application. Having the applications from the benchmark suite
changed into workload based, a set of sequential benchmarks can be constructed by
choosing different applications from the BYTE suite and packing them together into
groups according to the particular workloads required.

The workload composition (WC) is made up of a number of CPU-bound and I/O-
bound applications that can be varied to generate different workloads with varying
number of CPU-bound and I/O-bound applications, i.e., WC = {Seq1, Seq2,…,Seqn},
where Seqi is any sequential application from the BYTE’s Unix Benchmark suite with
i = 1..n and n is any positive integer. We constructed three sets of sequential
benchmarks with different workload compositions, SeqIO, SeqIB and SeqCPU. SeqIO,
SeqIB and SeqCPU represent I/O-bound, In-Between and CPU-bound sequential
benchmarks with a workload of 20%, 50% and 80% CPU utilization, respectively as
listed in Table 3. The constructed workloads model demanding users and represent
heavy utilization of cluster computers.

Table 3. Workload Compositions

Workloads Components
SeqIO fstime, idle-burst, fsbuffer, idle-burst, fsdisk, idle-burst

SeqIB execl, context1, spawn, fsdisk, whetstone-double, C, fstime, syscall, hanoi, dc

SeqCPU
dhry2reg, whetstone-double, pipe, spawn, shell, syscall, arithoh, int, double, C, execl,
context1, hanoi, short, float

5 Performance Study of Applications on Our openMosix Cluster

Our openMosix cluster consists of 16 Pentium II (350MHz) computers, each with 383
Mbytes of main memory. The computers are connected together by a 100Mbit/s Fast
Ethernet network. The following subsections address the different issues related to the
performance study of parallel applications in clusters.

The Influence of the Dynamic Load-Balancing System. When the openMosix
dynamic load-balancing system is employed to schedule processes of parallel
applications, execution overhead induced could primarily come from two sources:
process migration and load-monitoring of computers. Because the former depends on
the workload and the number of computers used as well as the actual number of
migrations performed, it is difficult to be measured. The latter can be measured easily
at any given cluster. This overhead is the additional time needed to run the openMosix
software without any process migration occurring and is purely caused by the load-
monitoring unit of the openMosix software. Figure 2 shows the results of two
executions (with and without openMosix) of the MPI-Povray application on different
number of computers and the results show that such overhead induced is insignificant.

 Execution Environments and Benchmarks for the Study of Applications 211

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 6 8 10 12 14 16

Num ber of Com puters

E
xe

cu
ti

o
n

 T
im

e
(m

in
.)

MPI w ithout openMosix MPI w ith openMosix

Fig.2. Executions of MPI-Povray on our
openMosix Cluster

0

100

200

300

400

500

600

700

800

900

2 4 6 8 10 12 14 16

Num ber of Com puters

E
xe

cu
ti

o
n

 T
im

e
(m

in
.)

one MPI daemon per cluster one MPI daemon per computer

Fig.3. Executions of Parallelized TSP on our
openMosix Cluster

The Influence of MPI Daemons. There are two different ways of executing a
parallel program on our openMosix: one MPI daemon per cluster and one MPI
daemon per computer. Figure 3 shows the results of the execution of Parallelized TSP
on different number of computers, with a problem size of 21 cities, in the two
different ways. It can be observed that the overhead induced in the one daemon per
cluster system increases as the number of computers increases.

The Influence of Program Topology. Some parallel programs are topology specific;
this means that their executions are restricted to some well defined number of
processors and specific process-to-processor mappings. For the selected NPB
programs, the MG and LU programs can only be compiled for running with a power-
of-2 number of processes, the BT program for running with a square number of
processes, and EP for running with any number of processes [15].

0

50

100

150

200

250

300

350

2 4 8 16

Number of Computers

E
xe

cu
ti

o
n

 T
im

e
(m

in
.)

EP

LU

BT

MG

Fig. 4. Executions of NPB programs on our openMosix Cluster

212 A.K.L. Wong and A.M. Goscinski

For this reason, we have performed an experiment by compiling the EP, LU, BT
and MG programs for running with 16 processes and let each of the programs run on
a power-of-2 number of processors. The result as shown in Figure 4 has confirmed the
topology specific nature of the programs as their speedups are proportional to a
power-of-2 of number of computers used. We could not satisfy fully the topology
requirement for the BT program. However, we assumed that the loss of performance
for executing BT with a slightly different process-to-processor mapping (in the cases
of 2 and 8 computers used) will not distort too much the experiment outcomes.

6 Summary and Conclusions

In this paper, we have presented how to construct an applications execution and
scheduling environment for clusters by integrating existing parallel programming
environments, tools and middleware. A prototype of such execution and scheduling
environment was built: the openMosix cluster. It consists of a network of computers
running the Linux operating system. MPI was used to support communication of
processes of parallel applications and the openMosix load balancing system was used
to schedule processes of sequential and parallel applications across computers in the
cluster based on the actual workload in each of the computers. This system has been
demonstrated to be flexible, low-cost and well suited for the performance study of
benchmarks’ scheduling on clusters. .

We have demonstrated that the way the publicly available and frequently used
programming benchmarks (both sequential and parallel) could be adapted to carry out
such study. For parallel applications, we have identified, selected and characterized
the following programs: MPI-Povray, Parallelized TSP and the NAS programs. For
sequential applications, we have identified and selected the BYTE’s Unix Benchmark
Suite, from which constructed a set of workload-benchmarks. These workload
benchmarks can represent sequential applications of various workloads ranging from
IO-bounded to CPU-bounded. We have also presented the influence of a dynamic
load-balancing system, the number of MPI daemons used as well as the topology of
parallel programs on the execution performance of parallel applications.

Reference

1. R.H. Arpaci, A.C. Dusseau, A.M. Vahdat, L.T. Liu, T.E. Anderson and D.A. Patterson.
The Interaction of Parallel and Sequential Workloads on a Network of Workstations. In
Proceedings of 1995 ACM Joint International Conference on Measurement and Modeling
of Computing Systems, pages 267-278, May 1995.

2. A. Acharya, G. Edjlali and J. Saltz. The Utility of Exploiting Idle Workstations for Parallel
Computation. In Proceedings of 1997 ACM Sigmetrics International Conference on
Measurement and Modeling of Computer Systems, pages 225-236, May 1997.

3. C. Anglano. A Comparative Evaluation of Implicit Coscheduling Strategies for Networks
of Workstations. In Proceedings of 9th International Symposium on High Performance
Distributed Computing (HPDC9), pages 221-228, August 2000.

4. G. Burns, R. Daoud and J. Vaigl. LAM: An Open Cluster Environment for MPI. In
Proceedings of Supercomputing Symposium, pages 379-386, University of Toronto, 1994.

5. W. Becker. Dynamic Balancing Complex Workload in Workstation Networks - Challenge,
Concepts and Experience. In Proceedings High Performance Computing and Networking
(HPCN) Europe Lecture Notes on Computer Science (LNCS), pages 407-412, 1995.

 Execution Environments and Benchmarks for the Study of Applications 213

6. A. Barak, S. Guday and R.G. Wheeler. The MOSIX Distributed Operating System, Load
Balancing for UNIX. Springer-Verlag, 1993.

7. BYTE’s UnixBench. The BYTE’s Unix Benchmark Suite. URL: http://
www.tux.org/pub/tux/niemi/unixbench, June 2004.

8. P.J. Chuang and N.F. Tzeng. A Fast Recognition-Complete Processor Allocation Strategy
for Hypercube Computers. IEEE Transactions on Computers, 41(4):467-479, 1992.

9. The MPI Forum. MPI: a message passing interface. In Proceedings of the 1993
Conference on Supercomputing, pages 878-883, 1993.

10. A. Faraj and X. Yuan. Communication Characteristics in the NAS Parallel Benchmarks. In
Proceedings of the 14th IASTED International Conference on Parallel and Distributed
Computing and Systems (PDCS 2002), Nov. 2002.

11. A.M. Goscinski. Distributed Operating Systems, The Logical Design. Addison-Wesley,
Sydney, 1991.

12. A.M. Goscinski and A.K.L. Wong. Performance Evaluation of the Concurrent Execution
of NAS Parallel Benchmarks with BYTE Sequential Benchmarks on a Cluster. In
Proceedings of the 11th International Conference on Parallel and Distributed Systems
(ICPADS 2005), Fukuoka, Japan, July, 2005.

13. The LAM/MPI Homepage. URL: http://www.lam-mpi.org, lasted access: June 2004.
14. T.H. Lai and S. Sahni. Anomalies in Parallel Branch-and-Bound Algorithms.

Communications of the ACM, 27(6):594-602, Jane 1984.
15. NAS Parallel Benchmarks. URL: http://www.nas.nasa.gov/Software/NPB/, Nov. 2004.
16. The openMosix Homepage. URL: http://openmosix.sourceforge.net, June 2004.
17. P. Strazdins and J. Uhlmann. Local Scheduling out-performs Gang Scheduling on a

Beowulf Cluster. Technical Report TR-CS-04-01, ANU, Canberra, 2004.
18. J. Subhlok, S. Venkataramaiah and A. Singh. Characterizing NAS Benchmark

Performance on Shared Heterogeneous Networks. In 11th International Heterogeneous
Computing Workshop, April 2002.

19. F. Tandiary, S.C. Kothari, A. Dixit and E. W. Anderson. Batrun: Utilizing Idle
Workstations for Large-scale Computing. IEEE Parallel and Distributed Technology,
4(2):41-48, 1996.

20. L. Verrall. MPI-Povray: Distributed Povray Using MPI Message Passing. URL:
http://www.verrall.demon.co.uk/mpipov.

21. F.C. Wong, A.C. Arpaci-Dusseau and D.E. Culler. Building MPI for Multi-Programming
Systems using Implicit Information. In Proceedings of the 6th European PVM/MPI User's
Group Meeting, pages 215-222, 1999.

22. A.K.L. Wong and A.M. Goscinski. Scheduling of a Parallel Computation-Bound
Application and Sequential Applications Executing Concurrently on a Cluster – A Case
Study. In Proceedings of the 2nd International Symposium on Parallel and Distributed
Processing and Applications (ISPA04), Dec. 2004.

23. Y. Zhu. Efficient Processor Allocation Strategies for Mesh-Connected Parallel Computers.
Journal of Parallel and Distributed Computing, 16(4):328-337, 1992.

24. B.B. Zhou, X. Qu and R.P. Brent. Effective Scheduling in a Mixed Parallel and Sequential
Computing Environment. In Proceedings of the 6th Euromicro Workshop of Parallel and
Distributed Processing, pages 32-37, Jan. 1998.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 214 – 224, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Data Distribution Strategies for Domain Decomposition
Applications in Grid Environments

Beatriz Otero, José M. Cela, Rosa M. Badia, and Jesús Labarta

Dpt. d’Arquitectura de Computadors,
Universitat Politècnica de Catalunya, Campus Nord,

C/ Jordi Girona, 1-3, Mòdul D6, 109, 08034, Barcelona-Spain
{botero, cela, rosab, jesus}@ac.upc.es

Abstract. In this paper, we evaluate message-passing applications in Grid envi-
ronments using domain decomposition technique. We compare two domain de-
composition strategies: a balanced and unbalanced one. The balanced strategy is
commonly strategy used in homogenous computing environment. This strategy
presents some problems related with the larger communication latency in Grid
environments. We propose an unbalanced domain decomposition strategy in
order to overlap communication latency with useful computation. This idea
consists in assigning less workload to processors responsible for sending up-
dates outside the host. We compare the results obtained with the classical bal-
anced strategy. We show that the unbalanced distribution pattern improves the
execution times of domain decomposition applications in Grid environments.
We considered two kinds of meshes, which define the most typical cases. We
show that the expected execution time can be reduced up to 53%. We also ana-
lyze the influence of the communication patterns on execution times using the
Dimemas simulator.

1 Introduction

Domain decomposition is used for efficient parallel execution of mesh-based applica-
tions. These applications use techniques such as finite element and finite difference,
which are widely used in many disciplines such as engineering, structural mechanics
and fluid dynamics. Mesh-based applications use a meshing procedure for discretizing
the problem domain. Implementing a mesh-based application on a Grid environment
involves partitioning the mesh into sub-domains that are assigned to individual proc-
essors in the Grid environment. In order to obtain optimal performance a desirable
partitioning method should take into consideration several features: traffic in the net-
work, latency and bandwidth between processors inside the host, latency and band-
width between hosts, etc.

We consider distributed applications that perform matrix-vector product opera-
tions. These applications solve problems that arise from the discretization of partial
differential equations on meshes, such as explicit finite element analysis of sheet
stamping or car crash problems. These applications require high computational capa-
bilities [1]. Typically, the models are simplified to the extent that they can be com-
puted on presently available machines; usually many important effects are left out
because the computational power is not adequate to include them.

 Data Distribution Strategies for Domain Decomposition Applications 215

Previous work makes reference to the relationship between architecture and do-
main decomposition algorithms [2]. There are studies on latency, bandwidth and op-
timum workload to take full advantage of the available resources [3], [4]. There are
also analyses about the behavior of MPI applications in Grid environments [5], [6]. In
all these cases, the workload is the same for all the processors. In [7], Li et al. pro-
vides a survey of the existing solutions and new efforts in load balancing to address
the new challenges in Grid computing. In this paper, we evaluate message-passing
applications in Grid environment using domain decomposition technique. The objec-
tive of this study is to improve the execution time of the distributed applications in
Grid environments by overlapping remote communications and useful computation.
In order to achieve this, we propose a new data distribution pattern in which the work-
load is different depending on the processor. We use the Dimemas tool [8] to simulate
the behavior of the distributed applications in Grid environments.

This work is organized as follows. Section 2 describes the tool used to simulate the
Grid environment and defines the Grid topologies considered. Section 3 deals with the
studied distributed applications and the workload assignment patterns. Section 4
shows the results obtained in the environments specified for the three different data
distribution patterns. The conclusions of the work are presented in Section 5.

2 Grid Environment

We use a performance simulator called Dimemas. Dimemas is a tool developed by
CEPBA1 for simulating parallel environments [5], [6], [8]. DIMEMAS simulator
considers a simple model for point to point communications. This model decomposes
the communication time in five components:

1. Latency time is a fix time to start the communication.
2. Resource contention time is dependent of the global load in the local host

[10].
3. The transfer time is dependent of the message size. We model this time with

a bandwidth parameter.
4. The WAN contention time is dependent of the global traffic in the WAN [9].
5. The flight time represents the time invested on the transmission of the mes-

sage to the destination, not consuming CPU latency [10]. It depends on the
distance between hosts. We consider hosts distributed at same distances,
since our environment is homogeneous.

We consider an ideal environment where resource contention time is negligible:
there are an infinite number of buses for the interconnection network and as many
links as different remote communication has the host with others hosts. For the WAN
contention time, we use a lineal model to estimate the traffic in the external network.
We have considered the traffic function with 1% influence from internal traffic and
99% influence from external traffic. Thus, we model the communications with just
three parameters: latency, bandwidth and flight time. These parameters are set accord-
ing to what is commonly found in present networks. We have studied different works

1 European Center for Parallelism of Barcelona, www.cepba.upc.edu.

216 B. Otero et al.

to determine these parameters [9], [11]. Table 1 shows the values of these parameters
for the internal and external host communications. The internal column defines the
latency and bandwidth between processors inside a host. The external column defines
the latency and bandwidth values between hosts. The communications inside a host
are fast (latency 25 μs, bandwidth 100 Mbps), and the communications between hosts
are slow (latency of 10 ms and 100 ms, bandwidth of 64 Kbps, 300 Kbps and 2 Mbps,
flight time of 1ms and 100 ms).

Table 1. Latency, bandwidth and flight time values

Parameters Internal External
Latency 25 μs 10 ms and 100 ms
Bandwidth 100 Mbps 64 Kbps, 300 Kbps and 2Mbps

Flight time - 1 ms and 100 ms

Fig. 1. General Topology: n hosts with m processors per host

We model a Grid environment using a set of hosts. Each host is a network of
Symmetric Multiprocessors (SMP). The Grid environment is formed by a set of con-
nected hosts. Each host has a direct full-duplex connection with any other host. We do
this because we think that some of the most interesting Grids for scientist involve
nodes that are themselves high-performance parallel machines or clusters. We con-
sider different topologies in this study: two, four and eight hosts. Figure 1 shows the
general topology of the host connections.

3 Data Distribution

This work involves the use of distributed applications that solve sparse linear systems
using iterative methods. These problems arise from the discretization of partial dif-
ferential equations, especially when explicit methods are used. These algorithms are
parallelized using domain decomposition of the data distribution. Each parallel proc-
ess is associated with a particular domain.

A matrix-vector product operation is carried out in each iteration of the iterative
method. The matrix-vector product is performed using a domain decomposition algo-
rithm, i.e., as a set of independent computations and a final set of communications.
The communications in a domain decomposition algorithm are associated with the
domain boundaries. Each process must exchange the boundary values with all its

Connections
between hosts
High Latency

Medium Bandwidth
Flight time

Low Latency
High Bandwidth

Host i

Low Latency
High Bandwidth

Host n

Low Latency
High Bandwidth

Host j

Low Latency
High Bandwidth

Host 0

Connections
between hosts
High Latency

Medium Bandwidth
Flight time

Low Latency
High Bandwidth

Host i

Low Latency
High Bandwidth

Host i

Low Latency
High Bandwidth

Host n

Low Latency
High Bandwidth

Host n

Low Latency
High Bandwidth

Host j

Low Latency
High Bandwidth

Host j

Low Latency
High Bandwidth

Host 0

Low Latency
High Bandwidth

Host 0

 Data Distribution Strategies for Domain Decomposition Applications 217

neighbours. Then, each process has as many communication exchanges as neighbour
domains [12], [13]. For each communication exchange, the size of the message is the
length of the common boundary between the two domains. We use METIS to perform
the domain decomposition of the initial mesh [14], [15], [16].

Balanced distribution pattern. This is the usual strategy for domain decomposition
algorithms. It generates as many domains as processors in the Grid. The computa-
tional load is perfectly balanced between domains. This balanced strategy is suitable
in homogeneous parallel computing, where all communications have the same cost.

Unbalanced distribution pattern. Our proposal is to create some domains with a
negligible computational load. Those domains are devoted only to manage the slow
communications. In order to do this, we divide the domain decomposition in two
phases. First, balanced domain decomposition is done between the number of hosts.
This guarantees that the computational load is balanced between hosts. Second, un-
balanced domain decomposition is done inside a host. The second decomposition
involves splitting the boundary nodes of the host sub-graph. We create as many spe-
cial domains as remote communications. Note that these domains contain only
boundary nodes, so they have negligible computational load. We call these special
domains B-domains (boundary domains). The remainder host sub-graph is decom-
posed in (nproc-b) domains, where nproc is the number of processors in the host and
b stands for the number of B-domains. We call these domains C-domains (computa-
tional domains). As a first approximation we assign one CPU to each domain. The
CPUs assigned to B-domains remain inactive most of the time. We use this policy in
order to obtain the worst case for our decomposition algorithm. This inefficiency
could be solved assigning all the B-domains in a host to the same CPU. Figure 2
shows an example of a finite element mesh with 256 degrees of freedom (dofs) with
the boundary nodes for each balanced partition. We consider a Grid with 4 hosts and
8 processors per host. We do an initial decomposition in four balanced domains. Fig-
ure 3 shows the balanced domain decomposition. We consider two unbalanced de-
composition of the same mesh. First, we create a sub-domain with the layer of
boundary nodes for each initial domain (singleB-domain), which contains seven com-
putational domains (Figure 4). Second, we create some domains (multipleB-domain)
for each initial partition using the layer of boundary nodes. Then, the remainder mesh
is decomposed in five balanced domains (Figure 5).

0

16

1

17

2

18

4

20

5

21

6

22

7

23

3

19

8

24

9

25

10

26

12

28

13

29

14

30

15

31

11

27

32 33

49

34

50

36

52

37

53

38

54

39

55

35

51

40

56

41

57

42

58

44

60

45

61

46

62

47

63

43

5948

64

80

65

81

66

82

68

84

69

85

70

86

71

87

67

83

72

88

73

89

74

90

76

92

77

93

78

94

79

95

75

91

96 97

113

98

114

100

116

101

117

102

118

103

119

99

115

104

120

105

121

106

122

108

124

109

125

110

126

111

127

107

123112

129 130 132 133 134 135131 136 137 138 140 141 142 143139128

145 146 148 149 150 151147 152 153 154 156 157 158 159155144

161 162 164 165 166 167163 168 169 170 172 173 174 175171160

177 178 180 181 182 183179 184 185 186 188 189 190 191187176

193 194 196 197 198 199195 200 201 202 204 205 206 207203192

209 210 212 213 214 215211 216 217 218 220 221 222 223219208

225 226 228 229 230 231227 232 233 234 236 237 238 239235224

241 242 244 245 246 247243 248 249 250 252 253 254 255251240

0

16

1

17

2

18

4

20

5

21

6

22

7

23

3

19

8

24

9

25

10

26

12

28

13

29

14

30

15

31

11

27

32 33

49

34

50

36

52

37

53

38

54

39

55

35

51

40

56

41

57

42

58

44

60

45

61

46

62

47

63

43

5948

64

80

65

81

66

82

68

84

69

85

70

86

71

87

67

83

72

88

73

89

74

90

76

92

77

93

78

94

79

95

75

91

96 97

113

98

114

100

116

101

117

102

118

103

119

99

115

104

120

105

121

106

122

108

124

109

125

110

126

111

127

107

123112

129 130 132 133 134 135131 136 137 138 140 141 142 143139128

145 146 148 149 150 151147 152 153 154 156 157 158 159155144

161 162 164 165 166 167163 168 169 170 172 173 174 175171160

177 178 180 181 182 183179 184 185 186 188 189 190 191187176

193 194 196 197 198 199195 200 201 202 204 205 206 207203192

209 210 212 213 214 215211 216 217 218 220 221 222 223219208

225 226 228 229 230 231227 232 233 234 236 237 238 239235224

241 242 244 245 246 247243 248 249 250 252 253 254 255251240

D0 D1 D2 D3

D4 D5 D6 D7

D8 D9 D10 D11

D12 D13 D14 D15

D16 D17 D18 D19

D21 D23

D24 D25 D26 D27

D28 D29 D30 D31D20 D22

D0 D1 D2 D3

D4 D5 D6 D7

D8 D9 D10 D11

D12 D13 D14 D15

D16 D17 D18 D19

D21 D23

D24 D25 D26 D27

D28 D29 D30 D31D20 D22

 Fig. 2 Boundary nodes per host Fig. 3 Balanced distribution

218 B. Otero et al.

0

16

1

17

2

18

4

20

5

21

6

22

7

23

3 8

24

9

25

10

26

12

28

13

29

14

30

15

31

11

27

32 33

49

34

50

36

52

37 38

54

39

55

35

51

40

56

41

57

42

58

44

60

45

61

46

62

47

63

43

5948

64

80

65

81

66

82

68

84

69

85

70

86

67

83

72

88

73

89

74

90

76 77 78 79

96 97

113

98

114

100

116

101

117

102

118

10399

115

104 105 106

122 124 126123112

129 130 132 133 134131 137 138 140 141 142 143139128

145 146 148 151 152 153 154 156 157 158 159155144

161 162 164 167 168 169 172 173 174 175171160

177 178 180 183179 184 185 188 189 190 191187176

193 199 200 201 202 204 205 206 207203192

209 215 216 217 218 220 222 223219208

225 229 230 231227 232 233 234 236 237 238 239235224

241 242 244 245 246 247243 249 250 252 253 254 255251240

D7

D16 D17

187

187

187

D30

D26

D24 D25

D28

D6D3

D5

D0 D2

D7

D9 D10

D11

D14

D13

D15

D15

D19

D21
D22

D23 D31

D4

D1

D12

D8

D18

D20

D23

D29

D27

D31

0

16

1

17

2

18

4

20

5

21

6

22

7

23

3 8

24

9

25

10

26

12

28

13

29

14

30

15

31

11

27

32 33

49

34

50

36

52

37 38

54

39

55

35

51

40

56

41

57

42

58

44

60

45

61

46

62

47

63

43

5948

64

80

65

81

66

82

68

84

69

85

70

86

67

83

72

88

73

89

74

90

76 77 78 79

96 97

113

98

114

100

116

101

117

102

118

10399

115

104 105 106

122 124 126123112

129 130 132 133 134131 137 138 140 141 142 143139128

145 146 148 151 152 153 154 156 157 158 159155144

161 162 164 167 168 169 172 173 174 175171160

177 178 180 183179 184 185 188 189 190 191187176

193 199 200 201 202 204 205 206 207203192

209 215 216 217 218 220 222 223219208

225 229 230 231227 232 233 234 236 237 238 239235224

241 242 244 245 246 247243 249 250 252 253 254 255251240

D7

D16 D17

187

187

187

D30

D26

D24 D25

D28

D6D3

D5

D0 D2

D7

D9 D10

D11

D14

D13

D15

D15

D19

D21
D22

D23 D31

D4

D1

D12

D8

D18

D20

D23

D29

D27

D31

0

16

1

17

2

18

4

20

5

21

6

22

7

23

3 8

24

9

25

10

26

12

28

13

29

14

30

15

31

11

27

32 33

49

34

50

36

52

37 38

54

39

55

35

51

40

56

41

57

42

58

44

60

45

61

46

62

47

63

43

5948

64

80

65

81

66

82

68

84

69

85

70

86

67

83

72

88

73

89

74

90

76

92

77

93

78

94

79

9591

96 97

113

98

114

100

116

101

117

102

118

10399

115

104

120

105 106

122

108

124

109

125

110

126

111

127

107

123112

129 130 132 133 134 135131 137 138 140 141 142 143139128

145 146 148 149 150 151 152 153 154 156 157 158 159155144

161 162 164 165 166 167 168 169 172 173 174 175171160

177 178 180 181 182 183179 184 185 188 189 190 191187176

193 194 196 197 198 199195 200 201 202 204 205 206 207203192

209 210 212 213 214 215211 216 217 218 220 222 223219208

225 226 228 229 230 231227 232 233 234 236 237 238 239235224

241 242 244 245 246 247243 249 250 252 253 254 255251240

D5

D16 D17

187

187

187

D28

D26D24 D25

D27

D4D2 D3

D0 D1

D6D7

D8 D9

D10

D11

D12

D13

D14 D15

D18 D19 D20

D21 D22

D23

D29D30

D31

0

16

1

17

2

18

4

20

5

21

6

22

7

23

3 8

24

9

25

10

26

12

28

13

29

14

30

15

31

11

27

32 33

49

34

50

36

52

37 38

54

39

55

35

51

40

56

41

57

42

58

44

60

45

61

46

62

47

63

43

5948

64

80

65

81

66

82

68

84

69

85

70

86

67

83

72

88

73

89

74

90

76

92

77

93

78

94

79

9591

96 97

113

98

114

100

116

101

117

102

118

10399

115

104

120

105 106

122

108

124

109

125

110

126

111

127

107

123112

129 130 132 133 134 135131 137 138 140 141 142 143139128

145 146 148 149 150 151 152 153 154 156 157 158 159155144

161 162 164 165 166 167 168 169 172 173 174 175171160

177 178 180 181 182 183179 184 185 188 189 190 191187176

193 194 196 197 198 199195 200 201 202 204 205 206 207203192

209 210 212 213 214 215211 216 217 218 220 222 223219208

225 226 228 229 230 231227 232 233 234 236 237 238 239235224

241 242 244 245 246 247243 249 250 252 253 254 255251240

D5

D16 D17

187

187

187

D28

D26D24 D25

D27

D4D2 D3

D0 D1

D6D7

D8 D9

D10

D11

D12

D13

D14 D15

D18 D19 D20

D21 D22

D23

D29D30

D31

Fig. 4. SingleB-domain distribution Fig. 5. MultipleB-domain distribution

CPU 0

CPU 1

CPU 2

CPU 4

CPU 3

CPU 5

CPU 6

CPU 7

CPU 8

CPU 9

CPU 10

CPU 12

CPU 11

CPU 13

CPU 14

CPU 15

CPU 17

CPU 18

CPU 20

CPU 19

CPU 21

CPU 22

CPU 23

CPU 16

CPU 25

CPU 26

CPU 28

CPU 27

CPU 29

CPU 30

CPU 31

CPU 24

CPU 0

CPU 1

CPU 2

CPU 4

CPU 3

CPU 5

CPU 6

CPU 7

CPU 8

CPU 9

CPU 10

CPU 12

CPU 11

CPU 13

CPU 14

CPU 15

CPU 17

CPU 18

CPU 20

CPU 19

CPU 21

CPU 22

CPU 23

CPU 16

CPU 25

CPU 26

CPU 28

CPU 27

CPU 29

CPU 30

CPU 31

CPU 24

CPU 0

CPU 1

CPU 2

CPU 4

CPU 3

CPU 5

CPU 6

CPU 7

CPU 8

CPU 9

CPU 10

CPU 12

CPU 11

CPU 13

CPU 14

CPU 15

CPU 17

CPU 18

CPU 20

CPU 19

CPU 21

CPU 22

CPU 23

CPU 16

CPU 25

CPU 26

CPU 28

CPU 27

CPU 29

CPU 30

CPU 31

CPU 24

CPU 0

CPU 1

CPU 2

CPU 4

CPU 3

CPU 5

CPU 6

CPU 7

CPU 8

CPU 9

CPU 10

CPU 12

CPU 11

CPU 13

CPU 14

CPU 15

CPU 17

CPU 18

CPU 20

CPU 19

CPU 21

CPU 22

CPU 23

CPU 16

CPU 25

CPU 26

CPU 28

CPU 27

CPU 29

CPU 30

CPU 31

CPU 24

CPU 0

CPU 1

CPU 2

CPU 4

CPU 3

CPU 5

CPU 6

CPU 7

CPU 8

CPU 9

CPU 10

CPU 12

CPU 11

CPU 13

CPU 14

CPU 15

CPU 17

CPU 18

CPU 20

CPU 19

CPU 21

CPU 22

CPU 23

CPU 16

CPU 25

CPU 26

CPU 28

CPU 27

CPU 29

CPU 30

CPU 31

CPU 24

CPU 0

CPU 1

CPU 2

CPU 4

CPU 3

CPU 5

CPU 6

CPU 7

CPU 8

CPU 9

CPU 10

CPU 12

CPU 11

CPU 13

CPU 14

CPU 15

CPU 17

CPU 18

CPU 20

CPU 19

CPU 21

CPU 22

CPU 23

CPU 16

CPU 25

CPU 26

CPU 28

CPU 27

CPU 29

CPU 30

CPU 31

CPU 24

(a) (b) (c)

Fig. 6. Communication diagram for a computational iteration: (a) Balanced distribution;
(b) Unbalanced distribution (singleB-domain); (c) Unbalanced distribution (multipleB-domain).

We must remark that the communication pattern of the balanced and the unbal-
anced domain decomposition may be different, since the number of neighbours of
each domain may also be different. Figure 6 illustrates the communication pattern of
the balanced/unbalanced distributions for this example. The arrows in the diagram
represent processors interchanging data. The beginning of the arrow identifies the
sender. The end of the arrow identifies the receiver. Short arrows represent local
communications inside a host, whereas long arrows represent remote communications
between hosts. In Figure 6.a, all the processors are busy and the remote communica-
tions are done at the end of each iteration. In Figures 6.b and 6.c, the remote commu-
nication takes place overlapped with the computation. In Figure 6.b, the remote com-
munication is overlapped only with the first remote computation. In Figure 6.c, all
remote communications in the same host are overlapped.

4 Results

In this section we show the results obtained using Dimemas. We simulate a 128 proc-
essors machine using the following Grid environment. The number of hosts is 2, 4 or
8; the number of CPUs/host is 4, 8, 16, 32 or 64; thus, we have from 8 to 128 total

 Data Distribution Strategies for Domain Decomposition Applications 219

CPUs. The simulations were done considering lineal network traffic models. We
consider three significant parameters to analyze the execution time behaviour: the
communication latency between hosts, the bandwidth in the external network and the
flight time.

As data set, we consider a finite element mesh with 1,000,000 dofs. This size is
usual for car crash or sheet stamping models. We consider two kinds of meshes,
which define most of the typical cases. The first one, called stick mesh, can be com-
pletely decomposed in strips, so there are, at most, two neighbors per domain. The
second one, called box mesh, cannot be decomposed in strips, so the number of
neighbors per domain could be greater than two. The size of the stick mesh is
104x10x10 nodes. The size of the box mesh is 102x102x102 nodes.

STICK MESH
External latency of 10 ms and flight time of 1 ms

-35,00
-30,00
-25,00
-20,00
-15,00
-10,00
-5,00
0,00
5,00

10,00
15,00
20,00
25,00
30,00
35,00
40,00
45,00
50,00
55,00
60,00

64 Kbps 300 Kbps 2 Mbps

Bandwidth

E
xe

cu
ti

o
n

 t
im

e
re

d
u

ct
io

n
 (

%
)

singleB-domain (2x4)

multipleB-domain (2x4)

singleB-domain (2x8)

multipleB-domain (2x8)

singleB-domain (2x16)

multipleB-domain (2x16)

singleB-domain (2x32)

multipleB-domain (2x32)

singleB-domain (2x64)

multipleB-domain (2x64)

STICK MESH
External latency of 10 ms and flight time of 1 ms

-100,00
-90,00
-80,00
-70,00
-60,00
-50,00
-40,00
-30,00
-20,00
-10,00

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

64 Kbps 300 Kbps 2 Mbps

Bandwidth

E
x

ec
u

tio
n

 ti
m

e
re

du
c

tio
n

(%
)

singleB-domain (4x4)

multipleB-domain (4x4)

singleB-domain (4x8)

multipleB-domain (4x8)

singleB-domain (4x16)

multipleB-domain (4x16)

singleB-domain (4x32)

multipleB-domain (4x32)

singleB-domain (8x8)

multipleB-domain (8x8)

singleB-domain (8x16)

multipleB-domain (8x16)

Fig. 7.a. Execution time reduction for the stick mesh with external latency of 10 ms and flight
time of 1 ms

STICK MESH
External latency of 10 ms and flight time of 100 ms

-35,00
-30,00
-25,00
-20,00
-15,00
-10,00
-5,00
0,00
5,00

10,00
15,00
20,00
25,00
30,00
35,00
40,00
45,00
50,00
55,00
60,00

64 Kbps 300 Kbps 2 Mbps

Bandwidth

E
xe

cu
tio

n
 t

im
e

re
d

u
ct

io
n

(%
)

singleB-domain (2x4)

multipleB-domain (2x4)
singleB-domain (2x8)

multipleB-domain (2x8)
singleB-domain (2x16)

multipleB-domain (2x16)

singleB-domain (2x32)

multipleB-domain (2x32)

singleB-domain (2x64)

multipleB-domain (2x64)

STICK MESH
External latency of 10 ms and flight time of 100 ms

-100,00
-90,00
-80,00
-70,00
-60,00
-50,00
-40,00
-30,00
-20,00
-10,00

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

100,00

64 Kbps 300 Kbps 2 Mbps

Bandwidth

E
xe

cu
ti

o
n

 t
im

e
re

d
u

ct
io

n
 (

%
)

singleB-domain (4x4)

multipleB-domain (4x4)

singleB-domain (4x8)

multipleB-domain (4x8)

singleB-domain (4x16)

multipleB-domain (4x16)
singleB-domain (4x32)

multipleB-domain (4x32)

singleB-domain (8x8)

multipleB-domain (8x8)

singleB-domain (8x16)

multipleB-domain (8x16)

Fig. 7.b. Execution time reduction for the stick mesh with external latency of 10 ms and flight
time of 100 ms

Figures 7.a and 7.b show the time reduction percentages for each Grid configuration
in stick mesh as a function of the bandwidth. The unbalanced decomposition reduces
the execution time expected for the balanced distribution in most cases. For a Grid
with 2 hosts and 4 processors per host, the predicted execution time of the balanced

220 B. Otero et al.

distribution is better than other distributions because the number of remote communi-
cations is two. In this case, the multipleB-domain unbalanced distribution has only
one or two processors per host computation.

The results are similar when we consider that the external latency is equal to 100 ms
(Figures 8.a and 8.b). Therefore, the value of this parameter has not significant impact
on the results for this topology. In the other cases, the benefit of the unbalanced dis-
tributions ranges from 1% to 53% of time reduction. The execution time reduction
increases until 82 % for other topologies and configurations. For 4 and 8 hosts, the
singleB-domain unbalanced distribution has similar behavior than the balanced distri-
bution, since the remote communications cannot be overlapped and they have to be
done sequentially. In this case, the topologies having few processors per computation
are not appropriate. The unbalanced distribution reduces the execution time up to
32 %.

STICK MESH
External latency of 100 ms and flight time of 1 ms

-35,00
-30,00
-25,00
-20,00
-15,00
-10,00
-5,00
0,00
5,00

10,00
15,00
20,00
25,00
30,00
35,00
40,00
45,00
50,00
55,00
60,00

64 Kbps 300 Kbps 2 Mbps

Bandwidth

E
xe

cu
ti

on
 t

im
e

re
d

u
ct

io
n

 (
%

)

singleB-domain (2x4)

multipleB-domain (2x4)

singleB-domain (2x8)

multipleB-domain (2x8)
singleB-domain (2x16)

multipleB-domain (2x16)

singleB-domain (2x32)

multipleB-domain (2x32)
singleB-domain (2x64)

multipleB-domain (2x64)

STICK MESH
External latency of 100 ms and flight time of 1 ms

-100,00
-90,00
-80,00
-70,00
-60,00
-50,00
-40,00
-30,00
-20,00
-10,00

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

64 Kbps 300 Kbps 2 Mbps

Bandwidth

E
x

ec
u

tio
n

 ti
m

e
 r

e
du

ct
io

n
(%

)
singleB-domain (4x4)

multipleB-domain (4x4)

singleB-domain (4x8)

multipleB-domain (4x8)

singleB-domain (4x16)

multipleB-domain (4x16)

singleB-domain (4x32)

multipleB-domain (4x32)

singleB-domain (8x8)

multipleB-domain (8x8)

singleB-domain (8x16)

multipleB-domain (8x16)

Fig. 8.a. Execution time reduction for the stick mesh with external latency of 100 ms and flight
time of 1 ms

STICK MESH
External latency of 100 ms and flight time of 100 ms

-35,00
-30,00

-25,00
-20,00

-15,00
-10,00
-5,00

0,00
5,00

10,00

15,00
20,00

25,00
30,00
35,00

40,00
45,00

50,00
55,00

64 Kbps 300 Kbps 2 Mbps

Bandwidth

E
xe

cu
ti

o
n

 t
im

e
re

d
u

ct
io

n
 (

%
)

singleB-domain (2x4)

multipleB-domain (2x4)

singleB-domain (2x8)

multipleB-domain (2x8)

singleB-domain (2x16)

multipleB-domain (2x16)

singleB-domain (2x32)

multipleB-domain (2x32)

singleB-domain (2x64)

multipleB-domain (2x64)

STICK MESH
External latency of 100 ms and flight time of 100 ms

-100,00
-90,00
-80,00
-70,00
-60,00
-50,00
-40,00
-30,00
-20,00
-10,00

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

64 Kbps 300 Kbps 2 Mbps

Bandwidth

E
xe

cu
ti

on
 t

im
e

re
d

uc
tio

n
 (%

)

singleB-domain (4x4)

multipleB-domain (4x4)

singleB-domain (4x8)

multipleB-domain (4x8)

singleB-domain (4x16)

multipleB-domain (4x16)

singleB-domain (4x32)

multipleB-domain (4x32)

singleB-domain (8x8)

multipleB-domain (8x8)

singleB-domain (8x16)
multipleB-domain (8x16)

Fig. 8.b. Execution time reduction for the stick mesh with external latency and flight time of
100 ms

Figures 9.a and 9.b show the reduction of the expected execution time obtained for
each Grid configuration varying the flight time, the external latency and the band-
width in a box mesh. For the 2 hosts configuration in a box mesh, the behaviour for
singleB-domain and multipleB-domain unbalanced distribution is similar, since the
number of remote communications is the same. Variations of the flight time and the
external latency improve the results up to 85%. Figure 9.b shows the reduction on the

 Data Distribution Strategies for Domain Decomposition Applications 221

expected execution time obtained for 4 and 8 hosts. The influence of the external
latency on the application performance in a box mesh increases the percentage of
reduction of the execution time up to 4%. We suppose that the distance between hosts
is the same. However, if we consider hosts distributed at different distances, we ob-
tain similar benefits for the different distributions.

The number of remote and local communications varies depending on the partition
and the dimensions of the data meshes. Table 2 shows the maximum number of com-
munications for a computational iteration. The number of remote communications is
higher for a box mesh than for a stick mesh. Thus, the box mesh suffers from higher
overhead.

BOX MESH
External latency of 10 ms and flight time of 1 ms

40,00

45,00

50,00

55,00

60,00

65,00

70,00

75,00

80,00

85,00

90,00

64 Kbps 300 Kbps 2 Mbps

Bandwidth

E
xe

cu
ti

o
n

 t
im

e
re

d
u

ct
io

n
 (

%
)

singleB-domain (2x8)

multipleB-domain (2x8)

singleB-domain (2x16)

multipleB-domain (2x16)

singleB-domain (2x32)

multipleB-domain (2x32)

singleB-domain (2x64)

multipleB-domain (2x64)

BOX MESH
External latency of 10 ms and flight time of 1 ms

-30,00

-20,00

-10,00

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

64 Kbps 300 Kbps 2 Mbps

Bandwidth

E
xe

cu
ti

o
n

 ti
m

e
re

d
u

ct
io

n
 (

%
)

singleB-domain (4x8)

multipleB-domain (4x8)

singleB-domain (4x16)

multipleB-domain (4x16)

singleB-domain (4x32)

multipleB-domain (4x32)

singleB-domain (8x8)

multipleB-domain (8x8)

singleB-domain (8x16)

multipleB-domain (8x16)

Fig. 9.a. Execution time reduction for the box mesh with external latency of 10 ms and flight
time of 1 ms

BOX MESH
External latency of 10 ms and flight time of 100 ms

40,00

45,00

50,00

55,00

60,00

65,00

70,00

75,00

80,00

85,00

90,00

64 Kbps 300 Kbps 2 Mbps

Bandwidth

E
xe

cu
ti

o
n

 t
im

e
re

d
u

ct
io

n
 (

%
)

singleB-domain (2x8)

multipleB-domain (2x8)

singleB-domain (2x16)

multipleB-domain (2x16)

singleB-domain (2x32)

multipleB-domain (2x32)

singleB-domain (2x64)

multipleB-domain (2x64)

BOX MESH
External latency of 10 ms and flight time of 100 ms

-30,00

-20,00

-10,00

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

64 Kbps 300 Kbps 2 Mbps

Bandwidth

E
xe

cu
ti

o
n

ti
m

e
re

du
ct

io
n

 (
%

)

singleB-domain (4x8)

multipleB-domain (4x8)

singleB-domain (4x16)

multipleB-domain (4x16)

singleB-domain (4x32)

multipleB-domain (4x32)

singleB-domain (8x8)

multipleB-domain (8x8)

singleB-domain (8x16)

multipleB-domain (8x16)

Fig. 9.b. Execution time reduction for the box mesh with external latency of 10 ms and flight
time of 100 ms

We propose using unbalanced distribution patterns to reduce the number of remote
communications required. Our approach shows to be very effective, especially for box
meshes. We observe that the multipleB-domain with unbalanced distribution is not
sensible to the latency increase until the latency is larger than the computational time.
However, the execution time for the balanced distribution increases with the latency.

The multipleB-domain unbalanced distribution creates as many special domains per
host as external communications. Then, the scalability of the unbalanced distribution
will be moderated, because a processor is devoted just to manage communications

222 B. Otero et al.

for every special domain. The optimum domain decomposition is problem dependent,
but a simple model could be built to approximate the optimum. We propose to assign
all B-domains in each host to a single CPU, which concurrently manages the
communications.

Table 2. Maximum number of communications for a computational iteration

 STICK MESH
 BALANCED singleB-domain multipleB-domain

Host xCPUs
Remote / Local
Communication

Remote / Local
Communication

Remote / Local
Communication

2x4 1 1 1 1 1 1
2x8 1 1 1 1 1 1

2x16 1 1 1 1 1 1
2x32 1 1 1 1 1 1
2x64 1 1 1 1 1 1

4x4 1 1 2 2 1 3
4x8 1 1 2 2 1 3

4x16 1 1 2 2 1 3
4x32 1 1 2 2 1 3

8x8 1 1 2 2 1 3
8x16 1 1 2 2 1 3

 BOX MESH
2x4 2 3 1 3 1 3
2x8 4 5 1 6 1 6

2x16 5 8 1 7 1 8
2x32 6 7 1 15 1 14
2x64 7 8 1 25 1 24

4x8 7 5 3 6 4 6
4x16 10 9 3 11 4 9
4x32 9 8 3 22 4 14

8x8 13 5 6 7 13 7
8x16 13 4 6 13 13 11

It is also important to look at the MPI implementation [17]. The ability to overlap
communications and computation depends on this implementation. A multithread MPI
implementation could overlap communication and computation, but problems with
context switching between threads and interferences between processes could appear.

In a single thread MPI implementation we can use non-blocking send/receive
with a wait_all routine. However, we have observed some problems with this
approach. The problems are associated with the internal order in no blocking MPI
routines for sending and receiving actions. In our experiments, this could be solved
programming explicitly the proper order of the communications. But the problem
remains for a general case. We conclude that it is very important to have no blocking
MPI primitives that actually exploit the full duplex channel capability. As future
work, we will consider other MPI implementations that optimize the collective opera-
tions [18], [19].

5 Conclusions

In this paper, we presented an unbalanced domain decomposition strategy for solving
problems that arise from discretization of partial equations on meshes. Applying the
unbalanced distribution in different platforms is simple, because the data partition is

 Data Distribution Strategies for Domain Decomposition Applications 223

easy to obtain. We compare the results obtained with the classical balanced strategy
used. We show that the unbalanced distribution pattern improves the execution time
of domain decomposition applications in Grid environments. We considered two
kinds of meshes, which define the most typical cases. We show that the expected
execution time can be reduced up to 53%.

The unbalanced distribution pattern reduces the number of remote communications
required. Our approach proves to be very effective, especially for box meshes. How-
ever, the unbalanced distribution can be inappropriate if the total number of proces-
sors is less than the total number of remote communications. The optimal case is
when the number of processors making calculation in a host is twice the number of
processors managing remote communications. Otherwise, if the number of processors
making calculations is small, then the unbalanced distribution will be less efficient
than the balanced distribution.

References

1. G. Allen, T. Goodale, M. Russell, E. Seidel and J. Sahlf. “Classifying and enabling grid applica-
tions”. Concurrency and Computation: Practice and Experience; 00: 1-7, 2000.

2. W. D. Gropp and D. E. Keyes. “Complexity of Parallel Implementation of Domain Decomposi-
tion Techniques for Elliptic Partial Differential Equations”. SIAM Journal on Scientific and Sta-
tistical Computing, Vol. 9, nº 2, 312-326, 1988.

3. D. K. Kaushik, D. E. Keyes and B. F. Smith. “On the Interaction of Architecture and Algorithm
in the Domain-based Parallelization of an Unstructured Grid Incompressible Flow Code”. 10th
International Conference on Domain Decomposition Methods, 311-319. Wiley, 1997.

4. W. Gropp, D. Kaushik, D. Keyes and B. Smith. “Latency, Bandwidth, and Concurrent Issue
Limitations in High-Performance CFD”. Computational Fluid and Solid Mechanics, 839-
841.MA, 2001.

5. R. M. Badia, J. Labarta, J. Giménez, F. Escale. “DIMEMAS: Predicting MPI Applications Be-
havior in Grid Environments”. Workshop on Grid Applications and Programming Tools
(GGF8), 2003.

6. R. M. Badia, F. Escale, E. Gabriel, J. Gimenez, R. Keller, J. Labarta, M. S. Müller. “Perform-
ance Prediction in a Grid Environment”. 1st European across Grid Conference, SC, Spain, 2003.

7. Y. Li and Z. Lan. “A Survey of Load Balancing in Grid Computing”. Computational and Infor-
mation Science, 1st International Symposium, CIS 2004. LNCS 3314, 280-285, Shanghai,
China.

8. Dimemas, Internet, 2002, http://www.cepba.upc.es/dimemas/
9. R. M. Badía, J. Gimenez, J. Labarta, F. Escalé and R. Keller. “DAMIEN: Distributed Applica-

tions and Middleware for Industrial Use of European Networks. D5.2/CEPBA”. IST-2000-
25406.

10. R. M. Badía, F. Escalé, J. Gimenez and J. Labarta. “DAMIEN: Distributed Applications and
Middleware for Industrial Use of European Networks. D5.3/CEPBA”. IST-2000-25406.

11. B. Otero y J. M. Cela. “Latencia y ancho de banda para simular ambientes Grid”. TR UPC-
DAC-2004-33, UPC. España, 2004. http://www.ac.upc.es/recerca/reports/DAC/2004/index,ca.html

12. D. E. Keyes. “Domain Decomposition Methods in the Mainstream of Computational Sci-
ence”. 14th International Conference on Domain Decomposition Methods, Mexico City, 79-93,
2003.

13. X. C. Cai. “Some Domain Decomposition Algorithms for Nonselfadjoint Elliptic and Parabolic
Partial Differential Equations”. TR 461, Courant Institute, NY, 1989.

224 B. Otero et al.

14. K. George and K. Vipin, “Multilevel Algorithms for Multi-Constraint Graph Partitioning”. Uni-
versity of Minnesota, Department of Computer Science. Minneapolis. TR 98-019, 1998.

15. K. George and K. Vipin, “Multilevel k-way Partitioning Scheme for Irregular Graphs”. Univer-
sity of Minnesota, Department of Computer Science. Minneapolis. TR 95-064, 1998.

16. Metis, Internet, http://www.cs.umn.edu/~metis
17. Message Passing Interface Forum, MPI-2: Extensions to the Message Passing Interface,

July, 1997.
18. N. Karonis, B. Toonen, and I. Foster. “Mpich-g2: A Grid-enabled Implementation of the Mes-

sage Passing Interface”. Journal of Parallel and Distributed Computing, 2003.
19. I. Foster and N. T. Karonis. “A Grid-enabled MPI: Message Passing in Heterogeneous Distrib-

uted Computing Systems”. Supercomputing. IEEE, November, 1998.
http://www.supercomp.org/sc98

Inter-round Scheduling for Divisible
Workload Applications

DongWoo Lee and R.S. Ramakrishna

Department of Information and Communication,
Gwangju Institute of Science and Technology, Republic of Korea

{leepro, rsr}@gist.ac.kr

Abstract. Most common jobs of Grid computing are arbitrarily divis-
ible. Divisible load theory(DLT) provides the mathematical machinery
for time-optimal processing. With multiple round load distributions, idle
processor periods can be harnessed for useful computation. Optimized
rounds for the purpose can be planned in advance. The Grid is dynamic
in nature. The above theory does not fully account for this. Any realistic
scheduling strategy based on DLT has to take this fact into account. Ex-
isting multiple rounds algorithms do not involve time-varying effects due
to environmental changes. This is a situation that leads to processing de-
lays, such as Disk I/O contention. The proposed inter-round scheduling
algorithm takes this into consideration. It involves time-varying resource
performance degradation and results in resonable performance.

1 Introduction

Resource scheduling is of vital importance for optimal Grid performance. Com-
monly encountered Grid jobs are arbitrarily divisible. The segmented tasks are
allocated to dispersed resources and processed. Divisible Load Theory[1] has
been considered to be a mathematically tractable framework to schedule arbi-
trary divisible workloads in parallel machines.

In this paper we employ divisible load scheduling in a multiple round frame-
work that adapts to changing environments brought about by dynamic resources.
A multi-round scheduling has been developed with a view to harness idle pro-
cessor cycles, a drawback of single round algorithms. The strategy is to allow
small chunks of workload in the initial rounds. This ensures that all the proces-
sors are busy. Load distribution is undertaken in parallel with the undergoing
computation. This results in overlapping of communication and computation.

Uniform Multi-Round Scheduling(UMR)[4] uses uniform chunk size in each
round. This leads to a near-optimal number of rounds, on both homogeneous
and heterogeneous platforms. But, this approach produces unexpected results in
the Grid in which resources are not dedicated to a specific task. As it uses system
parameters determined before load distribution, the actual makespan could vary
due to system dynamics. A load on each system component varies in time due
to the presence of background jobs. This increases the makespan of the system.
UMR does not resize the chunk to be assigned to a processor when a new round

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 225–231, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

226 D. Lee and R.S. Ramakrishna

begins as it is not adaptive in nature. Invariably, it follows the policy of working
with uniform chunk size. The chunk size is predetermined at the beginning of
load distribution.

We propose UMIO(Uniform Multi-Round Adaptive Disk I/O) Inter-round
scheduling that exploits current monitoring information about processor loads
to adjust the chunk size in response to changing system status. In UMR, every
processor in a round gets identically sized load. But, each processor expends a
different execution time according to its status. Some processors are slower or
faster than others. The time to process some given chunk can vary according
to the load on the procesor. In Inter-round scheduling, we allow uniform chuck
size, but it is based on the current processor I/O load as I/O contention creates
a bottleneck that slows down a processor. We can also use other system pa-
rameters to get a more precise model. When a new round begins, a processor’s
current I/O load affects the load distribution in the next round. This Inter-
Round scheduling tries to minimize the gap between the theoretical makespan
and the real one arising from changing system dynamics brought about by shared
resource contentions.

The rest of the paper is organized as follows: In section 2 we explain several
divisible workload scheduling algorithms. Section 3 presents the proposed UMIO
algorithm which is evaluated by simulation in Section 4. Section 5 concludes
the paper.

2 Related Work

In single round divisible load scheduling[1,2] on homogeneous platforms, the
total load is divided into unform chunks. In heterogeneous environments, the
load assigned to a processor is determined by its computational speed. Casanova
and Yang[3] proposed a simple model for large scale Grid computing. The model
does not consider overheads on shared resources.

Multi-Round Scheduling[1] was developed to reduce the time for which a
processor idly waits to receive its load—a situation that occurs in single round
scheduling. By repeatedly transmitting the load to each processor over multiple
rounds, the load size can be scaled down. This is in stark contrast to the single
round case. The next processor can receive the load immediately after the first
one and then work on it. The MI(Multiple Installment) Algorithm, which sends
the load in more than one installment to reduce communication overheads was
proposed by Bharadwaj et al[1]. Yang and Casanova[6] proposed a more realistic
affine overhead model for MI and transferring problem of outputs. The number
of rounds must be specified manually in this case. The UMR(Uniform Mutil-
Round Algorithm) was proposed by Yang and Casanova[4]. As it allows uniform
load size, it is possible to find the optimum number of rounds that minimizes
computational makespan. In [5], a robust method for controlling the size of load
in a progressive manner is mentioned. It has no device to control its adaptatibility
between rounds. In the proposed UMIO, we incorporate the functionality to
adapt to resource changes.

Inter-round Scheduling for Divisible Workload Applications 227

3 UMIO(Uniform Multi-round Adaptive Disk I/O)
Algorithm

As for the UMR which works with the same load size in each round, the makespan
could change due to varying system load. To solve this problem, we propose the
UMIO Algorithm that can accomodate changes in inter-round resource status.
Figure 1 shows how multi-round scheduling distributes chunks of workloads over
serveral rounds.

P1

P2

P3

P-N

ROUND 0 ROUND 1 ROUND 2

Communication

Computation

Communication

Computation

Communication

Computation

Communication

Computation

Time

Communication
Initialization Latency

Communication
Transfer Time

Communication
Termination Latency

Computation
Initialization Latency

Computation Time

Fig. 1. Uniform Multi-round Scheduling Diagram(UMR[4])

The parameters are related as follows:

TCi = nLati + αiziTcm + tLati (1)

TPi = cLati + αiwiTcp (2)

Here, TCi is the time taken to transfer chunk size αi to processors Pi; TPi is
the time taken to compute chunk size αi at processors Pi; nLati, tLati and cLati
are the initial and final communication latencies while cLati is the computational
initial latency. Futher, wi is the ratio of the time taken by Pi to compute a given
load, to the time taken by a standard processor to compute the same load; zi is
the ratio of the time taken by a link to Pi to transfer a given load, to the time
taken by a standard link to transfer the same load. Also, Tcp is the time taken
to process a unit load by the standard processor and Tcm is the time taken to
transfer a unit load using a standard communication channel.

3.1 Disk I/O Contention Model

Contention parameters are added to the ealier UMR model in accordance with
the following relationships:

TPi
′ = cLati

′ + αiwi
′Tcp (3)

wi
′ = Bi

ioCFcpwi (4)

228 D. Lee and R.S. Ramakrishna

cLati
′ = Bi

ioCFinitcLati (5)

Here, ioCFinit is the initial background I/O contention factor and ioCFcp

is the background I/O contention factor of computation. These two contention
factors are measured by a local resource monitoring system such as SWS(Storage
Weather Service)[7,8]. Further, Bi is the number of tasks competing for I/O at
Pi. By replacing the UMR’s TCi model with new factors, we can use UMR to
obtain near-optimal number of rounds[4]. We find the approximate number of
rounds through constrained minimization. The objective of this is to minimize
Ex(M, α0)[4], the makespan of the application. M is the number of rounds and
α0 is the initial chunk size in round 0. By computing the initial chunk size and
M, the chunk size of the next round can be obtained by

Ex(M, α0) =
W

N
+ McLat +

1
2
N(nLat + α0ziTcm) + tLat (6)

Here, W is the total workload and N is the number of processors. M is
computed by the Lagrange multiplier method the same as in [4]. Once we have
near-optimal number of rounds, M∗, we can get the initial chunk size, α0.

3.2 Inter-round Scheduling of UMIO

UMIO begins with predetermined M and α0. Before distributing the load in the
next round, a new chunk size is calculated as described above. Figure 2 shows
inter-round scheduling. Between rounds, a processor’s status changes owing to
contentions as described in the I/O contention model. Therefore, rescheduling
based on the current status of each processor is needed.

In this paper, we assume that all the processors are affected to the same
degree of contention from concurrently running applications. This is reasonable
because local resources in the Grid are clustered homogeneous machines involv-
ing the same type of hardware and software. If an application is deployed to
a local cluster, it suffers from I/O contention to the same extent over all the
resources. In such a situation, the UMIO algorithm works with the same chunk
size in a round.

Round K-1 Round K Round K+1

Inter-Round Scheduling
Reset Load Factors

New Chunk Size Smoothing

Master
Scheduler

Rescheduling Event

Load Distribution
Workload Statistics

Fig. 2. Inter-Round Scheduling Procedure

Inter-round Scheduling for Divisible Workload Applications 229

During the first round following initial scheduling, the contention factors of
all the processors are collected by the master scheduler in parallel. These indicate
the current processing power of the processors. These factors are incorporated
into the UMIO model and the updated M and α0 are computed. The scheduler
then computes the chunk size for the next round, i.e., K +1. If the new M is not
equal to the initial M and the next round K + 1 is greater than the initial M,
the scheduler takes the last round’s chunk size for the new schedule because the
last chunk size is the largest. UMR and UMIO employ a small chunk size in the
initial round with a view to start all the processors immediately. The smoothing
operation of Figure 2 is to select proper chunk size by comparing the initial and
the new M.

4 Experiments and Results

We evaluate UMIO with SI(Single Installment)[2], MI(Multiple Installment)[1]
and UMR[4]. SI and MI do not involve an affine cost model. But, UMR and
UMIO follow an affine cost model including overhead costs described in Section
3. Figure 3 shows the makespan of SI, MI and UMR. We set w=10,z=5, Tcm=1,
Tcp=1, cLat=0.1, tLat=0.1 and cLat=0.1. The number of processors ranged
from 2 to 20. The number of rounds ranged from 2 to 10 for MI. SI leveled at
10 processors having a makespan of 2.4. We searched the makespan space of
MI. It shows similar results as did SI when the number of processors increases
at a certain fixed number of rounds(#Rounds). Also, increasing the number
of rounds results in enhanced makespan, but not as much as is obtainable by
increasing the number of processors. MI leveled at 9 processors and 3 rounds
which has a makespan of 2.0. The advantages of multi-round scheduling can be
discerned by comparison between SI and MI.

Figures 3 (c) and (d) show UMR’s makespan and its optimized number of
rounds verses the number of processors. UMR outperforms MI with 5 proces-
sors when the makespan is 1.85. The number of rounds grows up to 8 as the
number of processors reaches 4. After that, the number of rounds decreases to 2
because there are enough processors to process the workload. The flat makespan
of UMR is about 0.62. In the case of UMR, we assume that there is no back-
ground job to share the computing power, i.e., each resource uses 100% of the
computing power.

Figure 4 plots the dependence of UMIO’s makespan and the number of rounds
against the number of processors. The result is similar to that of UMR but the
makespan has stepwise changes because of inter-round rescheduling. We allow
a performance degradation of 5% per round to simulate time-varying resource
changes. In each experiment in a certain simulation(#Procs), each processor has
a different computing power in a round. The makespan of UMIO flattened at 1.0
even though it suffered from computing power degradations due to contention.
The round variation looks similar to that of UMR. But there is a difference
between UMR and UMIO due to the time-varying processor performance changes
as can be seen in Figure 4 (b).

230 D. Lee and R.S. Ramakrishna

(a) SI (b) Makespan Space of MI

(c) UMR (d) Round Variation of UMR

Fig. 3. Makespan of SI, MI and UMR

(a) (b)

Fig. 4. Makespan: (a) UMIO (b) UMR(standard) vs UMIO(adjusted)

Figure 5 shows makespans of SI, MI, UMR and UMIO. Because SI and MI
have no affine cost model, the actual graph shifts upward by as much as the
overhead cost. UMIO outperforms SI and MI after 10 processors. But, UMIO
outperform SI and MI over the entire range. Because UMIO has an affine cost
model and the Disk I/O contention model, we enforce 5%/Round degradations.
Also, UMIO is close to UMR as many processors are involved even though each
processor suffers from contentions in every round.

Inter-round Scheduling for Divisible Workload Applications 231

Fig. 5. Comparison SI, MI(best case, M=8), UMR and UMIO

5 Conclusions

In this paper, we have made two contributions: 1) the Disk I/O contention model
for multi-round divisible load scheduling—a step toward a realistic DLT model
in the Grid, and 2) Inter-round scheduling for adapting to changes in resource
performance status. In addition to the benefit that accrues from multi-round
scheduling and UMR’s optimal number of rounds for a certain environment, one
can also impart adaptability to the changes in environment to schedule divisible
load applications in the Grid.

References

1. Veeravalli Bharadwaj, Debasish Ghose, Venkataraman Mani and Thomas G. Rober-
tazzi, Scheduling Divisible Loads In Parallel And Distributed Systems, IEEE Press,
1996.

2. Bharadwaj Veeravalli, Xiaolin Li, Chi Chung Ko. On the influence of start-up costs
in scheduling divisible loads on bus networks, IEEE Trans. on Parallel and Dist.
Systems Vol. 11, No. 12, Dec 2000

3. Henri Casanova and Yang Yang, Algorithms and Software to Schedule and Deploy
Independent Tasks in Grid Environment, Feb. 2003

4. Yang Yang and Henri Casanova, A Multi-Round Algorithm for Scheduling Divisi-
ble Workload Applications: Analysis and Experimental Evaluation, Department of
Computer Science and Engineering, UCSD, Technical Report CS2002-0721, Septem-
ber 26, 2002.

5. Yang Yang and Henri Casanova, RUMR: Robust Scheduling for Divisible Workloads,
HPDC2003, June 2003.

6. Yang Yang and Henri Casanova, Extensions to the Multi-installmemnt Algorithm:
Affine Costs and Output Data Transfers, July, 2003.

7. DongWoo Lee, R.S.Ramakrishna, Disk I/O Performance Forecast using Basic
Prediction Techniques for Grid Computing, Lecture Note in Computer Science,
Springer-Verg, LNCS 2763, pp. 257-269, 2003.

8. DongWoo Lee, R.S.Ramakrishna, Storage Weather Service: Storage Performance
Forecast, Cluster Computing and the Grid(CCGrid), 2003, Tokyo, Japan.

Scheduling Divisible Workloads Using the Adaptive
Time Factoring Algorithm�

Tiago Ferreto and César De Rose

Catholic University of Rio Grande do Sul (PUCRS),
Faculty of Informatics, Porto Alegre, Brazil
{ferreto, derose}@inf.pucrs.br

Abstract. In the past years a vast amount of work has been done in order to im-
prove the basic scheduling algorithms for master/slave computations. One of the
main results from this is that the workload of the tasks may be adapted during the
execution, using either a fixed increment or decrement (e.g. based on an arithmeti-
cal or geometrical ratio) or a more sophisticated function to adapt the workload.
Currently, the most efficient solutions are all based on some kind of evaluation of
the slaves’ capacities done exclusively by the master. We propose in this paper the
Adaptive Time Factoring scheduling algorithm, which uses a different approach
distributing the scheduling between slaves and master. The master computes, us-
ing the Factoring algorithm, a time slice to be used by each slave for processing,
and the slave predicts the correct workload size it should receive in order to ac-
complish this time slice. The prediction is based on a performance model located
on each slave which is refined during the execution of the application in order to
provide better predictions. We evaluated the proposed algorithm using a synthetic
testbed and compared the obtained results with other scheduling algorithms.

1 Introduction

Load balancing has been an ongoing issue for decades. Algorithms based on list-
scheduling which manage a list of ready to execute tasks that are sent to slave proces-
sors are mainly used because of their suitability to dynamically evolving computations,
and also because they cope with heterogeneous resources, since when one processor
has finished his work it simply gets more work from the list. This is a simply way to
automatic compensate for the differences in the performance of the slaves.

A vast amount of work has been done in order to improve the basic algorithms
for master/slave computations. One of the main features concerning load balancing
that resulted from this is that the workload of the tasks may be adapted during the
execution, using either a fixed increment or decrement (e.g. based on an arithmetical or
geometrical ratio) or a more sophisticated function to adapt the workload. We present a
briefly review of some of these techniques in Section 2.

Yet the solutions presented are all based on some evaluation by the master of the
slaves’ capacities and of the tasks workload. This implies a significant overhead since
the master has to maintain some kind of information about its slaves. We present in

� This research was done in cooperation with HP-Brazil.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 232–239, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Scheduling Divisible Workloads Using the Adaptive Time Factoring Algorithm 233

this paper the Adaptive Time Factoring scheduling algorithm, which uses a differ-
ent approach distributing the scheduling between slaves and master. The master com-
putes, using the Factoring algorithm, a time slice to be used by each slave for pro-
cessing, and the slave predicts the correct workload size it should receive in order to
accomplish this time slice. The prediction is based on a performance model located on
each slave which is refined during the execution of the application in order to provide
better predictions.

In this paper we review in Section 2 some scheduling algorithms used for mas-
ter/slave applications with a brief state of the art for each one. Section 3 presents our
algorithm and the way each slave can evaluate its capacities. In order to validate our
algorithm we devised a synthetic small testbed and Section 4 shows the measurement
results that we have obtained using the algorithm proposed in comparison to other al-
gorithms. At last we draw some conclusions about our contribution.

2 Related Work

We present below some classic self-scheduling algorithms proposed in the literature.
Self-scheduling [1] represents a large class of dynamic centralized loop scheduling
methods. These methods divide the total workload based on a specific distribution, pro-
viding a natural load balancing to the application during its execution. We present also
some adaptive algorithms that add extensions to the classic self-scheduling algorithms
in order to support heterogeneity and adaptability. They consider the load variation in
the system environment and adjust the size of the chunks delivered to each processor
dynamically. This class of algorithms presents a good performance on dynamic and
heterogeneous environments based on its ability to adapt itself to the changes in the
environment during the execution of an application.

The Pure Self-scheduling or Workqueue scheduling algorithm divides equally the
workload in several chunks. A processor obtains a new chunk whenever it becomes idle.
Due to the scheduling overhead and communication latency incurred in each scheduling
operation, the overall finishing time may be greater than optimal.

The Fixed-size Chunking scheduling algorithm [2] proposes that each processor
receives chunks with size K each time it becomes idle. Although it is hard to determine
the best K value in realistic applications due to the high number of dependable variables,
the authors give an approximation for an acceptable fixed chunk-size K (using Pth order
statistics to model the last P chunks).

The Guided Self-scheduling algorithm [3], schedules large chunks initially, imply-
ing reduced communication/scheduling overheads in the beginning, but at the last steps
too many small chunks are assigned generating more overhead [1]. Each time a proces-
sor requests for more work, the algorithm assigns to it a chunk of size equal to the size
of the remaining workload divided by the total number of processors being used for
the computation.

Factoring [4] was specifically designed to handle iterations with execution-time
variance. With factoring, iterations are scheduled in batches of P equal-sized chunks.
The total size of the chunk per batch is a fixed ratio (α) of the remaining workload, i.e.
Remaining Workload / α ∗ Number Of Processors.

234 T. Ferreto and C. De Rose

Weighted Factoring Self Scheduling [5] is an improved loop scheduling algorithm
addressing load imbalance in a heterogeneous environment. In this algorithm, proces-
sors are dynamically assigned decreasing size chunks of iterations in proportion to their
processing speeds.

Adaptive Weighted Factoring [6,7] is an adaptive algorithm based on probabilistic
analysis, being able to accommodate load imbalances caused by predictable and unpre-
dictable phenomena. In the Adaptive Weighted Factoring, the weight values are adapted
after each iteration in the computation. The newly computed weights are not only based
on the performance of particular processors during the previous iteration step, but also
on their cumulative performance during all the previous iterations.

Adaptive Factoring [8,9] allows a relaxation of some of the theoretical assump-
tions imposed by models used in earlier methods, therefore making this technique more
robust to any load variations present in the environment and improving the perfor-
mance of applications characterized by highly irregular behavior. In this algorithm,
the weights are dynamically assigned to processors at run time by closely follow-
ing the rate of change in processor speed. The model used for this method allows
the dynamic computation of new weights for each processor, when a new chunk is
allocated.

In all algorithms shown above, the information needed to evaluate the best pro-
cessor to run the remaining workload is centralized at the master process, which is
responsible for the decision regarding increasing or decreasing the chunk that is exe-
cuted by each slave process. We propose in the following Section another approach,
where the evaluation of the chunk size to be assigned to each slave is done by the
slave itself.

3 Adaptive Time Factoring Scheduling Algorithm

The Adaptive Time Factoring (ATF) scheduling algorithm is, like others algorithms
(e.g. Weighted Factoring [5], Adaptive Weighted Factoring [6,7]), based on the de-
creasing scheme proposed by Factoring [4]. However, instead of decreasing, for each
round, the number of tasks to be processed by each slave, it decreases the time slice that
each slave should use. Each slave predicts the best chunk size it should process based
on the time slice given using a performance model.

The main features of the algorithm are the utilization of time instead of chunk sizes
as a scheduling metric, and the distribution of the performance model structure between
the slaves. The utilization of time instead of chunk sizes facilitates handling hetero-
geneous slaves due to better scheduling abstraction, i.e. the scheduler can assure that
scheduling the same amount of time for different slaves will result in approximately
the same completion time benefiting overall performance. The adoption of a distributed
performance model managed by the slaves instead of a centralized one at the serevr pro-
vides better scalability support avoiding a centralized bottleneck and faster adaptation of
the model due to performance variable fluctuations. Based on this data distribution, the
algorithm scheduling decision is also distributed between master and slaves. In contrast
to other algorithms, the slave also participates at the scheduling decision calculating the
chunk size to be processed using its local performance model.

Scheduling Divisible Workloads Using the Adaptive Time Factoring Algorithm 235

The main goal of the algorithm is to minimize execution time of applications in
heterogeneous and dynamic environments. It addresses particularly applications using
the master/slave model containing divisible workloads, i.e. the total amount of work to
be processed can be divided in equal-size chunks.

During the execution of the algorithm, each slave builds an internal performance
model which contains the slave’s execution and communication time demands to pro-
cess chunks of the application workload. It enables the prediction of the chunk size to
be processed by the slave in order to fully use the time slice given by the master. De-
tailed information related to the performance model and the prediction method used in
the algorithm is presented in Section 3.1.

The Adaptive Time Factoring scheduling algorithm is based on a distributed
scheduling method. Each slave computes a chunk sent by the master and, based on
its internal performance model, predicts the best chunk size to be computed at the next
iteration considering the time slice given by the master. The master distributes time
slices in decreasing chunks between the slaves. The decreasing method used is based
on the Factoring [4] algorithm with a fixed value α = 2.

In order to obtain efficient slave predictions for scheduling, it’s necessary to build
and refine the performance model in each slave before using the predictions. Due to
this requirement, the Adaptive Time Factoring scheduling algorithm is divided in two
distinct phases: setup phase and adaptive phase.

The setup phase is used to build the local performance model on each slave and to
refine it in order to produce predictions with minimum error. It’s like an initial bench-
marking of each slave using the application workload. At the beginning, the master
sends to each slave a chunk with minimum size and waits for the results. After receiv-
ing the results from a slave, it sends another chunk to the slave duplicating its size by
a factor of two. It continues this process until it receives a signal from the slave indi-
cating to start with the adaptive phase. This signal is sent when the slave already has
an efficient performance model capable of producing good predictions, i.e. the model
provides minimum error comparing predicted and measured execution times.

The adaptive phase turns over an increasing size mechanism to a decreasing one.
However, instead of decreasing the chunk size, it decreases the time slice used by each
slave to predict the more appropriate chunk size to be processed. Since the beginning
of the algorithm, each time the master sends a chunk to each slave, it includes in the
message a time slice for the next round. This time slice is used by the slave to predict
the chunk size that it can be execute at the next round. The slave returns a message with
the results of the chunk processing, the execution time that it took to process the chunk
and the chunk size predicted. This chunk size is only considered at the algorithm after
the slave sends the signal to the master in order to start the adaptive phase. The time
slice for the round is computed as:

timeSliceroot
i+1 = (workloadi+1 ∗ avgExecT ime)/α ∗ nSlaves

where timeSliceroot
i+1 is the time slice computed for the next round (i + 1),

workloadi+1 is an estimation of the remaining workload at the next round (i + 1),
avgExecT ime is the average execution time for a chunk with minimum size, alpha
is a parameter of the Factoring algorithm which is fixed to 2 and nSlaves is the total

236 T. Ferreto and C. De Rose

number of slaves. The average execution time is computed each time the master re-
ceives a new result from some slave using chunk size and execution time values. Since
the time slice sent is related to the next round, it’s necessary to use an estimation of the
remaining workload at the next round. It is compute as:

workloadi+1 = workloadi − nSlaves ∗ timeSlicei

avgExecT ime

The estimation is based on the subtraction, on the current workload, of the average
chunk size that can be processed by all slaves during the current time slice. In order to
minimize the gap between slaves completion times, the following rule is used: the first
slave in a round computes its time slice as presented above (root time slice), and all the
others compute their time slices as:

timeSlicei+1 = timeSliceroot
i+1 − δj

where timeSliceroot
i+1 is the first time slice computed at the beginning of the round, and

δj is the time taken to set this new time slice since the first time slice of this round has
been computed.

The master algorithm for the adaptive phase is presented in Figure 1. It keeps in a
loop sending chunks and receiving the results to available slaves until the workload is
empty. Before sending the chunk to a slave, it computes the time slice, which depends
if the slave is the first to compute this value or not, as described before. It assigns the
new chunk size with the slave’s prediction size previously returned with the last result,
and sends to the slave the chunk and time slice.

At reception, the master receives the result of chunk processing, execution time
took to process the chunk and the predicted chunk size for the next round. The average
execution time is computed using chunk size and execution time parameters.

Algorithm 1. Adaptive Time Factoring algorithm
1: while workload is not empty do
2: for each available slave do
3: if beginning of round i then
4: compute timeSliceroot

i+1

5: else
6: compute timeSlicei+1

7: end if
8: chunk ⇐ predictedSize
9: send chunk and timeSlicei+1

10: end for
11: receive result, execT ime and predictedSize
12: compute avgExecT ime
13: end while

Due to the existence of a performance model on each slave, any change in the ma-
chines (e.g. machine turned down, start of a concurrent application) results in an adap-
tation of the best chunk size to be processed by the slave. It is important to emphasize

Scheduling Divisible Workloads Using the Adaptive Time Factoring Algorithm 237

that different slaves can be in distinct phases of the algorithm at the same time, i.e. some
of the machines can be executing at the setup phase and others at the adaptive phase.
This condition happens when more slaves are included during the execution.

3.1 Local Prediction of the Computational Load

In order to estimate the most suited workload, a slave needs a performance model for
the execution of chunks of size chunkSizei. The model may include various data
such as the execution time, memory utilization, etc, used to process a given chunk.
In this preliminary version of our prototype we only take into account the
execution time.

Given some N values chunkSize1, chunkSize2, . . . chunkSizen and the slaves’s
data t (e.g. the execution time) the slave has to estimate t(chunkSize). In a multi-
parameter model we could use algorithms such as the Singular Value Decomposi-
tion [10], one of the most robust for data modeling. It would fit the function t as a
linear combination of standard base functions (e.g. x → ex,

√, polynomials, . . .).
Nevertheless in the case where t only depends on the processor’s speed, an affine

model of the time required vs. the chunk size to run is most realistic and used by other
algorithms [11]. The modeling problem is therefore a basic linear interpolation problem
of the measured running time tj , j = 1 . . . n vs. the chunk size chunkSizej. Besides
the estimated coefficients a, b of the affine approximation t = a + b × chunkSize, the
correlation coefficient is used to determine the correction of the interpolation and thus
decide if a larger chunk should be sent in the initial phase.

The interpolation algorithm is very fast and thus does not prejudice the execution of
the application. Moreover, it is trivial for a slave to determine the adapted chunk size,
given the execution time t it has to run and the affine model (a, b). Note that in the case of a
more complex, non-linear model, it would have to use a more time-consuming algorithm
such as a gradient or dichotomic search to solve the t = f(chunkSize) equation.

4 Evaluation

In order to evaluate the performance of the Adaptive Time Factoring scheduling algo-
rithm (ATF) we devised a simple master/slave application and executed it in a hetero-
geneous cluster. This application consists in w multiplications of two matrices of size
n×n. The minimum chunk size is the multiplication of two matrices (w = 1). With this
application we are able to easily vary the size and the number of chunks to be processed,
generating different conditions to evaluate the behavior of our algorithm.

We executed the application in a cluster with 16 machines connected through a
Fast-Ethernet network. The testbed consists of four different types of nodes divided in
classes, from A to D (4 nodes per machine class). To give an idea of the performance
of each machine class Table 1 presents their execution times for the computation of a
chunk for three different matrix sizes.

We compared our Adaptive Time Factoring scheduling algorithm (ATF) to the clas-
sical Workqueue algorithm (WQ), and to two factoring algorithms, the non-adaptive
Factoring Algorithm (FAC), and the Adaptive Weighted Factoring (AWF) with α = 2.

238 T. Ferreto and C. De Rose

Table 1. Execution time for one chunk (one matrix multiplication - w = 1)

execution time (seconds)
n Class A Class B Class C Class D

300 0.80 1.00 1.34 1.44
500 5.18 6.89 9.35 9.52
700 14.82 19.74 27.03 27.22

Table 2. Comparison of the execution times of the algorithms (in seconds)

n
t 300 500 700

WQ FAC AWF ATF WQ FAC AWF ATF WQ FAC AWF ATF
1000 61.74 62.86 61.7 62.15 486.22 483.98 483.94 483.04 1391.57 1385.12 1378.60 1380.34
1500 94.45 93.79 91.38 92.80 727.03 726.86 724.55 725.84 2081.26 2080.94 2068.97 2072.44
2000 122.69 124.63 121.54 124.77 964.97 965.68 963.32 964.99 2767.57 2769.48 2754.77 2756.48
2500 152.76 155.70 158.16 155.05 1208.22 1207.80 1205.15 1206.89 3456.94 3452.83 3438.00 3444.37
3000 190.16 187.5 183.98 181.9 1449.34 1448.31 1442.63 1445.86 4151.01 4144.19 4126.22 4134.71

We used three different matrix sizes (n): 300, 500 and 700, and five number of multi-
plications for the workloads w: 1000, 1500, 2000, 2500 and 3000. The obtained results
are presented in Table 2.

In most cases ATF outperforms WQ and FAC, particularly in bigger matrices. This
is expected because of the heterogeneity of the testbed. Adaptive algorithms can adapt
the number of chunks scheduled to a node depending on their performance thus making
better use of the resources.

ATF has similar results to AWF in all cases (difference around 1% in execution
times). We think this is a very promising result considering that AWF is one of the
latest algorithms introduced and is also known for having the best results for the kind
of measurements we are performing ([6,7]). Besides, we believe that the benefits of
adaptability and distributed scheduling presented in ATF, in order to improve scalability
and performance, couldn’t be explored in our experiments, since the measurements have
been done in a small heterogeneous cluster. We believe that using more machines, ATF
will eventually overcome AWF.

5 Conclusions

In this paper we presented the Adaptive Time Factoring (ATF) scheduling algorithm. It
is based on a distributed scheduling method, in which each slave computes a chunk sent
by the master and, based on its internal performance model, predicts the best chunk size
to be computed at the next iteration considering the time slice given by the master. The
master distributes time slices between the slaves using a decreasing method based on
the Factoring algorithm.

We presented experimental measurements with ATF in a heterogeneous platform
and compared it to other algorithms. The results show that ATF outperforms Workqueue

Scheduling Divisible Workloads Using the Adaptive Time Factoring Algorithm 239

and Factoring in most cases, particularly in bigger matrices. ATF showed also similar
results to Adaptive Weighted Factoring in all cases (difference around 1% in execution
times). We think this is a very promising result considering that AWF is known for
having the best results for the kind of measurements we performed. We also believe
that ATF, due to its distributed scheduling mechanism, will eventually overcome AWF
in a testbed with more machines.

References

1. Chronopoulos, A.T., Andoine, R., Benche, M., Grosu, D.: A class of loop self-scheduling
for heterogeneous clusters. In: Proceedings of CLUSTER’2001. (2001)

2. Kruskal, C.P., Weiss, A.: Allocating independent subtasks on parallel processors. IEEE
Transactions on Software Engineering 11 (1985) 1001 – 1016

3. Polychronopoulos, C.D., Kuck, D.J.: Guided self-scheduling: A practical scheduling scheme
for parallel supercomputers. IEEE Transactions on Computers 36 (1987) 1425–1439

4. Hummel, S.F., Schonberg, E., Flynn, L.E.: Factoring: A method for scheduling parallel loops.
Communications of the ACM 35 (1992) 90–101

5. Hummel, S.F., Schmidt, J.P., Uma, R.N., Wein, J.: Load-sharing in heterogeneous systems
via weighted factoring. In: Proceedings of the 8th Symposium on Parallel Algorithms and
Architectures. (1997)

6. Banicescu, I., Velusamy, V.: Performance of scheduling scientific applications with adaptive
weighted factoring. In: Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS 2001) - Heterogeneous Computing Workshop, San Francisco (2001)

7. Banicescu, I., amd Johnny Devaprasad, V.V.: On the scalability of dynamic scheduling sci-
entific applications with adaptive weighted factoring. Cluster Computing: The Journal of
Networks, Software Tools and Applications 6 (2003) 213–226

8. Banicescu, I., Liu, Z.: Adaptive factoring: A dynamic scheduling method tuned to the rate
of weight changes. In: Proceedings of the High Performance Computing Symposium (HPC
2000)ac, Washington (2000) 122–129

9. Banicescu, I., Velusamy, V.: Load balancing highly irregular computations with the adaptive
factoring. In: Proceedings of the IEEE - International Parallel and Distributed Processing
Symposium (IPDPS 2002) - Heterogeneous Computing Workshop, Fort Lauderdale (2002)

10. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The
Art of Scientific Computing. 2nd edn. Cambridge University Press (1993)

11. Beaumont, O., Legrand, A., Robert, Y.: Scheduling divisible workloads on heterogeneous
platforms. Parallel Computing 29 (2003) 1121–1152

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 240 – 245, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Adaptive Policy Triggering for Load Balancing∗

Dan Feng and Lingfang Zeng

Key Laboratory of Data Storage System, Ministry of Education,
School of Computer, Huazhong University of Science and Technology, Wuhan, China

dfeng@hust.edu.cn, jonseng@263.net

Abstract. Load balancing is an attractive problem in storage system. With the
fast growth of high-speed network technology and novel storage architecture,
smarter storage device becomes an effective way to solve the problem. In this
paper, we present an effective object migration & replication policy in our
object storage system (OSS), denoted adaptive policy triggering. This policy
migrates/replicates object from congested object storage controllers to relatively
uncongested object storage controllers according to the information of three
facets in the OSS, including metadata server, object storage controller and
storage object itself. First, clients interact with the metadata server (MS). So
those global policies are triggered by the MS. Second, the OSC has better
knowledge of its own load than MS. It is reasonable that local policy is
triggered by the OSC. Third, the storage object is encapsulated with data,
attributes and methods. These attributes can be set or got when objects are
accessed. And object attribute values are good as policy threshold. Furthermore,
object methods also can be triggered according to some policies.

1 Introduction

Load-balancing strategies may be best when a large number of users with high-speed
connections to the servers access a relatively small quantity of rarely updated
information. In that case, load balancing is beneficial primarily in that it provides a
measure of redundancy (e.g. replication, snapshot etc.). Load balancing is also good
when most of the hits on the server are on a small group of pages, which negates
using hyperlinks to disperse content to multiple servers.

However, server load balancing has been excessively studied. Such load balancing
policy improves network performance by distributing traffic efficiently so that
individual servers are not overwhelmed by sudden fluctuations in activity. Server load
balancing is a guide to this critical component of high availability, clustering, and
fault tolerance, all of which provide the infrastructure for reliable Internet sites and
large corporate networks. Those technologies often solve problems, but not always,
and, specially, not for storage system.

Moreover, scarce research aim at helping users reduce server hardware and lessen
bandwidth needs in large data centers. In fact, load balancing and failover are crucial

∗ This work was supported by the National Basic Research Program of China (973 Program)

under Grant No. 2004CB318201, Huo Yingdong Education Foundation under Grant
No.91068, the National Science Foundation of China under Grant No.60273074 and
No.60303032.

 Adaptive Policy Triggering for Load Balancing 241

features in any storage system. Nowadays, storage industry wants an alternative that
people can keep servers costs low and keep the amount of work they have to do as
small as possible. So, intelligent storage device is taken into account.

The OSS (object storage system) is the next wave of storage technology and devices
[1]. Above mentioned researches identify weak points in devoting their mind to the
servers (or application servers) and overlooking storage nodes or using traditional
storage interface (file or block) in storage nodes, but are trying to gear toward load
balancing. It may be a new approach for us to design smart storage system with the help
of the OSS. This paper just discusses the intelligence of object storage device and
provides a load balancing policy based on adaptive policy triggering.

2 Object Storage System Overview

2.1 The OSS Structure

In the OSS, objects are primitive, logical units of storage that can be directly accessed
on an object storage controller (OSC). The OSS built from the OSCs is shown in
Figure 1. A metadata server (MS) provides the information necessary to directly
access objects, along with other information about data including its attributes,
security keys, and permissions (authentication). The OSCs export object-based
interface, and the access/storage unit is object. It operates in a mode in which data is
organized and accessed as objects rather than as an ordered sequence of sectors.
Clients contact with MS and get the information about objects. The OSCs receive and
process those requests with some policies. In our previous work [2], smart object
storage controller is introduced.

Fig. 1. Object storage system architecture

2.2 Object Attribute and Method

The object is the fundamental unit of data storage in the OSS. Storage object [1], [3],
[4], [5] is a logical collection of bytes in the OSC. An object on the OSC consists of

242 D. Feng and L. Zeng

an ordered set of sectors associated with an object ID (OID). Data is referenced by the
OID and an offset into the object. Conceptually similar to a file, it is allocated and
placed on the media by the OSC itself, while the operating system manages its files
and metadata in these object constructs, instead of managing sectors of data.

For convenient managing, other object attribute can be extended to three types,
such as public attribute, privacy attribute, share attribute. For example, public
attribute is opaque to the storage device and are used by applications or MS to store
higher-level information about the object, such as OID, object name, object type (e.g.
file, device, database table) and storage map. Also, in the OSS, the OSC is a special
device object and comprises some attributes, such as the OSC’s initial capacity,
remaining capacity and IP address.

In the OSS, method may be a user-defined modular operation on stream data, and it
is applied to per-object basis. It takes input data, performs operation on the data, and
then passes data to its output. Each object in the OSS has associated with reading and
writing streams. Clients can insert any modular methods into read and write streams.
When clients read/write objects, the objects enter the stream at one end, progress call
those register methods, and the methods are executed when the data passing through
them. The OSS provides flexible methods by supporting arbitrary data stream
operations. Thus, clients can upload any kind of methods, and register any kind of
method for any objects.

3 Adaptive Policy Triggering

A “policy” can be thought of as a coherent set of rules to administer, manage, and
control access to network resources [5]. With object attribute scalability, abundance
clues are obtained to guide or direct in the solution of self-managing by the OSS.

Fig. 2. Adaptive policy triggering based on OSS

Figure 2 shows our design for adaptive policy triggering. It is a simple version from
our previous work [8]. In our design, criteria and policies are separated. It is because

 Adaptive Policy Triggering for Load Balancing 243

that one policy may correspond to several criteria, and one criterion may adapt to
different policies. The criteria pool is filled with general values regarded to be useful
by one or more of the management policies. Most popular criteria such as time,
frequency of access, capacity and size are initially registered to the pool. A new
policy registered into the policy pool has to contact corresponding criteria in case they
are not already registered. So the OSS can provide a solution for dynamic loading or
unloading policy.

The adaptive policy triggering ensures that the registered criteria are updated on
performance of storage system state. Those policies themselves are just descriptions
of how to implement system management function and specify system states and how
to response to them. These may include any proposed storage system management
policy. When clients or system operate objects, the OSS records correlative object
attribute values. For the adaptive policy triggering, those correlative policies are
triggered and therefore have the largest effect on the storage system load. The
adaptive policy triggers the policy depending on the match process between object
attribute values and criteria from the criteria pool.

4 Load Balancing Based on Adaptive Policy Triggering

As distributed systems span the globe, placing objects near the point where the
objects are accessed is becoming important to improve service performance and to
reduce network load. With the adaptive policy triggering, the OSS will have the
ability to transparently migrate or replicate objects among different OSCs based on,
for example, QoS issues.

4.1 Triggered by Metadata Server

MS authenticates client request and authorizes client access data with capability. In fact,
a map recorded information between OID and the OSCs is got from the MS. After
authentication and authorization, client directly access data with map and capability got
from the MS. At the same time, all MSs may act as a role of router. They routing
management information and copy (or move) some object metadata. Management
message can be routed efficiently for metadata discovery and system management.

As a resource manager, the MS record concerned information of all OSCs, such as
total capacity, used space, available space, optional striping requirement among the
OSCs, total I/O bandwidth and IP address. The MS monitor data requests in the OSS.
According to the object access pattern, object may be migrated, replicated or stripped
among the OSCs to achieve good locality, load balancing and high scalability. Load
balancing among the MSs can also be achieved based on this same object
access monitoring.

For instance, whenever additional space is required, there would be a central
authority to which MS in the network could turn to find additional space or to find all
the OSCs available to it. This could be the basis for operating systems being more
dynamic and flexible as to what hardware they are operating with at any point. It need
not be the peripheral set that was present at system generation time or even power
up time.

244 D. Feng and L. Zeng

4.2 Triggered by Object Storage Controller

Local intelligence is achieved in the OSCs and is a basis of the whole object storage
system. The OSC has better knowledge of its own load than MS. If I/O load of one
OSC reach the local threshold, the OSC may initiate replication of popular objects to
enforce load balancing or may migrate some hot spot object.

Moreover, with the OSCs understanding quite precisely which objects are in use
and which are not, the cache space can be more effectively utilized. It should also
make scalability more linear by increasing storage management capability at the same
rate as the number of the OSCs increases. The OSCs would take over space
management, eliminating any increase in OS overhead.

At the same time, each OSC has some additional processing power to apply some
other tasks. They could contribute to breaking the task of data management into many
simple, small functions performed concurrently. If the OSCs knew enough about what
work was going on, they could make sure that an export operation only took place
when an object was in a consistent state. Support load balancing by having the OSCs
be as knowledgeable as possible about their own conditions and informing the
appropriate service of those conditions or acting in response to those conditions as
guided by policy assignments. The OSC could allocate an object to whatever zone is
most appropriate given the users interest in cost versus performance.

4.3 Triggered by Storage Object

Object attributes may describe how object data are stored or accessed. So object can
initiate load balancing policy itself. Object is composed of data, attributes and
methods. Some policy about object management is listed in object attribute set. This
is similar to the inode attributes inside a traditional file system. But object method
may lib-like program and can be dynamicly loaded/unloaded. (Of course, those
methods must be registered firstly.)

For instance, an object attribute could be set for an object object when the object
was closed after an updating, the OSC could automatically keep the old version of the
object while giving the new one a separate OID. Similarly, an object attribute might
be set to indicate that an object should be exported after it was updated. Object
attributes describe characteristics of the data. Most of object attributes are used by the
OSC to manage the storage object. Which include object ID, block pointers, logical
length etc. In the OSS, the OSC is a special kind of object (device object) whose
attributes are used by applications and MS to store device information. Some structure
information is opaque to OSC and includes higher-level information about system
management. For example, like HP AutoRAID [7], a few OSCs may constitute a
RAID. And some object attributes contain information about its environment, group
and user access control information etc.

5 Conclusions and Future Work

Differing data requirements, system complexities, and cost constraints mean that
storage system load balancing needs vary widely from servers to devices. The
adaptive policy triggering is provided to offering a novel loading balancing solutions

 Adaptive Policy Triggering for Load Balancing 245

to meet this diversity of need. And the adaptive policy triggering makes it possible for
storage system to take advantage of object storage architecture to enable
intelligent storage.

This paper first outlines object storage system and object characteristic. Next, the
paper explores details of the object storage technology, and then it places those details
in the context of development of the load balancing, which includes replication and
migration. Our current design constitutes only narrow application. We will perform
other application using the adaptive policy triggering, such as backup, caching and
logging. At the same time, large-scale applications will enforce us to minimize
computational overheads and to require the use of more efficient data structures and
powerful machine learning algorithm.

References

1. Intel Corporation, “Object-Based Storage: The Next Wave of Storage Technology and
Devices”, January 2004, accessible from http://www.intel.com/labs/storage/osd/

2. Ling-Fang Zeng, Dan Feng, Ling-jun Qin, “SOSS: Smart Object-based Storage System”,
the Third International Conference on Machine Learning and Cybernetics, Shanghai,
pp.3263-3266, 26-29 August 2004.

3. IBM Storage Tank, March 2004, accessible from http://www.haifa.il.ibm.com/storage.html
4. White paper: Object Storage Architecture, January 2004, accessible from

http://www.panasas.com/activescaleos.html
5. P. J. Braam, “The Lustre storage architecture”. Technical report, Cluster File Systems, Inc.,

January 2004, accessible from http://www.lustre.org/docs/lustre.pdf
6. A. Westerinen, J. Schnizlein, J. Strassner etc. “Terminology for Policy-Based

Management”, RFC 3198, November 2001.
7. HP AutoRAID: Setting New Standards for Fault-Tolerant Storage. March, 2004, accessible

from http://www.interex.org/pubcontent/interact/sept95/11spot/spot.html
8. Dan Feng, Lingfang Zeng, Fang Wang, Lingjun Qin, Qun Liu, “Adaptive Policy Trigger

Mechanism for OBSS”, The International Conference on Advanced Information
Networking and Applications (AINA-2005),Tamkang University, Taipei, Taiwan, March
28 - 30, 2005.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 246 – 256, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Parallel Algorithms for Fault-Tolerant
Mobile Agent Execution

Jin Yang1, Jiannong Cao1, Weigang Wu1, and Cheng-Zhong Xu2

1 Internet and Mobile Computing Lab,
Department of Computing, Hong Kong Polytechnic University,

 Hung Hom, Kowloon Hong Kong
2 Department of of Electrical and Computer Engg,

Wayne State University, Detroit, Michigan 48202, USA

Abstract. Redundancy is a basic technique for achieving fault tolerance, but the
overhead introduced by redundancy may degrade system’s performance. In this
paper, we propose efficient replication based algorithms for fault-tolerant mobile
agent execution, which allows for parallel processing in the agent execution so as
to reduce the overheads caused by redundancy. We also investigate the heartbeat
based failure detector approach and modify it for use in our proposed algorithms.
Performance evaluation has been performed to compare the proposed algorithms
with the existing algorithm. Both analytic and simulation results show that our
new algorithms can significantly improve system’s performance.

1 Introduction

A Mobile Agent (MA) is a program that can migrate from host to host in a network of
heterogeneous computer systems to execute the tasks specified by its owner. The
migration path can be fixed according to a predefined itinerary or dynamically decided
using a self-initiated itinerary. A mobile agent works autonomously and communicates
with other agents and host systems. During the migration, the agent carries its code and
some kind of execution state. On each host of the network, a MA platform is
responsible to execute the mobile agent’s operations, provides a safe execution
environment, and offers services for MAs residing on this host. A MA system is the set
of all MA platforms of the same type together with the MAs running on these platforms
as part of an agent-based application. Many applications of mobile agent have been
reported including Electronic Commerce[11], Information Retrieval[12], Network
Management[13,14] and Mobile Computing[15].

However, before we implement mobile agent-based applications, some important
issues such as fault tolerance must be addressed. Many fault-tolerance schemes have
been proposed, and one of the most popular solutions is the replication based scheme
[5,6,7,8,9]. The basic idea of replication based scheme is to maintain some replicas for
the working MA. If the working MA failed and is detected by a replica, then the replica
will create a new working MA to continue the task. On the other hand, if the working
MA detects that the replica failed, it will generate a new replica to replace the failed
one. So the working MA and the replica will guard each other. Replication based
schemes has its shortcomings. The first is the overheads, which may slowdown the
system execution dramatically. The second problem is the failure detection. Heartbeats

 Parallel Algorithms for Fault-Tolerant Mobile Agent Execution 247

algorithm is a well known failure detection technique, which requires the peers to keep
on exchanging the heartbeat messages. But for mobile agent applications, no message
can be delivered during a MA’s migration. So the traditional heartbeats algorithm does
not work properly and modification is needed.

In this paper, we address these two problems. We propose replication based
algorithms for fault-tolerant mobile agent execution. Parallel processing is introduced
in our proposed algorithms. System’s overheads are reduced and the performance is
improved through parallel processing. We also modify the traditional heartbeats
algorithm with handover procedures for failure detection in fault tolerant mobile agent
executions. To the best of our knowledge, this work is the first study of the
implementation of failure detector in mobile agent environment.

The rest of the paper is organized as follows: section 2 describes related works and
the motivations of our research. Section 3 describes our proposed mobile agent fault
tolerant execution algorithms and the failure detection mechanisms in detail. Section 4
presents the analysis of the algorithms’ performance, and validates the analysis results
through the simulation. The performance is compared with the well known rear-guard
algorithm. Finally, section 5 concludes this paper.

2 Related Works and Our Works’ Motivations

Most of the replication-based MA execution algorithms in literature are based on the
same rear-guard model. A working agent is followed by one or several replicas, called
the rear guard agents [5]. If the working agent failed, the rear guard agent will continue
the job for the failed agent. Later works made improvement on and reported
implementations of this model. In [6], the authors presented a “sliding window”
mechanism. Before each migration of a MA, a specific number of backups of this MA
are duplicated in order to avoid the collapse or disappearance of this MA. In fact, the
backups of the agent just play the role of the rear guard agents. The size of the window
is adjustable and determines the number of backups used. In [7], “surrogate of agent” is
used, which is just another name of rear guard agent. A MA will leave a surrogate on
each host it visited. Once a surrogate finds out that the MA failed, it will recreate an
agent to continue the job. A mobile shadow scheme is proposed in [8], which employs a
pair of replica mobile agents, the master and the shadow. In [9] a pipelined model is
proposed, in which a witness agent is behind a working agent. In fact, both the shadow
and the witness agent act as a rear guard agent.

The rear guard agent only guards the failure status of the working agent, and keeps
consistency with the working agent in order to continue the work of a failed working
agent. In order to improve the system performance, we can let the replicated MA
undertake tasks that can be done concurrently with the working agent. In [1], the
authors make the use of two reverse MAs to execute in parallel by reverse itinerary to
gain higher system execution speed. In [2], two MAs executing in reverse itinerary to
speed up the execution and improve fault tolerance. But these works focus on achieving
load balance and sensor networks’ performance respectively. The fault tolerance
execution of MA is not their main concern thus not addressed.

A problem common to all these works is that they did not mention how to detect
failures. Failure detector [3, 4] is the mechanism necessary for detecting the failure of
an executing entity in the system. The heartbeat-style failure detectors have been
widely implemented in real systems. Paper [3] also described how to configure a failure

248 J. Yang et al.

detector to satisfy the predefined QoS. In [4], authors proposed how to make
estimations about the arriving time of heartbeat messages. However, the conventional
heartbeat-style failure detectors have several problems for mobile agent systems. First,
a MA cannot deliver the heartbeat message during its migration. We call this period the
dumb period. Second, there is the possibility of false detection. In [3], the authors
proposed a set of quantitative measures for false detection, which include: mistake
recurrence time, and mistake duration. If a replica receives a false detection from the
failure detector, it may regenerate a new working MA to replace the “failed” one, but
the fact is the working MA is not failed. So it may cause duplicate execution.

In summary, although rear-guard algorithm provides fault tolerance for MA system,
it is not efficient. Also, conventional heartbeat-style failure detectors are costly and the
false detections will cause extra troubles. All these will affect the system performance.
But the fact is many applications for data retrieval applications such as network
management need fast data collection. Data submitted late usually is not useful, and
even harmful to the system. So fault-tolerance algorithms should be efficient. We will
describe our proposed efficient replication based MA fault tolerance algorithms in
section 3.

3 Replication Based MA Fault-Tolerant Algorithms

The main idea of improving the efficiency of replication based mobile agent algorithms
is to introduce parallel processing among the replicas. According to whether the MA’s
itinerary is predefined or not, we propose two algorithms, namely Reverse MAs
Algorithm (RMAA) and Alternate MAs Algorithm (AMAA).

3.1 RMAA

RMAA is well suited for MA applications with a predefined itinerary and no
requirement on the host visiting sequence. One typical example is the information
retrieval applications. In RMAA, the original predefined itinerary is the forward

Fig. 2. Landing procedure Fig. 1. RMAA execution process

Hello

FD

Host3
Host4

Host1

Host2

Hello

User

Migration

Ok/No

Hello

Checking

Host B

Enter Queue

Host A

 Parallel Algorithms for Fault-Tolerant Mobile Agent Execution 249

itinerary and the reverse itinerary is an itinerary that reverses the sequence of hosts in
the forward itinerary. There are two MAs in RMAA. One is called Forward MA (FMA)
which will visit hosts according to the forward itinerary, and another is called Reverse
MA (RMA) which will visit hosts according to the reverse itinerary.

Fig. 1 illustrates the RMAA scheme. The pair of MAs is dispatched by the user’s
mobile agent system at the same time. They execute concurrently along their own
itineraries until they reach two neighboring hosts (e.g., Host 2 and Host 3), which
indicates that all the hosts on the itinerary have been visited. The two MAs will then
return the MA platform on user’s host. In order to prevent both MAs failures due to the
failure of the host, the two MAs are not allowed to land on the same host. For this
purpose, a landing procedure is needed (Fig. 2).

The two MAs send the coordination message “Hello” before migration to the next
host. The “Hello” message is put into a queue on the MA platform of the next host,
which ensures that the host only accepts one MA with the earlier “Hello” in the pair
MAs. A MA can migrate to the host only if it has received an “Ok” message as response
from the host. If two MAs send the “Hello” message to the host simultaneously, the
host will receive both of them. But in the queue, one will precede another one. For the
sender of the later “Hello” message, MA platform will reply it with a “No” message.
When the MA receives a “No” message, it knows that another MA is on the
neighboring host. So this MA will go back user host. The MA which got the “OK”
message will return user host too after it finishes its execution.

Same with the rear-guard algorithm, we assume that the FMA and the RMA will not
fail at the same time. During the execution of the pair of MAs in RMAA, one MA may
fail during its execution or migration. The failure detector will detect the failure and
inform another MA, and the living MA will generate a new MA to replace the failed
MA (Fig. 3). For this purpose, FMA and RMA should keep each other’s computing
results (this is the same with rear-guard algorithm). A distinguish advantage of the
RMAA algorithm is that it can handle the itinerary partition due to links failure. In
Fig. 4, the itinerary is partitioned into two separated sections. It is obviously that the
pair of MAs can finish their tasks if they will not fail.

The RMAA scheme can be easily extended to accommodate n (n 1) pairs of MAs
to speed up the execution in large-scale networks. The original itinerary can be
separated into n sections, and on each section RMAA is executed.

Fig. 3. The failure handling of RMAA Fig. 4. Itinerary partition

Host3
Host4

Host2
User

Host3
Host4

Host2

User

Host1 Host1

250 J. Yang et al.

RMAA can be implemented on system level in a way transparent to the application
programmer. What the programmer needs to do is just to provide the MA’s task and
itinerary to RMAA. RMAA will create FMA and RMA to finish the users’ task. The
algorithm of pseudocode format for executing RMAA is illustrated in the following box.

3.2 AMAA

A predefined itinerary is necessary for RMAA. But one of the fundamental features for
mobile agent is autonomy, which allows a MA to determine the next host dynamically
without a predefined itinerary. RMAA is not applicable under such a context while the
rear-guard algorithm can still work. But the rear-guard algorithm is not efficient and we
seek a faster algorithm.

Fig. 5 A MA’s operations Fig. 6 AMAA execution process

For a mobile agent application without predefined itinerary, an agent needs to
compute the next stop before every migration. Accordingly, we divide a MA’s
operations into two sections (Fig. 5): CalNextStopOps contains all the necessary
operations which have to be done in order to get the next stop; RestOps includes the rest

//RMAA is a class which implements all the functions of RMAA algorithm. User just needs to create //a
RMAA object and provides the Task and Itinerary to the RMAA object.
1. RMAA rmaa = new RMAA (Itinerary, Task); //RMAA creates 2 members: a FMA and a RMA;
2. rmaa.Launch(); //FMA and RMA are launched;
//FMA and RMA execute the same code in parallel. We only describe FMA’s execution.
3. if (rmaa.FMA.tryMigration() = = OK) //will not encounter RMA
 {rmaa.FMA.migration(); //migrate to next host
 result = rmaa.FMA.Task.start();
 rmaa.FMA.synchronize(result); //synchronize the computing result for failure handling.
 goto 3; //Finish the execution on current host, then try to go to next host.
 }else //will encounter RMA if migrate to the next host. So FMA returns home.
 rmaa.FMA.returnHome();

// Pseudocode for the MA failure handling. Suppose ma gets a message from failure detector.
if (msg = ma.getmessage() = = MA_Failure) //get asynchronous message from failure detector
 ma1 = ma.clone(); //this ma will clone a new ma according to the failed ma’s infomation.
 ma1.migration(msg.host, failureMA_id); //the cloned ma migrates to the host.
//After the cloned ma lands on the host, it will check the reported ma is really failed or not.
 if (ma1.check(failureMA_id) = = ReallyFailed) //if the reported ma really failed, its job will be

 ma1.resumeFailedma(); //continued.

User
migration

MA

execution

CalNextStopOps

RestOps

Border

Host1 Host2 Host3

Inform

next stop

 Parallel Algorithms for Fault-Tolerant Mobile Agent Execution 251

operations (the de-registration operations at lest). The border between these two
sections can be different for different applications. Some applications can determine
the next stop in the first few steps; some get it at last.

AMAA involves two MAs. One MA which is on the head is called Leading MA
(LMA); the other MA which is behind the LMA is called Slave MA (SMA). The two
MAs should arrange their operations in two sections as described above. Fig. 6 shows
the execution process of AMAA. The MA platform on user host launches two MAs.
One lands on the first stop and becomes LMA. The other who is waiting on the user
side becomes SMA. When the LMA got the result of the next stop, it sends a message to
the SMA which is still waiting on the user side. SMA migrates to the next stop and
becomes the new LMA and starts its execution (former LMA becomes SMA now).
When LMA determines the next stop, it sends a message to SMA. Now the SMA may
or may not finish the RestOps. When SMA finishes the RestOps, it will migrate to the
next stop. The process will continue until the task is finished.

Same with the rear-guard algorithm and RMAA, Failure detector will inform the
failures of MAs, and the living MA will generate a new MA to replace the failed MA.
Different from RMAA, AMAA can not handle the itinerary partition.

AMAA can be extended to involve n (n 2) MAs easily. Among the n MAs, One
acts as the LMA. The rest n-1 MAs form a sequence of SMAs. When the LMA gets the
next stop, it informs the last SMA. The last SMA migrates to the next stop and becomes
the LMA. Previous LMA becomes the first SMA in the sequence of SMAs.

Same with RMAA, AMAA can also be implemented at the system level. Users need
not provide the itinerary, but the task is required to separate into two sections as we
described. The following box illustrates the pseudocode for AMAA.

//AMAA is a class which implements all the functions of AMAA algorithm. User just needs to create
//a AMAA object and provides the Task to the RMAA object.
1. AMAA ma[] = new AMAA (Task); //AMAA creates 2 members: an LMA and a SMA;
2. NextHost = FirstHost; ma[0].end = false; ma[1].end = false; //Initiation;
3. ma[0].goto 4; ma[1].goto 9; //ma[0] is current LMA and ma[1] is current SMA.
//ma[0] and ma[1] share the same code from 4 to 9. In the following, “ma” can be ma[0] or ma[1].
4. ma.migration(NextHost);

5. NextHost = ma.Task. CalNextStopOps();

6. if (NextHost NULL)
 ma.informSMA(NextHost); //After the current SMA get this message, it will migrate
 else // to next host and becomes the new LMA. This ma becomes the new RMA.
 {ma.informSMA(NULL); //No next host, so inform SMA to return home.
 end = true; //This mark will make LMA return home
 }

7. result = ma.Task. RestOps(); //Finish the rest operations.

8. ma.synchronize(result); //synchronize the computing result
9. if (end = = ture) //No next host.
 ma.returnHome();
 else if (ma.getNextHost() NULL) //SMA get the next host which is sent by LMA
 {goto 3; //SMA will migrate to the next host.
 } else //No next host
 ma.returnHome(); //it is time to go home.

// Pseudocode for the MA failure handling in AMAA is the same with RMAA.

252 J. Yang et al.

The function of failure detection is a fundamental requirement for replication based
fault tolerance algorithm. As we introduced in section 1, heartbeat-style failure
detectors are widely used. But a big problem for a heartbeat-style failure detector is
false detection. For MA applications, another problem is the dumb period (section 2).

For the problem of dumb period, a handover procedure is needed. A simple
solution is that before a MA starts migration, the “migration” tag is piggybacked in
heartbeat message. When the failure detector monitoring the MA receives the
message with the “migration” tag, it will stop the failure detection for this MA and
wait until it receives the new heartbeat message (at this time, the MA lands on a new
host). The problem for this scheme is that, if the MA is lost during migration, failure
detector can not detect it. An enhanced scheme is based on MA’s reliable migration.
When a MA starts a migration, it sends a replica to the next host and waits until the
replica landing on the next host. During the migration process, the waiting MA can
keep sending heartbeat messages to the failure detector. After the replica lands on the
new host, it informs the waiting MA and the waiting MA will hand over the task of
heartbeat message exchanging to the replica. Through this scheme, the dumb period
problem can be solved and the failure detector can keep on the monitoring task.

False detection is an inherent problem for heartbeat-style failure detectors. What
we can do is to add a checking procedure. When a new MA is generated to replace the
failed MA, the new MA should check the failed MA’s status on the host of the failed
MA. We assume we can check the real status locally. If the new MA finds out that it
is a false detection, it will kill itself to avoid the duplicate execution.

4 Performance Analyses and Evaluations

In this section, we first make an analytic analysis on the execution time for the
different fault tolerant MA execution algorithms, and then describe our simulation
study.

4.1 Analysis on Execution Time

In the following discussing, we assume the execution time T for a MA is the same on
each host. N is the number of hosts. The time for a MA migrating from the current host
to the next stop is Tm. TTask_exe is the total execution time of each algorithm. For
rear-guard algorithm, when the working MA starts a migration, it will inform the rear
guard MA to keep following. We assume the time needed for this operation is Tinform. In
RMAA, Tlanding is the time needed by each landing procedure. In AMAA, like the
rear-guard algorithm, Tinform is the time needed by the operation of LMA informing the
next stop to SMA, and according to Fig. 5, we assume the time taken for each
CalNextStopOps is TCalNextStopOps; the time taken for each RestOps is TRestOps. It is

3.3 Failure Detection Mechanisms for MA Applications

 Parallel Algorithms for Fault-Tolerant Mobile Agent Execution 253

obviously that T = TCalNextStopOps+TRestOps. For simplicity, we do not consider the cost of
heartbeat messages and synchronization messages, because they are needed by all of
our discussed algorithms.

Fig. 7. Execution time comparisons

For the rear-guard algorithm, the whole task is finished by the single working MA
and no parallel processing is involved (Fig. 7). So we can get: TTask_exe = N(T+Tm+
Tinform). For RMAA, the FMA and RMA execute in parallel, so ideally the execution
time is: TTask_exe = N(T+Tm+Tlanding)/2. AMAA allows partial parallelism in MA

N(Tm+ TCalNextStopOps + Tinform)+ TRestOps TRestOps < Tm+ TCalNextStopOps + Tinform

(N+1)(Tm+ T + Tinform) TRestOps Tm+ TCalNextStopOps + Tinform

 executions, and its execution time depends on how much job is done in parallel. From
Fig. 7, we can figure out how to compute the execution time for AMAA.

The parameter TRestOps determines the degree of parallism that can be achieved. If we
can increase the TRestOps, the execution time of AMAA will be shortened. However, the
reduction in the execution time is bounded that the total time will be no less than
(N+1)(Tm+T+Tinform)/2, if TRestOps is greater than Tm+TCalNextStopOps+Tinform. We define
this TRestOps as the AMAA critical value. For AMAA involving n MAs, it is easy to see
that the task execution time will be (N+1)(Tm+T+Tinform)/n, (2 n N, TRestOps
Tm+TCalNextStopOps+Tinform).

Table 1 summarizes the execution modes and execution time for all the algorithms
discussed in this paper. Note that for AMAA in the table, we assume that TRestOps is set
as the critical value.

=exeTaskT _

Tinform

TCalNextStopOps

Inform Next Stop

Host

Time

T

Rear-guard Algorithm AMAA

Migrate to Next Stop

Tm

TRestOps

254 J. Yang et al.

Table 1. Execution mode/time comparisons

Theoretical Execution Time (N hosts)
Itinerary Execution

mode 2MAs nMAs (n>2)
Rear-Guard Self-initiate Non-parallel N(T+T+ Tinform) N(T+T+ Tinform)

RMMA Predefined Full- parallel N(T+ Tm+ Tlanding)/2 N(T+ Tm+ Tlanding)/n
AMAA Self-initiate Partial- parallel (N+1)(Tm +T+ Tinform)/2 (N+1)(Tm +T+ Tinform)/n

We can see that RMAA can provide the fastest execution speed because Tinform is
almost the same with Tlanding and they are some time intervals comparing with TM and T.
But RMAA needs a predefined itinerary and it also requires the system allow a random
hosts accessing sequence. These requirements make RMAA inflexible. AMAA has the
same degree of flexibility as the rear-guard algorithm, but its execution time can only
be shortened if the next stop can be calculated quickly (then TRestOps will becomes
bigger). If AMAA can only get the next stop at the last step of its operation (TRestOps =
0), the execution time will be the same with the rear-guard algorithm: TTask_exe =
N(Tm+TCalNextStopOps+Tinform)+TRestOps = N(Tm+T+Tinform). But normally the TRestOps will
not be zero, because a MA has to perform some routing operations on a host at last,
such as deregistration, release resources, etc. So we can always gain the partial
parallelism so as to shorten the execution time. The results in Table 1 are just the
theoretical values. In practice, the real execution time will be longer due to various
overheads. We will compare the execution time in the simulation study to be described
in the next subsection.

4.2 Simulation Results

In order to compare the execution time in realistic environment, we performed
simulations of the rear-guard algorithm, RMAA and AMAA on the Naplet MA
platform [16].

The simulations are carried out on a PC with Pentium 4 CPU (2.5GHz), 256MB
RAM. The software environment is: Window XP, Java version 1.4, and Naplet MA
platform. Five Naplet MA platforms are installed on the PC and we simulate the MA
traveling 15, 25, 35, 45, 55, 65, 75, 85, 95, 105 nodes respectively using different fault
tolerant algorithms. The number of MA failures is set to be 1/20 of the total number of
hosts that have been visited and the failures are uniformly distributed along its itinerary.
The exchange frequency of the heartbeat messages is 5 messages per second. Enhanced
handover scheme is adopted in the simulation. For AMAA, we set the TRestOps to be its
critical value, which means a MA will send out the next stop message in the mediate of
its execution.

From the simulation results in Fig. 8, we can see that RMAA only takes about half of
the rear-guard algorithm’s execution time. AMAA also takes near half of the execution
time of rear-guard algorithm. For the number of messages exchanged, Fig. 9 shows that
it increases in direct proportion to the execution time. That is because the heartbeat
messages take up the most part of the exchanged messages during MA’s execution.
Longer execution time will cause more heartbeat messages exchanging.

 Parallel Algorithms for Fault-Tolerant Mobile Agent Execution 255

 Fig. 8. Execution time comparisons Fig. 9. Exchanged messages

5 Conclusions and Future Works

In this paper, we described the two efficient replication-based mobile agent execution
algorithms. The algorithms allow for parallel processing and provide fault tolerance.
Analytic analysis and simulation results show that the proposed algorithms can
improve system’s execution speed dramatically. The shorter execution time can help
MA bypass host failures with greater probability and reduce the number of heartbeat
messages exchanged. The overhead caused by heartbeat-style failure detector is an
important issue in designing a high-performance fault tolerant MA system. In our
future work, we will investigate this issue and attempt to design alternative approach to
failure detection, e.g., using the watch-dog technique with remote notifications.

Acknowledgement

This work is supported in part by the University Grant Council of Hong Kong under the
CERG Grant PolyU 5075/02E and China National 973 Program Grant 2002CB312002.

References

1. Jiannong Cao, Yudong Sun, Xianbin Wang, Sajal K. Das. Scalable load balancing on
distributed web servers using mobile agents. In Journal of Parallel and Distributed
Computing. 63(2003) 996-1005. May, 2003.

2. Hairong Qi; Yingyue Xu; Xiaoling Wang; Mobile-agent-based collaborative signal and
information processing in sensor networks Proceedings of the IEEE Volume 91, Issue
8, Aug. 2003 Page(s):1172 - 118

3. Wei Chen; Sam Toueg; Aguilera, M.K.; On the quality of service of failure detectors
Computers, IEEE Transactions on Volume 51, Issue 5, May 2002 Page(s):561 - 580

4. R. C. Nunes and I. Jansch-Pôrto. Qos of timeout-based self-tuned failure detectors: the
effects of the communication delay predictor and the safety margin. In Proceedings of the
International Conference on Dependable Systems and Networks (DSN’04), page 753,
Florence, Italy, June 2004.

256 J. Yang et al.

5. Johansen, D.; van Renesse, R.; Schneider, F.B.; Operating system support for mobile agents
Hot Topics in Operating Systems, 1995. (HotOS-V), Proceedings., Fifth Workshop on , 4-5
May 1995Pages:42 – 45

6. Tao Shu; Cao Yang; Yin Jianhua; Xu Ning; A mobile agent based approach for network
management. Communication Technology Proceedings, 2000. WCC - ICCT 2000.
International Conference on , Volume: 1 , 21-25 Aug. 2000 Pages:547 - 554 vol.1

7. Komiya, T.; Ohsida, H.; Takizawa, M.; Mobile agent model for distributed systems
Distributed Computing Systems Workshops, 2002. Proceedings. 22nd International
Conference on , 2-5 July 2002 Pages:131 – 136

8. Pears, S.; Jie Xu; Boldyreff, C.; Mobile agent fault tolerance for information retrieval
applications: an exception handling approachAutonomous Decentralized Systems, 2003.
ISADS 2003. The Sixth International Symposium on , 9-11 April 2003 Pages:115 – 122

9. Pleisch, S.; Schiper, A.; Fault-tolerant mobile agent execution Computers, IEEE
Transactions on , Volume: 52 , Issue: 2 , Feb. 2003 Pages:209 – 222

10. M.J. Fischer, N.A. Lynch, and M.S. Paterson, Impossibility of Distributed Consensus with
One Faulty Process Proc. Second ACM SIGACT-SIGMOD Symp. Principles of Database
Systems, pp. 1-7, Mar. 1983.

11. Maes, R.H. Guttman, and A.G. Moukas, Agents that Buy and Sell Comm. ACM, vol. 42, no.
3, pp. 81-91, Mar. 1999.

12. W. Theilmann and K. Rothermel, Optimizing the Dissemination of Mobile Agents for
Distributed Information Filtering IEEE Concurrency, pp. 53-61, Apr. 2000.

13. A. Bieszczad, B. Pagurek, and T. White, Mobile Agents for Network Management, IEEE
Comm. Surveys, Sept. 1998.

14. T. Gschwind, M. Feridun, and S. Pleisch, ADK—Building Mobile Agents for Network and
Systems Management from Reusable Components Proc. First Int’l Conf. Agent Systems
and Applications/Mobile Agents (ASAMA ’99), Oct. 1999.

15. K. Takashio, G. Soeda, and H. Tokuda, Mobile Agent framework for Follow-Me
Applications in Ubiquitous Computing Environment Proc. Int’l Workshop Smart
Appliances and Wearable Computing (IWSAWC ’01), pp. 202-207, Apr. 2001.

16. Naplet: A flexible and reliable mobile agent system for network-centric pervasive
computing. http://www.ece.eng.wayne.edu/~czxu/software/naplet.html

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 257 – 266, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Design and Multithreading Implementation of the
Wave-Front Algorithm for Constructing Voronoi Diagrams

Grace J. Hwang, Joseph M. Arul, Eric Lin, and Chung-Yun Hung

Department of Computer Science and Information Engineering,
Fu Jen Catholic University, Taipei, Taiwan

{jihwang, arul, seed}@csie.fju.edu.tw

Abstract. The Voronoi diagram is one of the most fundamental data structures in
computational geometry, which is concerned with the design and analysis of al-
gorithms for geometrical problems. In this paper, a parallel algorithm for con-
structing the Voronoi diagram on CREW (Concurrent Read and Exclusive
Write) model is proposed. This is an improved algorithm based on Preilowski
and Mumbeck’s work. In their algorithm, they apply the Neighbor-Point-
Theorem and present a parallel approach to check neighbor points. In this article,
we propose an improved approach, Wave-Front algorithm, which is a quite dif-
ferent way to check neighbor points. The algorithm is then implemented in both
sequential and multithreaded models. Since the Wave-Front algorithm has inher-
ently concurrent tasks that can be executed simultaneously, multithreaded ver-
sion was executed to observe the performance. Computational results indicate
the effectiveness of the threaded model.

1 Introduction

The Voronoi diagram is one of the most popular geometrical structures in computa-
tional geometry [1], which is a branch of computer science concerned with designing
efficient algorithms for solving geometrical problems. It partitions a plane with n
given points into n convex polygons such that each of which consists of the points
closer to one given point than to any others. The Voronoi diagram is an important
problem in many applications; including placement and motion planning, mesh gen-
eration and proximity problems.

There are several parallel algorithms existing for computing the Voronoi diagram
of n planar points on the CREW PRAM model [2]. For instance, Chow [3] uses inver-
sion and computes the convex hull of points in three dimensions. The algorithm runs
in O(log3 n) time and uses O(n) processors. Preilowski and Mumbeck [4] present a
time-optimal algorithm that employs the Neighbor-Point-Theorem to compute Vo-
ronoi polygon for each point. Their algorithm runs in O(log n) time only but uses
O(n3) processors. Aggarwal et al. [5] parallelize a sequential divide-and-conquer
algorithm and run in O(log2 n) time using O(n) processors. Similar to Chow’s result,
Evan and Stojmenovic [6] present an O(log3 n) algorithm using O(n) processors.
Cole et al. [7] also apply the divide-and-conquer approach to construct Voronoi dia-
gram. They present two algorithms, the first one runs in O(log n log log n) time using
O(n log n / log log n) processors, the other one runs in O(log2 n) time using O(n / log
n) processors. Some other related and recent works such as those Amto et al. [8]

258 G.J. Hwang et al.

reduce three-dimensional convex hulls to two-dimensional Voronoi diagrams and
Blelloch et al. [9] implement a practical parallel algorithm for the Delaunay triangula-
tion on general distributions.

The goal of this research is to present the proposed Wave-Front algorithm based on
Preilowski and Mumbeck’s work and describe a parallel implementation using multi-
threaded model. A number of techniques to further exploit Thread Level Parallelism
(TLP) have been researched. Some products including Intel’s hyper-threading have
been announced [10]. The threaded model can be applied with great success to a wide
range of programming, such as large scale, computationally intensive programs and
client server applications. From a software or architecture perspective, user programs
can schedule threads to logical processor as they would on multiple processors. Multi-
threading is specifically to take advantage of multitasking environment. In Wave-
Front algorithm, multitasking can easily be achieved and is visible from the behavior
of the program. Hence, by using multithread, more tasks could be completed to
maximize the running efficiency of the program.

The reminder of this paper is organized as follows: Section 2 describes the
neighbor-point theorem and multithreading. Section 3 presents the Wave-Front algo-
rithm. Section 4 shows the experimental results. Both of the sequential and multi-
threaded versions of the Wave-Front algorithm are implemented. The computational
results show that the performance of threading version is quite effective. Finally, we
conclude with some discussion in Section 5.

2 Neighbor-Point Theorem and Multithreading

In this section, we briefly describe the neighbor-point theorem and multithreading to
help understand the Wave-Front algorithm. In later sections, we would describe its
design and implementation.

2.1 Neighbor-Point Theorem

The capability of the neighbor-point theorem is to determine all the neighbor points
for some point p from a given set of points, the Voronoi polygon for p is therefore
obtained. In the following paragraph, we first introduce some definitions and then
describe the neighbor-point theorem [4].
Assume, S, is a finite set of points. Then:

1. Let Seg(xi, xj) be the segment of a line from xi to xj.
2. Let PB(xi, xj) be the perpendicular bisector of Seg(xi, xj).
3. Let L(xi, xj) be the straight line through xi and xj.
4. L and R are the subsets of S and they lie left and right of L(xi, xj) going along

the direction from xi to xj.
5. Let Sleft := {s | s is the intersection-point of PB(xi, z) and PB(xi, xj) for z in L}.
6. Let Sright := { s | s is the intersection-point of PB(xi, z) and PB(xi, xj) for z in R}.
7. Define the following order “<” on the points of Sleft and Sright:

If p q in (Sright Sleft) then p < q if and only if p lies left of q on PB(xi, xj) go-
ing along the direction from xi to xj.

 Design and Multithreading Implementation of the Wave-Front Algorithm 259

After the definitions of related terms as given above, the Neighbor-Point Theorem can
be described as follows (see Fig. 1).

Neighbor-point Theorem:
Let xi and xj in S, i j, then
xj is a neighbor point of xi if and only if max(Sleft) < min(Sright).

max(Sleft)

min(Sright)

xj

xi

PB(xi,xj)

Seg(xi,xj)

xk

PB(xi,xk)

Fig. 1. An illustration of neighbor-point theorem

The neighbor-point theorem can be applied to construct Voronoi diagrams for both
sequential and parallel algorithms. We describe the parallel algorithm originally pro-
posed in [4]:

CREW-PRAM Algorithm:

1. For all i = 1 to n {
2. For all j = 1 to n (j i) {
3. Check whether xj is a neighbor-point for xi using the Neighbor-point Theorem.
4. }.
5. Compute the Voronoi polygon for xi by sorting the pieces got in step 1.
6. }

In step 3 of the algorithm, it needs n-2 processors except two for xi and xj and the
running time is O(logn). The algorithm also needs O(n2) processors for steps 1 and 2
when O(n2) pairs of points exist. Thus, in total, the algorithm needs O(n3) processors
for steps 1 to 3. In step 5, it needs O(n) processors and O(logn) running time, since
the Voronoi diagram is a planar graph and the number of edges is bounded by O(n).
Therefore, the running time of this algorithm is O(log n) with O(n3) processors. The
reason why it uses so many processors, O(n3), comes from the approach of checking
neighbor points. It examines every other point with p to find its neighbor points.
However, the neighbor points are usually not far away from p and the checking proc-
ess could be improved. This leads to our motivation to modify the algorithm.

2.2 Multithreaded Model

Traditional computer programming causes all events to occur in series, unless the
programmer takes other measures to allow them to happen concurrently. Behren et al.
[11] have shown that the weaknesses of threads are artifacts of specific threading
implementations and not inherent to the threading paradigm. Thus, multithreaded

260 G.J. Hwang et al.

implementation in a right way in a particular application can certainly improve per-
formance. Using multithreaded model, the program can be executed asynchronously
if more than one activity happen at a time [12-13]. There is little advantage to being
asynchronous unless you can have more than one activity going at a time. Even
though threaded model can be applied to a wide range of programming problems such
as computationally intensive programs, high performance application programs, real
time application programs and geometric programs such as Voronoi diagram, unless
there are inherently concurrent tasks, one cannot accomplish better performance [14].
This program is inherently concurrent. Hence, adding multithread, improves perform-
ance greatly. In the following section we will explain how multithreading is used in
the proposed Wave-Front version of the algorithm.

3 The Wave-Front Algorithm

We first present the Wave-Front algorithm in this section and then introduce how
multithread is implemented to this algorithm.

3.1 Design of the Wave-Front Algorithm

As we mentioned in the previous section, the neighbor points are not far away in
general and the checking may be limited to the area close to the specific point p.
Therefore, we propose an idea using an h×h table and take turns to scan the points in
the cells (see Fig. 2).

Fig. 2. An illustration of the Wave-Front Algorithm. The left of the hxh table is corresponding
to k (= 0) iteration and the right one is corresponding to k (= 1) iteration. The iteration is re-
peated until the Voronoi polygon for point p is found.

To determine the neighbor points of some specific point p, we start to check the
points in the allocated cell of p and then all of the cells next to the allocated cell, and
then all of the cells next to the cells just scanned, the process is repeated until all of
the neighbors are found. The order of scan on cells is like the propagation of wave-
front. If we imagine that a stone is thrown into the allocated cell of p, and then the
points in the cells are checked only when the wave front just arrives at the cells. This

 Design and Multithreading Implementation of the Wave-Front Algorithm 261

is why the improved algorithm is referred to the name of “Wave-Front”. In the im-
plementation, the scan is in the order of the iteration k (see Fig. 2 for the first two
iterations). The iteration is terminated if the Voronoi edges are closed and hence the
Voronoi polygon for point p is found, otherwise the process is continued to next itera-
tion.

We now describe the Wave-Front algorithm as follows:

Wave-Front Algorithm:
sArray[h][h] : an h×h array that stores a given set of n points according to their x and
y-coordinates. Note that any cell in the table, sArray[r][s], may have more than one
point or may be empty. sArray[r][s] stores all of the points in the cell and is repre-
sented by a linked list.

1. For all i = 1 to n {
2. Let k = 0, where k represents the kth iteration of the wave-front.
3. Let r, s be the index such that xi is stored in sArray[r][s].
4. Check all the points in sArray[r][s] whether each of them is a neighbor-point of

xi using the Neighhor point Theorem.
5. Record the Voronoi edges found in step 4.
6. While (the Voronoi edges are not closed.) {
7. Check all the points in sArray[r][s] whether each of them is a neighbor

point for xi using the Neighbor-point -theorem, where r and s is in the
range of the kth iteration of the wave-front scan.

8. Record the Voronoi edges found in step 6.
9. }
10. }

It is noted that the running time in worst case is still O(n3). However, if the data
size n is large and the points of the set are uniformly distributed, then the efficiency of
this algorithm seems to improve greatly. This is because the points we have to check
for a point p are highly around p with a limited area. If n is large, the performance
would be usually better.

3.2 Multithreading Implementation of the Wave-Front Algorithm

The above-mentioned algorithm uses “wave-front” to figure out the neighbor-points
of a set of selected local points around a given point. In the kth iteration, it checks the
points in the corresponding cells. The multithreaded version of the algorithm spawns
T threads according to k. If T = 4, then four threads are spawned and simultaneously
check the points corresponding to cells. Thus, by using T threads, similar tasks could
be accomplished at the same time. Each thread can simultaneously search according
to the kth iteration in which the threads are implemented. In this application, each
thread can complete its work without waiting for other threads to complete execution.
Thus, there is no waiting time involved in any thread. Another approach would be to
spawn as many threads as possible to each cell as they scan. In the later approach,
more threads would be spawned. More threads with a limited amount of task for each
thread would mean more overhead due to spawning and deleting of large number of
threads. In this research, we have tried both the approach to observe the running time.

262 G.J. Hwang et al.

The second approach does not do well as expected due to a larger number of threads
and the overhead involved in performing similar tasks. The results will be presented
in the next section.

4 Experimental Results

We first implemented the original approach to observe the performance and the
Wave-Front algorithm in the sequential environment. Since the Wave-Front algorithm
keeps a table of h×h cells, we have to consider the influence of the number of cells in
the table. Hence, we try to find out which density (points per cell) would bring the
best performance. After our experiments with different sizes of n, we found that the
best performance occurred when the density is 0.1. The density could neither be too
large nor too small. When the density becomes larger, there are more points in a cell.
This increases the number of unnecessary checking. When the density is getting
smaller and smaller, the unnecessary testing would be reduced. However, the per-
formance would sharply decrease if the density were too small. Since the time taken
to process the empty cells would be increasing, and the computational time is
becoming longer.

Table 1 shows the running time for different sizes of n, when the density is fixed to
0.1. We can find that the ratio of the time taken by the Wave-Front and the original
one is decreasing when n is increasing. This illustrates the efficiency of the sequential
version of the Wave-Front algorithm.

Table 1. Comparisons of original and Wave-Front algorithms in sequential environment

Points 100 200 400 600 800 1000 2000 3000 4000

Original 0.15 0.77 3.62 8.92 16.85 27.52 122.2 290.42 542.44

Wave-
Front 0.1 0.4 1.59 3.48 5.96 9.18 35.64 78.92 136.41

Wave-
Front /

Original
67% 52% 44% 39% 35% 33% 29% 27% 25%

The efficiency of Wave-Front could be observed from Figure 3 clearly. There is a
sharp increase for the original algorithm when the data size n is greater than 1000.
However, the curve does not increase rapidly using Wave-Front algorithm. This veri-
fies that the number of testing for some specific point p is always n -1 in the original
algorithm and it is almost a constant in practice for the Wave-Front.

We have also implemented the Wave-Front algorithm in the threaded model.
The first implementation spawns fixed T threads for every T iterations. For in-
stance, two threads are spawned simultaneously for T=2 (see Fig. 2, k = 0 is the
innermost square, k = 1 is the next innermost one, and so on). One thread is
spawned for k = 0, and the other one for k = 1. After these two iterations are done,
then two threads are spawned for k=2 and k = 3. This process is continued until the
Voronoi polygon of p is found.

 Design and Multithreading Implementation of the Wave-Front Algorithm 263

T
im

e

Fig. 3. Comparison of original vs. Wave-Front algorithm

Table 2 presents the results when we use different numbers of threads for a fixed
size table 600*600, and Table 3 shows the results for density = 0.1 (hence the table
size h×h is adjusted by data size n). From the results of tables 2 and 3, we can find the
overall performance of table 3 is superior to those of table 2. This verifies again the
results of the adjustable size table at an optimal density = 0.1 are usually better than
those of a fixed size table. From table 3, we can observe that the overall performance
is getting better when we increase the number of threads to T = 8. However, it seems
getting worse for T = 16 and 32. Most of the neighbor points are around inner k.
Even when T threads are spawned according to the number of k, the outer square for k
may execute without finding any neighbor points. Thus, it only increases the running
time. Hence we find the running time of T = 16 and T = 32 may not do better than
T = 8.

Table 2. Comparisons of running time for the Wave–Front algorithm. Spawning each of T
threads for each square k for fixed size table (h×h=600*600)

Points 100 200 400 600 800 1000 2000 3000 4000

No threads 1.47 2.53 4.5 6.62 9.19 12.26 36.92 79.98 136.36

2 threads 0.05 0.07 0.17 0.24 0.26 0.31 0.53 0.63 0.99

4 threads 0.09 0.1 0.16 0.27 0.3 0.34 0.42 0.59 0.97

8 threads 0.14 0.14 0.30 0.42 0.50 0.67 1.05 1.33 1.94

16 threads 0.37 0.65 0.85 1.0 1.19 1.43 2.18 2.74 3.99

32 threads 0.53 0.81 1.48 1.45 1.64 2.12 2.77 3.77 4.93

Table 4 presents the data where each thread is spawned for each cell. Thus
T threads are spawned for T cells. It is repeated until we find voronoi polygon. It is a
fine-grain approach which may involve more overhead due to many simultaneous
threads being spawned in an application. It is clear that even when we spawn four
threads it does not perform well as compared to Table 3. Since each cell is of a small

264 G.J. Hwang et al.

area and not much computation can be accomplished simultaneously using several
threads and so it does not perform well. It shows that the threads must have data in-
tensity to perform a task. This table also reveals another aspect of spawning many
threads, which defeats our purpose of having more threads and not accomplishing
several simultaneous tasks. Hence, the last row which presents the data using T=32
does not perform better than the first row, using single thread. Besides, for a data size
4000 using single threaded approach it gives 136.41 seconds. While, spawning T=32
threads using one thread for each cell it gives 140.43 seconds. It clearly shows that
spawning more threads do not necessarily improve performance, but rather slow
down the performance. This program is a good example for a multithreaded version
where threads can be implemented without interaction between them and it depends
how the threads are implemented as opposed to say that the multithread not necessar-
ily speedup in a single processor environment. Threads are a powerful tool to improve
the performance of a program if it is implemented by the programmer at the right way
taking advantage of the simultaneous tasks that can be accomplished in a data inten-
sive program.

Table 3. Comparisons of running time for the Wave – Front algorithm. Spawning each of T
threads for each square k with density = 0.1.

Points 100 200 400 600 800 1000 2000 3000 4000

No threads 0.1 0.4 1.59 3.48 5.96 9.18 35.64 78.92 136.41

2 threads 0.01 0.01 0.05 0.1 0.12 0.18 0.56 1.02 1.91

4 threads 0.003 0.01 0.02 0.09 0.1 0.2 0.63 1.15 1.89

8 threads 0.006 0.02 0.06 0.04 0.15 0.2 0.63 1.5 2.51

16 hreads 0.02 0.03 0.16 0.21 0.27 0.34 1.03 2.18 3.11

32 hreads 0.01 0.07 0.16 0.25 0.35 0.44 1.19 2.34 3.25

Table 4. Comparisons of running times for the Wave – Front algorithm. Spawning T threads
for each cell with density = 0.1.

Points

No threads 9.18

2 threads

4 threads

8 threads

16 threads

32 threads

 Design and Multithreading Implementation of the Wave-Front Algorithm 265

5 Conclusion

In this paper, we present the Wave-Front algorithm for computing Voronoi diagrams
based on the previous work of Preilowski and Mumbeck’s. Notice that this amended
version of the algorithm is possible and useful because of two reasons. The first one is
the special property of Neighbor-Point-Theorem, in which it is unnecessary to check all
points in order to find out whether the Voronoi edges are closed for a specific point.
Second, there is a property for the Voronoi diagram that the average number of edges of
a Voronoi polygon is no more than six. Moreover, if the points are distributed uni-
formly, it would take less number of iterations before the Voronoi polygon is found.

According to the computational results, we can find out that the performance of the
Wave-Front algorithm is greatly improved than that of the original one, though they
both have the same time complexity of O(n3) in the worst case. The reason is that the
Wave-Front algorithm only checks a few points around a specific area in most cases,
unlike the original algorithm which needs to take O(n) time. When the number of
points increases, the time saved by the Wave-Front algorithm gets larger and larger.

Besides the sequential implementations for the original and Wave-Front algo-
rithms, we have also implemented the multithreading model for Wave-Front algo-
rithm. The results show that the threaded implementation further improve sequential
version to a great extent. The challenge is not just to use threads to improve perform-
ance, but rather how to implement in a data intensive geometrical program. In the
future, we plan to implement this algorithm in an OpenMP environment where we can
really test the parallel version of this algorithm under CREW model. A lot more inter-
esting research can be done in the area of multithreaded performance measurement
especially on geometric data intensive programs.

Acknowledgement. This project was partially funded by the National Science
Council of Taiwan. [NSC 92-2213-E-030-005]. The authors wish to acknowledge the
support of NSC.

References

1. F. Aurenhammer, “Voronoi Diagrams- A Survey of a Fundamental Geometric Data Struc-
ture,” ACM Computing Surveys, Vol. 23, No. 3, Sep. (1991).

2. S. G. Akl, K. A. Lyons, Parallel Computational Geometry, Prentice-Hall, Inc, USA,
(1993).

3. L. Chow, Parallel Algorithms for Geometric Problems, Ph.D. thesis, University of Illinois
at Urbana-Champaign, (1980).

4. W. Preilowski, W. Mumbeck, “A Time-optimal Parallel Algorithm for the Computing of
Voronoi Diagrams,” Lecture notes in Computer Science, No. 344, (1988), pp. 424-433.

5. A. Aggarwal, B. Chazelle, L. J. Guibas, C. O’unlaing, and C. K. Yap, “Parallel Computa-
tional Geometry,” Algorithmica, Vol. 3, (1988), pp. 293-327.

6. David J. Evans and I. Stojmenovic, “On Parallel Computation of Voronoi Diagram,” Par-
allel Computing, Vol. 12, (1989), pp. 121-125.

7. R. Cole, M. T. Goodrich, and C. O’Dunlaing, “Merging Free Trees in Parallel for Efficient
Voronoi Diagram Construction, in Automata, Languages and Programming,” M. S. Pater-
son (Editor), Lecture Notes in Computer Science, No. 443, Springer-Verlag, Berlin,
(1990), pp. 432-445.

266 G.J. Hwang et al.

8. N. Amato, M. Goodrich, and E. Ramos, “Parallel Algorithms for Higher-Dimensional
Convex Hulls,” In Proc. Annu. 35th IEEE Symp. on Foundation of Computer Science
(Focs 94), (1994), pp. 683-694.

9. G. Blelloch, J. Hardwick, G. Miller, and D. Talmor, “Design and Implementation of a
practical parallel Delaunay Algorithm,” Algorithmica, , Vol.4, (1999), pp.243-269.

10. Intel Corporation, Hyper Threading Technology.
http://developer.intel.com/technology/hyperthread/2001/

11. R. V. Behren, J. Condit and E. Brewer, “Why Events Are a Bad Idea,” Proc. Of HotOS IX:
The 9th Workshop on Hot Topics in Operating Systems, May (2003), pp19-24.

12. M. J. Bedy, S. Carr, X. Huang and C. Shene, “The Design and Construction of a User-
level Kernel for Teaching Multithreaded Programming,” 29th ASEE/IEEE frontiers in
Education, Vol. II (1999), pp. (12b3-1)-(12b3-6)

13. S.E.Choi and E.C.Lewis, “A Study of Common Pitfalls in Simple Multithreaded Pro-
grams,” In Proc. of the 31st ACM SIGCSE Technical Symposium on Computer Science
Education Mar. (2000).

14. M. Ji, E. W. Felton and K. Li, “Performance Measurements for Multithreaded Programs,”
Proc. of 1998 SIGMETRICS conference, June (1998).

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 267 – 276, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Proposal of Parallel Strategy for Global Wavelet-Based
Registration of Remote-Sensing Images*

Haifang Zhou1, Yu Tang2, Xuejun Yang1, and Hengzhu Liu1

1 School of Computer, National University of Defense Technology, Changsha, China
2 School of Electronic Technology, National University of Defense Technology, China

fang_mini@hotmail.com, haifang_zhou@163.com

Abstract. With the increasing importance of multiple multiplatform remote
sensing missions, digital image registration has been applied into many fields,
and specially plays a very important role in remotely sensed data processing.
Firstly a brief introduction of existing parallel methods of wavelet-based global
registration is given. And then the communication optimization for GP method
is described. The optimized algorithm is named Group-Optimized-Parallel
(GOP for short). To find out the reason of occasionally lower efficiency of GOP
than other methods, a more careful analysis is presented in theory and proved in
experiments. Moreover, we give a quantitative criterion, called Remainder
Items, to choose the best solution in different input conditions.

1 Introduction

Image registration is defined as the process that determines the most accurate match
between two or more images acquired at the same or at different times by different or
identical sensors. Digital image registration has been applied into many fields, and
specially plays a very important role in remotely sensed data processing. Because of
the growing of data amount and requirement for intensive computation to process
these data, parallel and automated image georegistration has become a highly desir-
able technique.

In our earlier work, we have shown the status of research on automatic registration
of remote sensing images, but also classified and analyzed the existing serial or paral-
lel registration algorithms from the point of a novel view [1]. For global image regis-
tration method is more suitable for automatic processing than the CP-based approach
and much recent research [2-7] has focused on the use of wavelets for global image
registration, a more elaborate description of development of parallel wavelet-based
global image registration is given in [8] and a first evaluation of these automatic par-
allel methods is done in theory and experiments. In [8], we classified previous parallel
methods into three types as Parameter-Parallel (PP), Image-Parallel (IP) and Hybrid-
Parallel (HP), and also proposed a new parallel strategy, Group-Parallel (GP), based

* This work is partially supported by the National 863 High Technology Plan of China under

the grant No. 2002AA1Z201 and 2002AA104510, and the Grid Project sponsored by China
ministry of education under the grant No. CG2003-GA00103.

268 H. Zhou et al.

on the analyses of disadvantages of old methods. But after the further study, we found
that the communication mode of GP can be optimized, and GP strategy dose not al-
ways get better performance than other methods.

In this paper, we firstly give a brief introduction of existing parallel methods of
wavelet-based global registration. And then we describe the communication optimiza-
tion for GP method that proposed in [8] originally. The optimized algorithm is named
Group-Optimized-Parallel (GOP for short). To find out the reason of occasionally
lower efficiency of GP/GOP than other methods, a more careful analysis is presented
in theory and proved in experiments. Moreover, we give a quantitative criterion,
called Remainder Items, to choose the best solution in different input conditions.

2 Overview of Previous Methods and GP Strategy

2.1 Brief Introduction of Wavelet-Based Global Image Registration

We assume that any input image is being registered relative to a known reference
image. According to [9], image registration can be viewed as the combination of four
components: 1) Feature space, the set of characteristics used to perform the matching
and which are extracted from reference and input data; 2) Search space, the class of
potential transformations that establish the correspondence between input image and
reference image; 3) Search strategy, which is used to choose which transformations
have to be computed and evaluated; 4) Similarity metric, which evaluates the match
between input image and transformed reference image for a given transformation
chosen in the search space.

As to the wavelet-based global image registration, wavelet coefficients form the
feature space; and only rigid transformations are considered as search space in most
application; the search strategy follows the multi-resolution approach provided by the
wavelet decomposition. In our experiments, the search space is composed of 2-D
rotations and translations; and cross correlation measure is used as similarity metric.
So far, the process of global image registration based on wavelets can be described as
following: after performing the wavelet decomposition of both reference and input
images, at the each level of decomposition, the wavelet-compressed version of refer-
ence image is transformed using different combinations of rotation and translations;
for each transformation cross correlation between the input image and the transformed
reference image is computed; the transformation corresponding to the maximum of
cross correlation is the best transformation at current level, and becoming the center
of a next level search scope that is reduced and refined. The iterative search starts
from the smallest wavelet image towards the larger size images, and the final registra-
tion transformation is found at the full resolution image. Please see [3] for more de-
tails on this serial process.

2.2 Existing Parallel Methods and GP Strategy

For clear and consistent presentation, some concepts and notations are given firstly.

 A Proposal of Parallel Strategy for Global Wavelet-Based Registration 269

Fig. 1. Four parallel strategies for wavelet-based global image registration

− M: the image size, short for MM × .
− N: the number of processors/nodes in a parallel computer system, where 1≥N .
− Mapping parameter: the parameter that describes one type of transformation. E.g.,

the mapping parameter of rotation is],[21 θθθ ∈ .

− Solution: the mapping function that is used to match input and reference images,
which is denoted by),,,(21 kppp , where),,1(kipi = is different mapping

(c) Hybrid-Parallel

(a) Parameter-Parallel (b) Image-Parallel

(d) Group-Parallel

MM×

Node
0

Node
1

Node
N-1

qqTpp ×+ 2,,11),,(

·
··

qNqNTpp ××− ,,)1(1),,(

The first stage: PP

Node (r-1)g+1
···

qTpp ,,11),,(gMM /×

The second stage: IP in group & PP among groups

Node N-1

Node 0
···

Node g-1
· · ·

· · ·
Group r

Group1

···

11),,(+×qNTpp

rqNR +×=

gMM /×

gMM /×

gMM /×

rqNTpp +×),,(1

···

MM×

Node
0

Node
1

qqTpp ×+ 2,,11),,(

···

qNqNTpp ××− ,,)1(1),,(

 The first stage: PP

Node
0

Node
1

Node
N-1

··
·

qTpp ,,11),,(
NMM /×

The second stage: IP

rqNqNTpp +×+× ,,11),,(

rqNR +×=

· · ·

NMM /×

NMM /×

)(,),1()1(1),,(rqrrqrTpp +×−+×−

MM ×

Node
0

Node
r

Node
N-1

···

···

RqNTpp ,,)1(1),,(×−

· · ·

·
· ·

Image
copy

)1(,,11),,(+qTpp

Parameter distribution

Node
0

Node
1

Node
N-1

···

Image distribution

Parameter
copy

RTpp ,,11),,(

NMM /×

NMM /×

NMM /×

Node
N-1

270 H. Zhou et al.

parameter, and iip Ω∈ (iΩ is the range of ip). i.e., a solution is composed of

one or more mapping parameters.
− S: search space composed of all solutions, |),,,{(21 kpppS = ,11p Ω∈

},,22 kkpp Ω∈Ω∈ .

− R: the number of solutions in search space, i.e., RS =|| .

From the description of section 2.1, wavelet-based global registration searches best
solution in search space of each level of decomposition. In [8], the previous parallel
algorithms [3][10-11] were formulated based on the relationship between the number
of solutions (R) and how they are distributed over a number of processors (N), and
classified into three types: 1) Parameter-Parallel (PP); 2) Image-Parallel (IP); 3) Hy-
brid-Parallel (HP). In our earlier experiments, HP excels PP and IP in the most cases,
but we also find that the performance of HP sometime decreases with the increasing
of N. This often happens when 0≠r and M is not very large. After in-depth analysis,
the reason is found that the overhead introduced by IP for r remaining correlations
counteracts the benefit from load balance. That is to say, the IP stage in HP mode is
efficient only when the computation to communication ratio is high enough. To
achieve this goal, we should make the sub-image dealt with by each processor as large
as possible but amount of correlations as small as possible during the IP stage. Based
on this analysis, a new parallel strategy, Group-parallel (GP), is proposed in [8].
Figure 1 shows the different idea of these four strategies, where NRq = and

NRr %= (% denotes that R leaves r modulo N), and g denotes the number of proces-
sors in each group. And for more details, please refer to [8].

3 Optimization for GP

In GP (see figure 1(d)), at each level of decomposition, there are 4 communication
processes happened: the first communication is happened in the PP stage. The global-
master node (Node0 for example) must gather the local results of PP stage from other
nodes. The second and third communication is both happened in the second stage.
Each group-master (every group has a group-master node, e.g. Node0 for group 1,
and Node)1)1((+− gr for group r) should gather local IP results from other nodes

within its group and send the global IP result that is computed by use of gathered
local IP results to the global-master node. This is a two-level reduction operation. The
last communication is a broadcast operation, in which the global-master scatters the
final result globally for next level of search.

After in-depth analysis, we can find that the first and the third communication is
independent from each other, so the first communication can be delayed and merged
with the third one. Although the data amount to transfer is not decreased, the message
number is reduced. Figure 2 shows the reduction of the number of message after the
communication merging. We named the optimized GP as Group-Optimized-Parallel
(GOP for short).

 A Proposal of Parallel Strategy for Global Wavelet-Based Registration 271

Fig. 2. The number of message at each wavelet level before and after optimization

4 Performance Analysis of Four Strategies

In [8], we have analyzed the complexity of PP, IP, HP and GP respectively, where we
use the LogGP as a computation model for analyzing these parallel algorithms on
distributed memory machines. The complexity of algorithm is evaluated in terms of
two measures: the computation time compT and the communication time commT . For

communication time, let αt denotes startup time for a message, and βt stands for

transfer time per word. In addition, let n denote levels of wavelet decomposition, and
a solution includes T mapping parameters denoted by),,,(21 Tppp . There are R
solutions in the search space at each level of decomposition. Original image size is M
and the parallel system has N processors/nodes.

In this section, to calculate parallel speedup and efficiency, we firstly give the
complexity formula of serial algorithm of automatic wavelet-based registration as
equation 1:

)()()(
4

1 22

0

RnMRRnMRT
n

i
is ⋅+⋅Ο=⋅Ο+⋅Ο=

=
 (1)

In [8], complexity analysis has ignored the effect of communication times. If con-
sidering this effect, we can get the following complexity formulas of PP (equation 2),
IP (equation 3), HP (equation 4), GP (equation 5, 6) and GOP (equation 7, 8).

)
)(

2(
22

N

MrN
NnNTtntn

N

MR
T PPN

⋅−
+⋅+⋅⋅⋅+⋅+⋅Ο=− βα (2)

)
)%(

2(
22

N

RNMN
NRnNRtnNTtntn

N

MR
T IPN

⋅−+⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅+⋅Ο=− ββα (3)

master

g-master1

other

· · ·

(a) GP: Communicating 4 times at
each level, total message count is
2(N-1)+rg+r

g-masterr

other

···

master

g-master1

other

···

g-masterr

other

···

··· ···

(b) GOP: Communicating 3 times at
each level, total message count is
2(N-1)+rg

272 H. Zhou et al.

If 0% =NR , PPNGOPNGPNHPN TTTT −−−− === . If 0% ≠NR , there are:

)
)%(

3(
22

N

rNMN
NrnNrtnNTtntn

N

MR
T HPN

⋅−+⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅+⋅Ο=− ββα (4)

)4(
2

NnNTtntn
N

MR
T GPN ⋅+⋅⋅⋅+⋅+⋅Ο=− βα (0% =rN) (5)

)
)(

4(
222

rNN

Mr
NnNTtntn

N

MR
T GPN −⋅

⋅+⋅+⋅⋅⋅+⋅+⋅Ο=− βα (0% ≠rN) (6)

)3(
2

NnNTtntn
N

MR
T GOPN ⋅+⋅⋅⋅+⋅+⋅Ο=− βα (0% =rN) (7)

)
)(

3(
222

rNN

Mr
NnNTtntn

N

MR
T GOPN −⋅

⋅+⋅+⋅⋅⋅+⋅+⋅Ο=− βα (0% ≠rN) (8)

Comparing equation 7and 8 with equation 5 and 6, it is proved in theory that GOP
excels GP for its less communication cost. Because GOP has same computation proc-
ess as GP, we only discuss GOP in the remainder of this paper.

Based on equation 1, 2 and 7, we can deduce the speedup and efficiency formulas
of the parallel algorithms PP and GOP, seeing equation 9-12. These formulas show
that the speedup of PP and GOP will both rise with the scale of system and data set.
But if value of M and N became very large, the scalability of PP would be restricted
for load imbalance. Contrarily, GOP has perfect theoretical analysis conclusion, i.e.,
keeping N unchanged, speedup GPNS − approximates to N and efficiency GPNE − ap-

proximates to 1 with the increasing of problem scale (∞→M). This conclusion
shows that parallel performance and scalability of GOP are better than PP. Moreover,
based on iso-efficiency model [12], we can deduce iso-efficiency function of GOP
(equation 13) from equation 11 and 12, where)(Nf GOPE− is a linear function of N.

By comparing equation 3, 4 and 7, we find that the items including 2M are same
as each other, so we will not enumerate the deduction process of speedup, efficiency
formula and iso-efficiency function of IP and HP here. They will get the similar re-
sults as equation 11, 12 and 13.

∞→
−+
⋅Ο≈

−+⋅+
⋅⋅⋅

+
⋅⋅

+

⋅⋅+Ο=

⋅−+⋅+⋅⋅⋅+⋅+⋅Ο

⋅+⋅Ο=−

M
NRNR

NR

NRN
M

Nn

M

NTtn

M

Ntn
R

NMRnR

N

MNRN
NnNTtntn

N

MR

RnMR
S PPN

)
%

(

)

%

)(
(

)
)%(

(

)(

2

2

2

2

2

2

22

2

βα

βα

 (9)

 A Proposal of Parallel Strategy for Global Wavelet-Based Registration 273

∞→
+−

Ο== −
− M

NNRR

R

N

S
E PPN

PPN)
1)%(

((10)

∞→Ο≈

⋅+
⋅⋅⋅

+⋅⋅+

⋅⋅+Ο=

⋅+⋅⋅⋅+⋅+⋅Ο

⋅+⋅Ο=−

MN
M

Nn

M

NTtn

M

Ntn
R

NMRnR

NnNTtntn
N

MR

RnMR
S GOPN

)(

)
)(

(

)(

)(

2

2

2

2

2

2

2

2

βα

βα

(11)

∞→Ο== −
− MN

N

S
E GOPN

GOPN)((12)

)(
1

)(NnNTtntn
E

E
Nf

N

N
GOPE ⋅+⋅⋅⋅+⋅⋅

−
=− βα (13)

Though the changing trend of speedup and efficiency of the above four strategies
are similar, their parallel execution time are different. To find a quantitative criterion
for choosing a best solution in different application, we need to analyze execution
time in detail. Because the first three items of equation 2, 3, 4 and 7 are same in the
order of magnitudes we only compare the Remainder Items, which are called RIs.
These remainder items (RIs) of the four strategies are denoted as gophpippp tttt ,,, . The

rules of selecting best strategy in different situations based on RIs are presented
as follows:

− When NR < . We can know from the foregoing analysis that DOP of PP is R, and
salability of PP is limited. So we should select one of the other three parallel
strategies (their parallel execution time is equal to IPT in this situation).

− When NR > and 0% =NR . The RIs of PP, HP and GOP are equal, i.e.,
Nnttt gophppp ⋅=== . But the RI of IP is NRnNRtntip ⋅⋅+⋅⋅⋅= β . Apparently,

complexity of IP is higher than the others. Hence, we should select one strategy
from PP, HP or GP in this situation.

− When 0%, ≠> NRNR and 0% =rN (NRr %=). Then we can deduce that

NMrNNnt pp
2)(⋅−+⋅= ,

N

RNMN
NRnNRtntip

⋅−+⋅⋅+⋅⋅⋅=)%(2

β ,

N

rNMN
NrnNrtnthp

⋅−+⋅⋅+⋅⋅⋅=)%(2

β , and Nnt gop ⋅= . Because

gophpppip tttt >>)(, GOP is the optimum strategy in this situation.

274 H. Zhou et al.

− When 0%, ≠> NRNR and 0% ≠rN (NRr %=). The computing formulas of

hpippp ttt ,, are as same as ones in the above condition of 0% =rN , but the formula

of gopt is changed. We deduce its formula based on equation 8, which

is
)(

22

rNN

Mr
Nnt gop −⋅

⋅+⋅= . Apparently, complexity of ipt is highest, but compari-

son of the other three strategies depends on value of some parameters. For exam-

ple, if 3=n , 1=r , 8=N and 256=M then 0
8

2567

78

256 22

<×−
×

=− ppgop tt ,

so GOP is better than PP; if 3=n , 7=r , 8=N and 256=M then

0
8

256

8

2567 222

>−×=− ppgop tt , so PP is better than GOP. That is to say, in this

situation, we should select the best strategy by computing RIs according to some
parameters. That is why GOP strategy dose not always get better performance than
other methods.

5 Experiments and Conclusion

For comparison, we also implement GOP algorithm on a same computer YH used in
[8]. YH has 32 processors with 1GB local storage for each processor. Speed of YH
CPU is valued as 1.66 gigaflops/sec. Topology of network is fat tree, and point-to-
point bandwidth is 1.2Gb/s. Various remotely sensed images with different size
(M=256/512/1024/2048/3072) are used for testing.

Fig. 3. Registration result of a pair of test images

Figure 3 shows the registration result of a pair of test images, in which Figure
3(c) is the output of the transformed input image to match the reference image.
Figure 4 gives the comparison of speedups achieved by four parallel algorithms
with different datasets (image size M changes from 512 to 3072) on our parallel
platforms YH.

(a) Reference image (b)Input image (c)Output image

 A Proposal of Parallel Strategy for Global Wavelet-Based Registration 275

0

5

10

15

20

25

30

1 2 5 8 10 15 16 30 32

N

sp

PP

IP

HP

GOP

0

5

10

15

20

25

30

1 2 5 8 10 15 16 30 32
N

sp

PP
IP
HP
GOP

0

5

10

15

20

25

30

1 2 5 8 10 15 16 30 32
N

sp

PP
IP

HP
GOP

(a) M = 512 (b) M = 1024 (c) M = 3072

Fig. 4. Speedups of four algorithms achieved on YH with different datasets

Fig. 5. Execution time of four algorithms achieved on YH with one test dataset (M=3072)

From figure 4, we can conclude that GOP is better than PP in execution time and
speedup. Furthermore, the optimized effect of GOP is better than HP in most situa-
tions, especially when 0% =rN . The performance of HP is fluctuant sometimes for
its RI (ipt) is affected by several factors. These conclusions are in accordance with

foregoing theoretical analysis. When value of M is large, the effect of unbalanced load
becomes more obvious with the increasing of N. In figure 4, when N>16, the per-
formance of PP is worse than that of HP and GOP; and when N is up to 32, the
speedup even begins to fall. Therefore, performance can be improved by balancing
load, and the improving scope will increase with the increasing of M.

The validity of RIs analyzed above is proved in figure 5. For example, when

12=N , then 5=r , the RI of PP is 12)7(2Mt pp ×= , the RI of GOP is

)712()25(2 ××= Mt gop , so goppp tt > , accordingly, execution time of PP is longer

than GOP in figure 5. But when 16=N , then 13=r , 16)3(2Mt pp ×= ,

31613 22 ××= Mt gop , so goppp tt < , accordingly, execution time of GOP is longer

than PP in figure 5. Hence, we can exactly select an optimum parallel strategy by
calculating RI.

276 H. Zhou et al.

Future work will include the study of combination of global registration and CPs-
based methods with emphasis on both speed and accuracy. Automatic registration of
remotely sensed data is a very complex problem, and as stated in [3], we feel that only
a future system that integrates multiple automated registration techniques will be able
to address such a task for multiple types of remote sensing data.

References

1. Zhou, H., Liu, G., Zheng, M., Yang, X.: A research on serial and parallel strategies of the
automatic image registration for remote sensing. Journal of national university of defense
technology. Vol. 26(2). (2004)56-61. (In Chinese, cited by EI)

2. Moigne, J. Le., Xia, W., El-Ghazawi, T.: Towards an intercomparison of auto-
mated registration algorithms for multiple source remote sensing data. In the Pro-
ceeding of the first image registration workshop, NASA/GSFC. 1997.11.

3. Moigne, J. Le., Campbell, W. J., Cromp, R. F.: An automated image registration
technique based on the correlation of wavelet features. IEEE Transaction on Geo-
science and Remote Sensing. 40(8) (2002)1849-1864.

4. Thévenaz, P., Ruttimann, U. E., Unser, M.: A pyramid approach to sub-pixel registration
based on intensity. IEEE Transaction on Image Processing. 7(1) (1998) 27–41.

5. Pinzon, J., Ustin, S., Castaneda, C., Pierce, J.: Image registration by non-linear wavelet
compression and singular value decomposition. In Proceedings of IRW, NASA/GSFC.
(1997)1-6.

6. Chettri, S., Campbell, W. J., Moigne, J. Le. : A scale space feature based registration tech-
nique for fusion of satellite imagery. In proceedings of ImageRegistration Workshop
(IRW97), NASA/GSFC, (1997) 29-34.

7. Fonseca, L., Manjunath, B. S., Kenney, C.: Scope and applications of translation invariant
wavelets to image registration. In proceedings of Image Registration Workshop (IRW97),
NASA/GSFC. (1997) 13-28

8. Zhou, H., Yang, X., Liu, H., Tang, Y.: First evaluation of parallel methods of automatic
global image registration based on wavelets. In proceedings of the 2005 international con-
ference on parallel processing. IEEE Computer Society. Norway, Oslo. 2005. 6

9. Brown, L.: A survey of image registration techniques. ACM Computing Surveys. 24(4)
(1992) 325–375.

10. El-Ghazawi, T., Chalermwat, P.: Wavelet-based image registration on parallel computers.
In SuperComputing’97: High Performance Networking and Computing: Proceedings
ACM/IEEE. 1997.11.

11. Chalermwat, P.: High performance automatic image registration for remote sensing.
[Ph.D. Thesis]. George Mason University. Fairfax, Virginia. 1999.

12. Grama, A. Y., Gupta, A., Kumar, V.: Isoefficiency: measuring the scalability of parallel
algorithms and architectures. IEEE Parallel & Distributed Technology. 1(3) (1993) 12-21.

Performance Analysis of a Parallel Sort Merge
Join on Cluster Architectures

Erich Schikuta

Research Lab on Computational Technologies and Applications,
Institute of Knowledge and Business Engineering,

University of Vienna,
Rathausstraße 19/9, A-1010 Vienna, Austria

erich.schikuta@univie.ac.at

Abstract. We developed a concise but comprehensive analytical model
for the well-known sort merge Join algorithm on cost effective cluster
architectures.

We try to concentrate on a limited number of characteristic param-
eters to keep the analytical model clear and focused. We believe that a
meaningful model can be built upon only three characteristic parame-
ter sets, describing main memory size, the I/O bandwidth and the disk
bandwidth. We justify our approach by a practical implementation and
a comparison of the theoretical to real performance values.

1 Introduction

Today clusters of workstations are the focus of many high performance appli-
cations searching for viable and affordable platforms replacing expensive super-
computer architectures. A cluster system is a parallel or distributed processing
system consisting of interconnected stand-alone workstations working together
as a single, integrated computing resource [1]. We believe that a cluster system is
a suitable environment for parallel database systems. There is an urgent need for
novel database architectures due to new stimulating application domains with
huge data sets to administer, search and analyze.

Due to its inherent expressive power the most important operation in a re-
lational database system is the join. It allows to combine information of differ-
ent relations according to a user specified condition, which makes it the most
demanding operation of the relational algebra. Thus the join is obviously the
central point of research for performance engineering in database systems.

In the past a number of paper appeared covering this topic, like [2], [3], [4],
which proposed and analyzed parallel database algorithms for parallel database
machines. [5] presents an adaptive, load-balancing parallel join algorithm im-
plemented on a cluster of workstations. The algorithm efficiently adapts to use
additional join processors when necessary, while maintaining a balanced load.
[6] develops a parallel hash-based join algorithm using shared-memory multi-
processor computers as nodes of a networked cluster. [7] uses a hash-based join

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 277–286, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

278 E. Schikuta

algorithm to compare the designed cluster-system with commercial parallel sys-
tems.

In this paper we will present an analysis and evaluation of the Sort Merge
Join. This work is part of a running project for a comprehensive analysis of
parallel join operations. We did a similar research for all important parallel join
operations (e.g. Hybrid Hash Join [8]). A focus on analyzing hardware charac-
teristics of the underlying system is beyond the scope of this paper. So we are
interested in the specifics of the algorithms and not of the machines.

2 Parallel Database Operations

2.1 Declustering

Declustering is the general method in a parallel database system to increase the
bandwidth of the I/O operations by reading and writing the multiple disks in
parallel. This denotes the distribution of the tuples (or records, i.e. the basic
data unit) of a relation among two or more disk drives, according to one or
more attributes and/or a distribution criteria. Three basic declustering schemes
can be distinguished, range declustering (contiguous parts of data are stored
on the same disk), round-robin declustering (tuples are spread consecutively
on the disk), and hash-declustering (location of a tuple is defined by a hash
function).

The disjoint property of the declustered sets can be exploited by parallel
algorithms based on the SPMD (single program, multiple data) paradigm. This
means that multiple processors execute the same program, but each on a different
set of tuples. A realistic assumption of our model is that the relations of the
database system are too large to fit into the main memory of the processing
units. Consequently all operations have to be done externally and the I/O costs
are the dominant factor for the system performance.

2.2 The Join Operation

The join operation ‘merges’ two relations R and S via two attributes (or at-
tribute sets) A or B (respective relations R and S) responding to a certain
join condition. The join attributes have to have the same domain. Two different
types of join operators are distinguished, the equi-join and the theta-join. In
the following only the equi-join is discussed. Three different approaches for join
algorithms are distinguished, sort merge, nested loop, and hash based join. Basi-
cally the parallel versions of these approaches can be realized on a conventional
client-server scheme. The server stores both relations to join and distributes the
declustered tuples among the available clients. The clients perform the specific
join algorithm on their sub relations and send the sub results back to the server.
The server collects the result tuples and stores the result relation.

Performance Analysis of a Parallel Sort Merge Join on Cluster Architectures 279

3 Analytical Model

3.1 Model Parameters

In the following (see Table 1) we specify several parameters and a few derived
terms, which describe the characteristics of the model environment and build
the basis for the derived cost functions.

Table 1. Parameters of the cost model

m number of tuples of relation R (inner relation)
n number of tuples of relation S (outer relation)
p number of processors
n t m number of tuples per message
b bucket size (tuples per bucket)
s selectivity factor (percentage of the product of m and n

giving the result size
l f loop factor (number of loops necessary to build hash

buckets due to number of open file limitations)
read read one tuple from disk
write write one tuple to disk
receive receive one message
send send one message
find target find the right target client
hash store a tuple into a main memory hash table
probe probe a main memory hash table with a tuple
fill fill a tuple into main memory
compare compare the keys of two tuples in main memory and build

a result tuple if keys match.

The specific values of the basic parameters and the derived functions used
in the theoretical model to calculate ”real” numbers were profiled by a specific
test program on the real hardware. The values are given in section 4.

For the declustering of the data among the clients the server reads the two
input relations, described by equation (1),

server read = (m + n) ∗ read (1)

determines the respective target client by a declustering function with p as one
of its parameters (2)

server compute = (m + n) ∗ find target (2)

and sends the tuples (packed in messages) to the target client (3).

server send = (
m

n t m
+

n

n t m
) ∗ send (3)

280 E. Schikuta

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

50000 100000 250000 500000 1000000

tuples of R and S

co
st

 t
yp

e
p

er
ce

n
ta

g
es

computation

communication

I/O

Fig. 1. Percentage of server-side cost types

After sending the messages the server is in an idle-state. It waits for the
results of the clients (4) and writes it to disk (5).

server receive =
m ∗ n ∗ s

n t m
∗ receive (4)

server write = m ∗ n ∗ s ∗ write (5)

The total cost of the server is defined in (7) by the sum of (1) to (5).

server cost = server read + server compute+ (6)
+ server send + server receive + server write

The work of the server, as I/O-costs (read,write), message-costs (send, re-
ceive) and computational costs, is obviously independent of the number of pro-
cessors used. Figure 1 shows this situation graphically by splitting the total
server execution costs into the parts on I/O costs (read and write operations),
communications costs (send and receive operations) and pure computational
costs.

3.2 Sort Merge Join

The parallel version of the sort merge join algorithm is a straight forward adap-
tion of the traditional single processor version of the algorithm. The inner re-
lation R is first partitioned using a split table (range declustering). A function
is applied to the join attribute of each tuple to determine the appropriate disk
site. As the tuples arrive at a client they are gathered in buckets. The buckets
are sorted in ascending order of the join attribute and written to two tempo-
rary files of equal size. Every client uses binary sort merge to sort its part of

Performance Analysis of a Parallel Sort Merge Join on Cluster Architectures 281

(a) (b)

p1

host

3

4

1 5

7 6

8

declustering
phase

suboptimal
phase
2 cluster pro

7

5

3

8

1

p0

2

3
1

4
2

8
5

7
6

p0 p1

3

1

4

2
8

5

7

6

4

3

2

1

8

7

6

5

optimal
phase

(Supotimal phase) (Optimal phase)

Fig. 2. Phases of sort merge join

relation R. Parallel binary merge sort is described in [9]. An analysis and evalu-
ation of parallel binary merge sort is given in [10]. In our algorithm we use only
the suboptimal and optimal part of the sort algorithm. The suboptimal phase
(see (a) Figure 2) merges pairs of longer and longer runs (i.e. ordered sequences
of pages). In every step the length of the runs is twice as large as in the preced-
ing run. At the beginning each processor reads two sorted pages, merges them
into a run of 2 pages and writes it back to the disk. This is repeated, until all
buckets are read and merged into 2-buckets-runs. If all buckets are merged, the
suboptimal phase continues with merging two 2-page-runs to a sorted 4-page-run.
This continues until all 2-page-runs are merged. The phase ends, when the two
temporary files are sorted. At the end of the suboptimal phase 2 sorted tempo-
rary files exist on each node. During the following optimal phase each processor
merges the 2 temporary files (see (b) in Figure 2).

In a second phase the outer relation S is partitioned using the same split
table. Every client receives its tuples of relation S, builds and sorts buckets and
sorts the temporary files of relation S using binary sort merge. In a third phase
the sorted temporary files of R and S are merged and result tuples are built.

The work for the clients start with receiving the tuples of the inner and outer
relation from the server. Every client gets only m

p tuples of the inner relation R
and n

p tuples of the outer relation S. The costs for receiving are described by [7]
and for writing to the local disk by [8].

client receive =
m
p

t m
∗ receive +

n
p

t m
∗ receive (7)

282 E. Schikuta

build temp files =
m

p
∗ write +

n

p
∗ write (8)

In the following step every bucket has to be sorted, which is

sort bucket = (
m
p

b
+

n
p

b
) ∗ b2 ∗ compare (9)

After sorting the buckets are written to the local disk. analogous to [8].
In the suboptimal phase and the optimal phase of binary merge we have to

sort the two input relation.

sort R = (
m

p
∗ log

m

p
) ∗ (read + compare + write) (10)

sort S = (
n

p
∗ log

n

p
) ∗ (read + compare + write) (11)

Next the sorted input relations have to be merged and result tuples have to
be built,

merge = (
m

p
+

n

p
) ∗ (read + compare) (12)

At last the algorithm sends back the join results. Finally the client has to
write the result tuples back to the server [13].

send result = (
m

p
∗ n

p
) ∗ s

t m
∗ send (13)

The complete costs of the client are given in [15]. The total cost for the sort
merge join [15] is the sum of the cost of the server and [15].

client sort cost = client receive + build temp+ (14)
+ sort bucket + sort R + sort S + merge + send result

0

500

1000

1500

2000

2500

1 proc. 2 proc. 3 proc. 4 proc.

processors

se
co

n
d

s

50k tuples

100k tuples

250k tuples

500k tuples

1000k tuples

Fig. 3. Theoretical speedup sort merge join

Performance Analysis of a Parallel Sort Merge Join on Cluster Architectures 283

0,0009

0,00095

0,001

0,00105

0,0011

0,00115

0,0012

0,00125

50k
tuples

100k
tuples

250k
tuples

500k
tuples

1000k
tuples

number of tuples R, S

se
co

n
d

s/
tu

p
le

1 proc.

2 proc.

3 proc.

4 proc.

Fig. 4. Theoretical cost per tuple sort merge join

sort merge cost = server cost + client sort cost (15)

Figure 3 shows the theoretical speedup behavior of the sort merge join using
different number of processors and input tuples.

The costs per tuple change only slightly when the number of input tuple
increases. The costs per tuple increase because the main parts of sort merge are
from the order of O((m + n) ∗ log(m + n)). The results can be seen in Figure 4
for 1 to 4 clients.

4 Model Justification

To justify the presented model we evaluated and compared it to a practical
performance analysis were we implemented the algorithm.

Test-bed for our analysis was an off-the-shelf ”el-cheapo” PC cluster con-
sisting of 5 single processor nodes (computational units) running the Linux op-
erating system. The algorithms were realized with the C language and PVM
as communication library. The values of the parameters used in our tests are
given in Table 2. We used a test module to determine the values of the basic
parameters and the derived functions (measured in seconds) of our cost model

Table 2. Specific values of the basic parameters

m 50k,100k,250k,500k,1000k
n 50k,100k,250k,500k,1000k
p 1,2,3,4
n t m 100
b 1000
s 1/m
l f 10

284 E. Schikuta

Table 3. Values for derived functions of the cost model

read 0,0000105 seconds
write 0,00001 seconds
receive 0,0025 seconds
send 0,0025 seconds
find target 0,000005 seconds
Hash 0,00001 seconds
probe 0,00001 seconds
fill 0,0000008 seconds
compare 0,0000008 seconds

0

500

1000

1500

2000

2500

1 proc. 2 proc. 3 proc. 4 proc.

processors

se
co

n
d

s

50k tuples

100k tuples

250k tuples

500k tuples

1000k tuples

Fig. 5. Real speedup Sort Merge Join

(see Table 3). Figure 5 gives the real execution times for the Sort Merge Join.
All given values are the averages of at least 20 runs.

The real values correspond to the theoretical values, besides the specific re-
sult for the one-processor case, amazingly well. The asymptotic runtime behavior
for increasing workloads and processing nodes (speed-up) of the model and the
reality is about same. Not only the trend of the data is the same, but also
the real execution values match the ones calculated by the model. The differ-
ence was only about 10 percent, which is due to the simplified model ignoring
operating system specifics. Summing up this result shows that the simplified
approach described in the previous section models the reality very well and jus-
tifies it as a basis to analyze the algorithms behavior on a cluster architecture
thoroughly.

5 Conclusion and Lessons Learned

The results of the analytic model justified by the practical implementation leads
to the following lesson, which can be the basis for future data intensive applica-
tions on cluster architectures:

Performance Analysis of a Parallel Sort Merge Join on Cluster Architectures 285

– Disk IO, and not network bandwidth, is the limiting factor for distributed
data intensive IO operations.

– It can be expected that the cumulated network bandwidth of a typical clus-
ter is larger than the IO bandwidth. This situation is based on the current
technology and also supported by the actual technology trend that the char-
acteristics of network hardware develops faster than the disk hardware.

– Corollary: Clusters are a viable platform for data intensive applications.
– To build up an analytical model of cluster systems for data intensive oper-

ations it is sufficient to concentrate on the characteristics of main memory,
IO bandwidth and disk bandwidth.

– It is possible to model the execution time behavior of data intensive opera-
tions on clusters accurately, which allows the building of query analyzer for
parallel/distributed database systems.

– Summing up: Clusters can be a suitable platform for parallel/distributed
database systems.

Acknowledgements

I would like to express my thanks to Peter Kirkovits, who helped in designing
the algorithms and the programming of the test suite. The work described in
this paper was partly supported by the Special Research Program SFB F011
AURORA of the Austrian Science Fund.

References

1. Baker, M., Buyya, R.: Cluster Computing at a Glance. In: High Performance
Cluster Computing. Prentice Hall (1999) 3–47

2. Pirahesh, H., Mohan, C., Cheng, J., Liu, T., Selinger, P.: Parallelism in relational
database systems: Architectural issues and design approaches. In: Proc. Of the
IEEE Conf. On Distributed and Parallel Database Systems, IEEE Computer So-
ciety Press (1990)

3. Stonebraker, M., Aoki, P., Devine, R., Litwin, W., Olson, M.: Mariposa: A new
architecture for distributed data. In: Proc. Of the Int. Conf. On Data Engineering,
IEEE Computer Society Press (1994)

4. Moreno, E.: Hash join algorithms on smps clusters: Effects of netcaches on its
scalability and performance. Journal of Information Science and Engineering 18
(2002)

5. Amin, M.B., Schneider, D.A., Singh, V.: An adaptive, load balancing parallel
join algorithm. In: Sixth International Conference on Management of Data (CO-
MAD’94), Bangalore, India (1994)

6. Jiang, Y., Makinouchi, A.: A parallel hash-based join algorithm for a networked
cluster of multiprocessor nodes. In: Proceedings of the COMPSAC ’97 - 21st
International Computer Software and Applications Conference. (1997)

7. Tamura, T., Oguchi, M., Kitsuregawa, M.: Parallel database processing on a 100
node PC cluster. In: Proc. of the Supercomputing 97, IEEE Computer Society
Press (1997)

286 E. Schikuta

8. Schikuta, E., Kirkovits, P.: Cluster based hybrid hash join: Analysis and evaluation.
In: Proc. IEEE International Conference on Cluster Computing, Chicago, IEEE
Computer Society Press (2002)

9. Bitton, D., Boral, H., Dewitt, D., Wilkinson, W.: Parallel algorithms for the exe-
cution of relational operations. ACM Trans. Database Systems 8 (1983) 324–353

10. Schikuta, E., Kirkovits, P.: Analysis and evaluation of sorting for parallel database
systems. In: Proc. Euromicro 96, Workshop on Parallel and Distributed Processing,
Braga, Portugal, IEEE Computer Society Press (1996) 258–265

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 287 – 292, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Parallel Clustering on the Star Graph

M. Fazeli, H. Sarbazi-Azad, R. Farivar

Sharif University of Technology and IPM School of Computer Science
{m_fazeli, azad, r_farivar}@ce.sharif.edu,

 azad@ipm.ir

Abstract. In this paper, a parallel algorithm for data clustering is presented on a
multi-computer with star topology. This algorithm is fast and requires a small
amount of memory per processing element, which makes it even suitable for
SIMD implementation. The proposed parallel algorithm completes in O(K+S2 -
T2) steps for a clustering problem of N data patterns with M features per pattern
and K clusters, where N.M = S!, K.M = T!, and M=R!, on a s-star
interconnection network.

1 Introduction

Feature vector is a basic notion of pattern recognition. A feature vector v is a set of
measurements (Mvvv ,...,, 21) which map the important properties of a collection of
data into a Euclidean space of dimension M [6]. Clustering algorithm partitions a set
of feature vectors into cluster groups. It is a valuable tool in exploratory pattern
analysis, and helps making hypotheses about the structure of data. It is important in
syntactic pattern recognition, image segmentations, registration, and many other
applications. There have been many methods proposed for clustering feature vectors
[6], [7], [8], [9], [10], [11].

One popular clustering technique is the squared-error algorithm. This clustering
algorithm is as follows [5]. Let N represent the number of patterns which are to be
partitioned and let M represent the number of features per pattern. Let F [0…N-1,
0..M-1] be the feature matrix such that the F [i,j] denotes the value of j-th feature in
the i-th pattern.

 Let S1 , S2 , … , and Sk be K clusters. Each pattern belongs to exactly one of the
clusters. Let C[i] represent the cluster to which pattern i belongs. Thus, we can define
Sk as

 { [] ,0 1}ks i C i k k K= = ≤ ≤ −

Let ks be the cardinality or size of the pattern ks . The center of cluster k is a

1×M vector defined as

1
[,] [,], 0 ;

ki sk

center k j F i j j M
s ∈

= ≤ ≤

The squared distance d2 between pattern i and cluster k is given by

−= 2]),[],[(],[2 jkcenterjiFkid

288 M. Fazeli, H. Sarbazi-Azad, and R. Farivar

The squared error for the k-th cluster is defined as

2[] 2[,], 0 ;
ki s

E k d i k k K
∈

= ≤ <

And the squared error for clustering is given by
1

0

[] 2[].
K

k

ERROR K E k
−

=

=

In the clustering problem, we are required to partition the N input patterns such
that the squared error for the clustering becomes minimum. In practice, this is done by
trying out several different values of K. For each K, the clusters are constructed using
an iterative refinement technique in which we begin with an initial set of K clusters,
and move each pattern to a cluster with which it has the minimum squared distance
and re-compute cluster centers. The last two steps are iterated until no pattern is
moved further from its current cluster. The final clustering obtained in this way,
however, is not guaranteed to be globally minimum. In fact, different initial clustering
can result in different final clusters.

This paper1 proposes a parallel algorithm for pattern clustering on the star graph
with a run time of O(K) and a memory usage of O(1). The algorithm combines several
communication techniques in a novel method to perform pattern clustering on a NM-
node star graph. This algorithm relies on window broadcasting communication at
some stages during computation, as will be discussed later. It also uses a special kind
of processor ordering introduced in [1] in order to assign the data to the PE’s in the
initialization phase.

2 Routing and Data Communication in the Star Graph

In this section, some useful definitions and notation are introduced. A routing
algorithm, called Send, will be also introduced. This algorithm is used in the last
phase of our algorithm.

Definition 1. Let Sn-1(i) be the sub graph of Sn in which the last symbol of all its node
addresses are equal to i.

A Sn-1(i) is an (n-1)-star defined on symbols {1,2,…,n}-{i}. Thus, Sn can be
decomposed into n sub-(n-1)-stars, Sn-1(i), 1 i n. For example, a S3(4) would
contain four 3-stars, namely S3(1), S3(2), S3(3), and S3(4).

Definition 2. Let m1 and m2 be two distinct symbols from {1,2,…,n}. We use notation
m1*m2 to represent a permutation of {1,2,…,n} whose first and last symbols are m1
and m2, respectively, with * representing any permutation of the n-2 symbols in
{1,2,…,n}-{m1, m2}. Similarly, m1* is a permutation of n symbols whose first symbol
is m1, and *m2 is a permutation of n symbols whose last symbol is m2 [3].

Definition 3. Two or more nodes from distinct Sk-1’s are corresponding if they have
the same index in their respective Sk-1’s according to the processor ordering scheme
which is introduced in Section 2.2. for example the nodes with addresses 2341, 1342,
1243, 1234 are the corresponding nodes in a sample S4.

1 The detailed explanation of the proposed parallel algorithm is available in [2].

 Parallel Clustering on the Star Graph 289

 In our parallel algorithm, a useful function called Send is used to transmit the
contents of the nodes of a Sk-1(i) to the corresponding nodes of another Sk-1(j). Since
the host network is Sn, the last N-K symbols of the upper level Sk (in which the Sk-1(i)
and Sk-1(j) are embedded) are the same. This function gets four values as inputs: i and
j as the k-th symbols of two Sk-1’s , k as the dimension of the upper level sub graph in
which Sk-1(i) transmits its nodes contents to the nodes in Sk-1(j), and n is the dimension
of the host network Sn. Notation k,n in the send function represents that the last n-k
symbols are the same. The pseudo code of the send function is present in [2].

Rule 1. Every node value in a particular Sk-1(i) is sent to its corresponding node in Sk-

1(j) using Send function, if i and j are in a descending order in the symbol set (i.e. j is
less than i and greater than the other remaining symbols).

Let S=X1 X2 … Xi-1 Xi k,n, Xi ∈{1,2,3, … ,n} be the source node in the particular
Sk-1, and the Send function be used to transmit the node contents of Sk-1(Xi) to Sk-1(Xi-1).
The routing steps are as follows:

Step1: X1 X2 … Xi-1 Xi k,n Xi X2 … Xi-1 X1 k,n
Step2: Xi X2 … Xi-1 X1 k,n Xi-1 X2 … Xi X1 k,n
Step3: Xi-1 X2 … Xi X1 k,n X1 X2 … Xi Xi-1 k,n

In this rule, for the sake of clarity, we suppose that Xi>Xi-1 >Xi-2 …>X1. According
to our processor ordering scheme the node X1 X2 … Xi-1 Xi k,n has the greatest index
in the Sk-1(Xi) and the node X1 X2 … Xi Xi-1 k,n has also the greatest index in the Sk-1(Xi-

1), therefore the node X1 X2 … Xi Xi-1 k,n which is selected as a destination node is the
Corresponding node of the source node.

Rule 2. Two consecutive neighboring nodes S1 and S2 in Sk(i) send data to consecutive
neighboring nodes D1 and D2 in Sk(j), if i and j are in the descending order in the
symbol set.

Suppose that node X1 X2 … … Xi-1 Zi k,n and node Y1 Y2 … … Yi-1 Zi k,n in
Sk-1(Zi) are two consecutive neighbors, and and Zi are in descending order in the
symbol set such that {T} < { , Zi} < {S} where {T} ∪ {S} = Symbol Set – { , Zi}.
After sending the contents of nodes in Sk-1(Zi) to nodes in Sk-1(Yi), we have the
following steps for sending data from node X1 X2 … … Xi-1 Zi k,n ,

Step1: X1 X2 … … Xi-1 Zi k,n Zi X2 … … Xi-1 X1 k,n
Step2: Zi X2 … … Xi-1 X1 k,n X2 … Zi … Xi-1 X1 k,n
Step3: X2 … Zi … Xi-1 X1 k,n X1 X2 … Zi … Xi-1 k,n

and the following steps for sending data from node Y1 Y2 … … Yi-1 Zi k,n ,

Step1: Y1 Y2 … … Yi-1 Zi k,n Zi Y2 … … Yi-1 Y1 k,n
Step2: Zi Y2 … … Yi-1 Y1 k,n Y2 … Zi … Yi-1 Y1 k,n
Step3: Y2 … Zi … Yi-1 Y1 k,n Y1 Y2 … Zi … Yi-1 k,n

The nodes X1 X2 … Zi … Xi-1 k,n and Y1 Y2 … Zi … Yi-1 k,n in Sk-1() are also
consecutive neighboring nodes because exchanging and Zi symbols dose not affect
the ordering of nodes.

Rule 3. In transmission from nodes in Sk-1(i) to nodes in Sk-1(j), where i is the
minimum symbol in the corresponding symbols set and j is the greatest one, k-2
exchange steps are required within the Sk-1(j) to send data in the corresponding nodes
to each other.

290 M. Fazeli, H. Sarbazi-Azad, and R. Farivar

 If the contents of the node X2 … Xi X1 k,n is transmitted by function send to the Sk-1

(Xi), where Xi>Xi-1 >Xi-2 …>X1 in Sk-1(X1), the following steps are performed in the
first phase of the send function:

Step1: X2 X3 … Xi X1 k,n X1 X3 … Xi X2 k,n
Step2: X1 X3 … Xi X2 k,n Xi X3 … X1 X2 k,n
Step3: Xi X3 … X1 X2 k,n X2 X3 … X1 Xi k,n

It’s clear that X2 X3 … Xi X1 k,n has the greatest index among other nodes in Sk-1

(X1). Thus, in a correct transmission, the contents of this node should be transmitted to
a node in Sk-1(Xi) which has the greatest index (according to the processor ordering),
but the use of the proposed algorithm doesn’t accomplish this task in the first 3 steps.
To do so, K-2 exchange steps are required in Sk-1(Xi) as follows:

Step1: X2 X3 … X1 Xi k,n X3 X2 … X1 Xi k,n
Step2: X3 X2 … X1 Xi k,n X4 X2 X3… X1 Xi k,n

Step k-2: Xi-1X2 X3… X1 Xi k,n X1X2 X3… Xi-1 Xi k,n

From Rules 1, 2 and 3, it can be concluded that each node in Sk-1(i) is sent to its
corresponding node in Sk-1(j) by send function, if i and j are in the descending order
except when i is the minimum and j is the greatest symbol in corresponding symbol
set. The following transmission sequence shows a correct order of transmission.

Sk-1(Xi) Sk-1(Xi-1) …. Sk-1(X1) Sk-1(Xi)

where Xi>Xi-1 >Xi-2 …>X1.

3 The Parallel Algorithm

The parallel algorithm consists of three main phases: Initialization Phase, Cluster
Assignment Phase, and Centers update Phase. The number of patterns in this
algorithm, N, the number of clusters, K, and the number of features, M, should satisfy
conditions N.M=S!, K.M=T!, and M=R!. If the number of patterns, clusters or
features are not in a factorial manner, one can add enough number of dummy entries
so that the above conditions satisfy and the clustering results are not affected [5].

3.1 The Initialization Phase

During this phase, two index numbers are associated to each PE according to the
mentioned processor ordering scheme. The first index shows the order of the PE in the
host network Ss and the latter one is the order of the PE in the corresponding ST. Then
the patterns are associated with different SR's in such a way that the i-th feature of a
pattern resides in a PE whose index number satisfies the condition iindex

m

≡ . Then the
first ST in SS is considered as the master cluster window (the choice of the initial cluster
centers in the master cluster window is arbitrary), and its contents are copied into all
other ST’s, so that the current cluster center selection is reported to all the other cluster
windows. The register R1 of each node is used to store the distance of node to its cluster.
The register R3 represents the value of the node distance to the current cluster. The
registers F1 and C1 are used to store the values of features and their cluster numbers.

k-2 steps
are required

 Parallel Clustering on the Star Graph 291

3.2 The Cluster Assignment Phase

The aim of this phase is to compute the distance d2 (i,k) of each pattern in each cluster
window from the current selection of cluster centers, and to choose the minimum
distance to all cluster centers. We then assign this cluster to the pattern according to
the selected choice.

First, the distances between the features and the current centers available in each
node of a SR are computed in a parallel fashion among all SR’s in the network as
(Pattern feature - Center feature) 2

.
 Then by the use of a function called Group Accumulate [1], the value of d2 (i,k)

which represents the distance between the i-th pattern and the current center is
calculated and compared to the old value; the smaller one is selected as the cluster
where this pattern belongs to.

 In the second step, the values of the SR’s present in all SR+1’s available in the SS are
rotated once via the send function in parallel, as previously described. These steps
will be repeated R+1 times, until all the SR’s present in all SR+1’s get each other’s data.

The next step would be to rotate the data values of SR+1’s in all SR+2’s in parallel
once, and repeat the first and second steps R+2 times. The addition of the levels of
sub-graphs and their rotation of them continues until the ST+1 is reached; in other
words, we reach one level higher than the cluster windows (ST’s).

 By the end of the Cluster Assignment Phase, all the patterns have been assigned
their cluster membership in the corresponding higher order node (according to the
PE’s ordering). These steps are described in [2].

3.3 Centers Update Phase

As mentioned before, all the cluster windows (ST’s) have been indexed such that

every node contains a variable T which is equal to
!R

Index , which shows that what

cluster center data each RS in a cluster window is responsible for. This value is a

pre-computed constant for each SR (which would contain a feature vector). This phase
has two steps: Broadcast Cluster Center step and Cluster Center Update step.

3.3.1 Broadcast Cluster Center Step
In this phase, all the SR’s in SS broadcast their cluster numbers which have been
computed in the previous phase and stored in their highest indexed node.

As mentioned earlier, the center number of patterns is stored in a node with
highest index within the SR’s. Let X1 X2 … XL R,T be the node with highest index in
corresponding SR. The following optimal broadcasting algorithm [4] can broadcast the
content of this node to the processors in SR (XL).

3.3.2. Cluster Center Update Step
In this phase, all the SR’s in SR+1 exchange their values R+1 times. In each rotation
step, the contents of nodes in SR’s , which include cluster number and the feature
value is transmitted to its corresponding node in the consecutive SR. In each node in
SR’s, if the cluster number T is equal to the cluster number it receives (from the

292 M. Fazeli, H. Sarbazi-Azad, and R. Farivar

previous window SR), the PE adds its feature value to the feature value it gets,
otherwise it does nothing.

In the next step, the dimension of the last step is increased once, in fact SR+1’s
exchange data R+2 times inside the corresponding SR+2. In each exchange operation,
the above steps are repeated again until ST+1 is reached.

Through the last step, all ST’s in a ST+1 exchange their nodes’ contents with their
corresponding ST’s, T+1 times. Since corresponding SR’s in two different ST’s (SR’s
with similar values of T) contain similar cluster center information, the nodes of each
ST just add their former contents to the newly received ones; there is no need for any
comparison or similar operation.

The last step is repeated until we reach the SS. There will be [S(S+1)/2-
T(T+1)/2+K] additions and send operations. The pseudo code of this phase is also
present in [2].

4 Conclusions

The star graph was proposed as an attractive alternative to the hypercube topology for
interconnection between processors in parallel computers. It has been extensively
studied in different aspects and many algorithms have been designed for it. In this
paper, a squared error clustering algorithm for a star multi-computer was presented.
This algorithm is fast and requires a little amount of memory per processing node.
This algorithm completes in O(K+ S2 - T2) steps for a clustering problem of N
patterns, with M features per pattern, and K clusters, where N.M = S!, K.M = T!, and
M=R!, on an N.M–node multiprocessor with star topology.

References

[1] H. Sarbazi-Azad, M. Ould-Khaoua, L.M. Mackenzie, and S.G. Akl “A parallel algorithm
for Lagrange interpolation the star graph”, Journal of Parallel and Distributed
Computing 62, 605-621 (2002).

[2] M. Fazeli, H. Sarbazi-Azad and R.Farivar “Parallel Clustering on the Star Graph”,
Technical Report, IPM school of Computer Science (2005).

[3] S. Akl, K. Qiu, ”A novel routing scheme on the star and pancake networks and its
applications”, Parallel Computing 19(1), 95-101 (1993).

[4] P. Berthone, A. Ferreira, and S. Perennes, “Optimal Information Dissemination in Star
and Pancake networks", IEEE TPDS 7, 1292-1300 (1996).

[5] S. Ranka and S. Sahni, “Clustering on a hypercube multicomputer”, IEEE TPDS 2(2),
71-82 (1991).

[6] D.H. Ballard and C.M. Brown, Computer vision. Englewood Cliffs, NJ: Prentice-Hall,
1985.

[7] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis. New York: Wiley,
1973.

[8] K.S. Fu, Syntactic Methods in Pattern Recognition. New York: Academic Press, 1974.
[9] K.Fukunaga, Introduction to Statistical Pattern Recognition. New York: Academic Press,

1972.
[10] A. Rosenfeld and A.C. Kak, Digital Picture Processing, New York: Academic, 1982.
[11] J.T. Tou and R.C. Gonzalez, Pattern Recognition principles. Reading MA: Addison-

Wesley, 1974.

Hierarchical Parallel Simulated Annealing and
Its Applications�

Shiming Xu1, Wenguang Chen1, Weimin Zheng1,
Tao Wang2, and Yimin Zhang2

1 Dept. of Computer Science and Technology, Tsinghua Univ., Beijing, China
2 Intel China Research Center, Beijing, China

Abstract. In this paper we propose a new parallelization scheme for
Simulated Annealing — Hierarchical Parallel SA (HPSA). This new
scheme features coarse-granularity in parallelization, directed at
message-passing systems such as clusters. It combines heuristics such
as adaptive clustering with SA to achieve more efficiency in local search.
Through experiments with various optimization problems and compar-
ison with some available schemes, we show that HPSA is a powerful
general-purposed optimization method. It can also serve as a framework
for meta-heuristics to gain broader application.

Keywords: Simulated Annealing, Parallelization, Metaheuristics, Hi-
erarchical Clustering.

1 Introduction

Simulated Annealing(SA), firstly proposed in [7], is a randomized optimiza-
tion algorithm widely applied to various combinatorial and continuous prob-
lems. Compared with other randomized algorithms, such as GA, Tabu Search,
various evolutionary algorithms, it possesses a formal proof of convergence to
global minima[6] under some restrictions on cooling scheduling and temperature
parameters[10]. Despite this strictness, SA in practice retains the ability to avoid
local minimum and to locate near-optimal solutions.

SA is computation-intensive algorithm and features sequential intrinsics;
there has been much work on its parallelization [4,3,8,11,2]. With different par-
allel granularity, these parallel schemes are targeted at various kinds of parallel
machines. Schemes of coarse granularity usually have to deal with scalability
problems. We’ve designed a new parallel SA scheme in which processes are orga-
nized in a three-level hierarchy, addressing scalability problems effectively while
achieving better coverage over the search space. Experiments show that it out-
performs conventional parallel SA in either convergence speed or solution quality.
This article is organized as follows: in Section 2 we will have a short overview
of sequential and parallel SA and summarize related works. Detailed design and
implementation of HPSA is presented afterwards in Section 3. In Section 4 we
� This project is supported by NSFC 60273007.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 293–300, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

294 S. Xu et al.

show HPSA outperforms available parallel SA in either speed or solution quality
through various experiments. Finally We conclude that HPSA could serve as a
general-purposed optimization scheme and point out our future work.

2 Sequential SA and Its Parallelization

2.1 Sequential SA

Simulated Annealing[7,1,10] is an optimization algorithm in analogy to the an-
nealing process in metallurgy. For a formal description of SA, we give definition
over these terms:

S : Search Space;
Cost : S → IR, Cost Function Defined over S;

N : S → 2S , Neighborhood Function;
T : Temperature, T ∈ IR+.

SA is used to locate a solution sm in S that minimize function Cost, given
the neighborhood relation N . Usually, N is symmetric over S: ∀s ∈ S, t ∈ S,
t ∈ N (s) → s ∈ N (t). The basic idea of SA is to find an initial point in S and
an initial temperature T0, then conduct a random local search process within
S under the control of T . The process carries on until T approaches zero close
enough. A basic flow chart of SA is shown in Fig.1.

PROCEDURE Sequential SA
BEGIN

s ← Initial Solution in S
T ← Initial Temperature T0
DO

DO
s∗ ← N eighbor(s)
ΔC ← Cost(s∗) - Cost(s)
IF ΔC < 0 OR Accept(ΔC,T) THEN

s ← s∗
END IF

UNTIL Equilibrium
T ← Decrement(T)

UNTIL Frozen
END PROCEDURE

Fig. 1. Sequential SA

The outer loop of SA generally deals temperature. It starts from T0 and
terminates when T is low enough, which also terminates the algorithm. The
inner loop(Metropolis Loop) which is conducted under a certain temperature,
mainly deals with local search. A solution s∗ in N (s), is generated and judged
by Cost(s∗). If s∗ is better, i.e., of lower cost, s is replaced by s∗. If it is worse,
it is accepted statistically according to the Metropolis criteria[7].

Hierarchical Parallel Simulated Annealing and Its Applications 295

2.2 Parallelization of SA

According to the classification of parallelization of Metaheuristics in [5], parallel
schemes for SA fall into three categories:

– Fine granularity parallelization for inner loop
• Functional parallelization on move evaluation
• Data parallelization of multiple-move evaluation

– Parallelization based on search space partitioning
– Multiple concurrent runs exploring the solution space

Since Type 1 schemes [3,8,4,2,3] feature fine granularity, they fit SMP or
SIMD machines. The high communication frequency between processes hampers
the effectiveness of such schemes on loosely-coupled systems, such as clusters or
even distributed systems. Type 2 schemes require an effective segmentation over
the search space so that final output can be summarized directly basing on partial
results from concurrent processes[5]. These schemes are problem-dependent, so
there’s much constraints applying them to general problems. In Type 3 schemes
processes are organized in non-intersected subsets, which we call clusters, to
conduct search process, while communication between processes follows some
patterns. For further description of Type 3 schemes we define:

P : { pi | 1≤ i≤ N}, set of processes;
C : { ci | ci ∈ 2P , ci �= ∅,

⋃
i ci = P , ci

⋂
cj = ∅ for i �= j, 1 ≤ i, j ≤ m},

set of clusters formed from P .

These parallel schemes posses coarse granularity. Each process pi in P ini-
tiates with a randomly chosen solution in S and carries on with its own chain
until SA terminates. During the search process, local information is dynamically
interchanged among process clusters cj (here we assume pi ∈ cj) after all the
processes within cj has undergone certain steps of tempering, so that processes
within cj gain a better knowledge of the search space. Usually a solution s′ is
chosen or created for all the processes within cj to carry on instead of their
original solutions si. Process clusters could dynamically adapt during the search
process.

MMC-PSA in [9] is a representative of Type 3 schemes. In MMC-PSA C ≡
{P}, i.e., only one constant process set exists. The replacement strategy is to
replace solutions of all the processes with the best one sbest. While this replace-
ment scheme’s intuitively beneficial, currently best solution sbest may well be a
local minimum. If current solutions of all processes in P are to be overridden,
there’s a possibility that processes which may potentially achieve global min-
imum sm are deviated and lose adjacency to sm. Given an extra large search
space with many local minima, it is more probable for MMC-PSA to get trapped
into a local minimum with fair cost, which is not our objective. Also the com-
munication pattern of MMC-PSA does not fit large-scale systems. Especially,
in asynchronous MMC-PSA, maintaining a globally accessible best solution is
extremely costly in a distributed environment. HPSA is designed with these
problems in notion. It’s similar to MMC-PSA in that it is also based on multiple

296 S. Xu et al.

chains. Through dividing computation power over potential areas in the search
space and confining most communication within process clusters, HPSA solves
scalability problems faced by MMC-PSA and other similar schemes.

3 Hierarchical Parallel SA

HPSA is targeted at message passing systems, typically cluster environments.
Generally HPSA can be classified as a coarse-grained, i.e., Type 3 scheme. It is
similar to MMC-PSA in that it is also based on Multiple Markov Chain. Main
design considerations are listed below:

– Processes include P , a set worker processes, and a farmer process;
– P is dynamically divided into clusters: ci’s;
– Farmer is responsible for dynamically organizing clusters, i.e. changing C,

to achieve optimal distribution of processes, keeping:
– Processes within the same cluster have adjacent solutions, hence keeping

high reachability within each cluster and minimizing the possibility of killing
potential ones;

– Communication is either intra-cluster or between cluster and farmer.

3.1 Main Structure

Farmer process is mainly responsible for setting up and maintaining clusters.
When the algorithm begins, no cluster exists. Dissociated processes, which do
not belong to any cluster report to farmer directly. When all processes have re-
ported to farmer, clustering decision is made and processes are informed of the
cluster they belong. Each process is uniquely associated with a cluster, which
is confined with an MPI communicator. In each cluster a head process is cre-
ated to report to farmer at intervals about information of local search. Farmer
decides to reshuffle clusters when a certain number of clusters have reported
to have undergone great changes from their original positions. On the decision
of reshuffling, farmer responds cluster heads with a message flag which indi-
cates dismissal, which is broadcasted within the cluster. Processes which have
received messages with dismissal flag on will become dissociated and report to
farmer afterwards, just like when the algorithm begins. After all the clusters
have been noticed of dismissal, farmer enters the phase same to the time when
the algorithm initiates. A cluster reports to farmer that it’s quitting when all
of its processes have reported to have ended the annealing processes. When all
the clusters have reported quitting, farmer quits, terminating the algorithm.

Communications inHPSAfall into two categories: intra-cluster communication
and communication between clusters and farmer. Intra-cluster communication is
carried out at the interval of n tempering iterations. Within a cluster the communi-
cation is synchronous, i.e., a process synchronizes with others to find out their best
solution. Afterwards, processes will continue local search from this best solution.
Under synchronous communication, there’s no need to keep record of the globally
best solution; also we are free from the overhead of exclusively accessing it.

Hierarchical Parallel Simulated Annealing and Its Applications 297

Inter-cluster communication is fully asynchronous. Non-associated processes
report to farmer as soon as they’ve reached local equilibrium under current
temperature, sending out their current solutions; afterwards they wait for the
cluster assignment from farmer. Heads of clusters report to farmer when local
synchronization times has reached a threshold. After sending out local informa-
tion to farmer, head processes wait until farmer replies. Farmer would either
reply indicating the cluster to either carry on annealing or dismiss. On receiving
dismissal messages, head process would dismiss all its fellow processes within
the cluster and they will all enter non-associated state.

All the processes in HPSA are organized into a multiple-level hierarchy. When
clusters are formed, it contains three levels: the highest level contains farmer
process only; the secondary level contains all cluster head processes; the lowest
layer contains ordinary working processes. When clusters are disassociated, it
is a two-level structure. Under either mode, communication is controlled within
directly-adjacent nodes in the hierarchy.

3.2 Clustering Decision in HPSA

On farmer we adopt Agglomerative Hierarchical Clustering to organize processes
into clusters. So the process of building C can be divided into two steps:

– Building Hierarchical Clustering Tree
– Forming C

Fig.2a is an example of dendrogram of hierarchical clustering. As is shown,
configurations to be clustered are labelled from 1 to 12. A full tree is formed
with internal nodes labelled from 13 to 23, according to their generation time
during the clustering process. While conventionally in hierarchical clustering a
stop criterion is used to terminate the clustering process, such as cluster count
reaches a threshold, in HPSA we decide to build the whole cluster tree since
available process count is usually small and not likely to exceed several hundred
and the overhead of building the whole tree is trivial. Cluster identification is
specific to problems. For problems such as Protein structure prediction in [12], a
quantitive threshold may be provided basing on experiences. For other problems
of implicit distance measurement, threshold may be provided heuristically, for
example, 1/10 of Radius.

As for those problems for which no distance threshold is available, other
heuristics can be applied to identify clusters. For example, clustering decisions
can be made basing on variance changes between different clustering options. For
example, clustering decisions can be made basing on the variation series from
leaf node up to the root in the clustering tree. See Fig.2 for an example. The
variance trajectory of Node−4 in Fig.2a is shown in Fig.2b. Usually the variation
series is non-descending. So we can detect one-step changes in variation series
and put the clustering barrier between the pair of nodes with greater slope. In
the previous example, all the nodes under Node − 18 will form a cluster.

298 S. Xu et al.

13

3

4

5

6

7

8

9

10

11

12

14
15

16

17

18

19

20

21

22

23

2

1

a. Dendrogram Example b. Trajectory of Node-4

Fig. 2. Hierarchical Clustering Example

4 Experiments

4.1 Implementation and Configurations

HPSA is implemented in MPI to support message-passing environments such as
clusters. We have tested HPSA over various TSP problems.

For symmetric TSP problems, the definition of neighborhood structure and
distance between solutions varies according to implementations. In HPSA we
use conventional neighborhood definition for TSP[3]. With this local topology, it
requires much computation to attain the distance between solutions. In HPSA
we introduce a method to approximate distance between different TSP solutions:
the ratio of uncovered cities by common sub-chains among all the cities of two
solutions. For comparison we have implemented MMC-PSA [9,11] and MIR-
PSA(Multiple Independent Run).

Experiments are carried out on an 8-node cluster, each node featuring 4-way
SMP of Pentium-III Xeon 700MHz CPU and 1GB Ram. The software envi-
ronment is Linux 2.4.20 and mpich-1.2.5. All nodes are connected by 100Mb/s
switch. On the cluster totally 64 MPI processes are engaged in the parallel SA,
including the farmer process.

4.2 Test Results

We have randomly picked several TSP benchmarks from TSP-LIB:
eil101, tsp225, ch150, kroA100 and kroC100, with best solutions known. Two
aspects of HPSA are evaluated: the First Hit Time(FHT) of a certain cost level
and Quality of final result. Table.1 shows the test result of FHT, and cost-levels
were selected as 102%,105% and 110%. Since the annealing processes are dif-
ferent only in the initial temperature, so the percentages of FHT in the whole
annealing process is listed. The average FHT of 10 independent runs are re-
trieved from each test suit for HPSA, MMC-PSA and MIR-PSA. We have also
tested effects of fixed scheduling on HPSA. Given a fixed initial temperature,

Hierarchical Parallel Simulated Annealing and Its Applications 299

Fig. 3. Test Result II

especially one of a low value, the quenching process would take shorter time.
The quality of final result generated by different parallel SA for given problems
are listed in Fig.3.

Table 1. FHT Results

FHT 102% 105% 110%
Problem HPSA MMC MIR HPSA MMC MIR HPSA MMC MIR

ch150 83.0% 83.5% 87.0% 66.2% 64.2% 66.3% 44.0% 44.9% 34.6%
eil101 69.6% 73.2% 68.2% 57.5% 60.0% 51.9% 44.3% 48.3% 45.9%

kroA100 74.8% 77.2% 75.0% 61.2% 62.2% 64.8% 40.1% 37.0% 41%
kroC100 70.3% 70.1% 72.0% 57.7% 57.3% 61.4% 42.2% 33.1% 37.2%
tsp225 87.7% 93.3 91.0% 79.5% 59.5% 77.0% 50.0% 41.7% 47.8%

From Table.1 we can see that HPSA gains a margin over MMC-PSA and
MIR-PSA if we use a lower cost level. But when cost level rises, there are more
chances that any of the three may overtake the other two. Also given a fixed
schedule, the quality of final result averaged by 10 runs, as is in Fig.3, shows
that HPSA outperforms MMC-PSA and MIR-PSA. The fact that MIR-PSA
outperforms MMC-PSA is congruent with the tuition that given a low starting
temperature, MMC is more likely to kill potential processes.

The running time saved by HPSA is trivial according to our experiment
results. Most of the time MMC-PSA and HPSA consume similar amount of time.
Through localizing communication by assigning clusters of processes to adjacent
processing units, HPSA may gain further timing-advantages over MMC-PSA.

5 Conclusion and Future Work

HPSA is a parallel SA scheme that is located between MMC-PSA and MIR-PSA.
By dynamically clustering processes and manage them in a two-level hierarchy, it
easily handles the scalability problem most conventional parallel SA schemes face.
Through experiments we show that for TSP problems, HPSA gains advantages
over MMC-PSA and MIR-PSA on the large. With further growth of distributed
systems, HPSA is a more promising algorithm among parallel SA schemes.

300 S. Xu et al.

For our future work, clustering criterion of HPSA is to be refined so that it
can handle problems with speculative distance threshold is provided, which may
not be accurate enough and has to be refined. Mixed clustering schemes would
be more adaptive, combining both heuristics and experiential results for cluster
identification. In future work we will apply HPSA to various contemporary ap-
plications, such as protein 3D structure prediction. Since HPSA can serve as an
general-purposed optimization method, we will also put much emphasis on its
interface design, so that we can cut down implementation efforts of applying it
to other problems.

References

1. E.H.L. Aarts and J.H.M. Korst. ”Simulated Annealing and Boltzmann Machines”.
1989.

2. A. Bevilacqua. ”A Methodological Approach to Parallel Simulated Annealing on
an SMP System”. J. of Parallel and Distributed Computing, April 2002.

3. H. Chen, N.S. Flann, and D.W. Watson. ”Parallel Genetic Simulated Annealing:
A Massively Parallel SIMD Algorithm”. IEEE Trans. on Parallel and Distributed
Systems, 9(2), Febrary 1998.

4. R. Diekmann, R. Luling, and J. Simon. ”Problem Independent Distributed Sim-
ulated Annealing and its Applications”. Proceedings of the 4th IEEE Symposium
on Parallel and Distributed Processing, 1992.

5. Fred Glover and Gary A. Konchenberger. ”Handbook of metaheuristics”. Boston,
Kluwer Academic Press, 2003.

6. V. Granville, M. Krivunek, and J. P. Rasson. ”Simulated Annealing : A Proof of
Convergence”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16:652–656, June 1994.

7. S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. ”Optimization by Simulated An-
nealing”. Science, May 1983.

8. G. Kliewer and S. Tschöke. ”A General Software Library for Parallel Simulated
Annealing”. IPDPS 2000, pages 55–61, 2000.

9. S. Lee and K.G. Lee. ”Synchronous and Asynchronous Parallel Simulated An-
nealing with Multiple Markov Chains”. IEEE Trans. on Parallel and Distributed
Systems, 7(10):993–1008, October 1996.

10. R. Otten and L. van Ginneken. ”The Annealing Algorithm”. Kluwer Academic
Publishers, March 1989.

11. D. Janaki Ram, T. H. Sreenivas, and K. Ganapathy Subramaniam. ”Parallel Simu-
lated Annealing Algorithms”. Journal of Parallel and Distributed Annealing, 1996.

12. K.T. Simons, C. Kooperberg, E. Huang, and D. Baker. ”Assembly of Protein
Tertiary Structures from Fragmens with Similar Local Sequences using Simulated
Annealing and Bayesian Scoring Functions”. J. of Molecular Biology, 1997.

Multi-color Difference Schemes of Helmholtz
Equation and Its Parallel Fast Solver over 3-D

Dodecahedron Partitions�

Jiachang Sun

R & D Center for Parallel Software,
Institute of Software, Chinese Academy of Sciences, Beijing, China, 100080

sun@mail.rdcps.ac.cn

Abstract. In this paper, the problem of partitioning parallel dodecahe-
drons in 3D is examined. Two schemes are introduced and their conver-
gence rate discussed. A parallel fast solver was implemented and tested
experimentally, with the performance results presented.

1 Parallel Dodecahedron Partition in 3D

Give a three linear independent vectors: e1, e2, e3, we set bi-orthogonal vectors
n1, n2, n3;

(ej , nk) = δj,k (j, k = 1, 2, 3), n4 = n1 − n2, n5 = n2 − n3, n6 = n3 − n1.

There are six normals of six planes via the four directions e1, e2, e3 and e4 =
−e1 − e2 − e3. For any 3-D point P , we define P = (t1, t2, t3, t4, t5, t6) by

t1 = (P, n1), t2 = (P, n2), t3 = (P, n3), t4 = (P, n4), t5 = (P, n5), t6 = (P, n6)

with t4 = t1 − t2, t5 = t2 − t3, t6 = t3 − t1.
A basic parallel dodecahedron domain is defined as follows

Ω = {P |P = (t1, t2, t3, t4, t5, t6)| − 1 ≤ tν ≤ 1, (1 ≤ ν ≤ 6), t4 = t1 − t2,

t5 = t2 − t3, t6 = t3 − t1} (1)

The basic parallel dodecahedron domain has 14 vertices, 12 hyper-planes and 24
edges on the boundary.

It is worth to note that all of parallel dodecahedrons form a tiling of R2 shown
as Figure 1 and many crystal polyhedrons in material science can be composed
from such kinds of dodecahedrons.

� Project supported by National Natural Science Foundation of China (No. 10431050)
and the Major Basic Project of China ”High Performance Scientific Computing”.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 301–308, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

302 J. Sun

Fig. 1. A dodecahedron partition Fig. 2. Three colors ordering

2 Two Schemes for Laplacian Operator over
Rhombic-Dodecahedron Partitions

In 3-D parallel dodecahedron domain case, the Laplacian operator can be can
expressed using the following two operators

Δ = (n1, n1)(e1, ∇)2 + (n2, n2)(e2, ∇)2 + (n3, n3)(e3, ∇)2

+2(n1, n2)(e1, ∇)(e2, ∇) + 2(n2, n3)(e2, ∇)(e3, ∇) + 2(n3, n1)(e3, ∇)(e1, ∇),

and

Δ =
4∑

j=1

Aj(ej , ∇)2 +A12(e1 +e2, ∇)2 +A23(e2 +e3, ∇)2 +A31(e3 +e1, ∇)2 (2)

where

A1 = (e2 × e3, e3 × e4) + (e3 × e4, e4 × e2) + (e4 × e2, e2 × e3),

A2 = (e3 × e4, e4 × e1) + (e4 × e1, e1 × e3) + (e1 × e3, e3 × e4),

A3 = (e4 × e1, e1 × e2) + (e1 × e2, e2 × e4) + (e2 × e4, e4 × e1),

A4 = (e1 × e2, e2 × e3) + (e2 × e3, e3 × e1) + (e3 × e1, e1 × e2),

A12 = (e1 × e3, e2 × e4) + (e2 × e3, e1 × e4),

A23 = (e2 × e1, e3 × e4) + (e3 × e1, e2 × e4),

A31 = (e3 × e2, e1 × e4) + (e1 × e2, e3 × e4).

Based on the above two operator identities, we may derive some 13-point or 15-
point difference schemes, respectively. The 15-point scheme corresponds piece-
wise linear finite element of 3-D Laplace equation within the rhombic dodecahe-
dron partition. In this special discrete case,

Multi-color Difference Schemes of Helmholtz Equation 303

(ej , ek) = (1 − 4
3
δj,k)h2, j, k = 1, 2, 3, 4., A12 = A23 = A31 = 0,

the above 15-point scheme degenerates to 9-point scheme. Let

c1 = e1 − e4, c2 = e2 − e4, c3 = e3 − e4, c4 = e1 − e2, c5 = e1 − e3, c6 = e2 − e3

it is natural to lead to a 13-point scheme with second order accuracy over the
rhombic-dodecahedron partition case as follows

L13u(P) = 12u(P)−
6∑

i=1

(u(P + ci)+ u(P − ci)) = −16
3

h2(Δu(P) + O(h2)) (3)

Note that in the rhombic-dodecahedron partition case al points can be di-
vided into three colors in the sense that for each fixed point there are no neighbor
points of this point belong to the same color. We may denote the three color to
be yellow, black and red. It is interesting that among the three color points the
are divided into two groups. The first two colors belong to a group, on which the
number of neighbor points equals to four and all neighbors are red color. And
the number of neighbors for the red color points equals to eight. Based on the
above three colors ordering we may derive the following so-called 5-5-9 scheme

LY
5 u(P) = 4u(P) −

4∑
i=1

u(P + ei) = −2
3
h2(Δu(P) +

h

9
ru(P) + O(h2));

LB
5 u(P) = 4u(P) −

4∑
i=1

u(P − ei) = −2
3
h2(Δu(P) − h

9
ru(P) + O(h2));

LR
9 u(P) = 8u(P) −

4∑
i=1

(u(P + ei) + u(P − ei)) = −4
3
h2(Δu(P) + O(h2)) (4)

where r is a third order differential operator

r = 2
∂3

∂z3 − 3
∂3

∂y2z
− 3

√
2

∂3

∂xy2 − 3
∂3

∂x2z
+

√
2

∂3

∂x3

With matrix notation the above scheme can be written as⎛
⎝ 4I 0 AY R

0 4I ABR

AT
Y R AT

BR 8I

⎞
⎠

⎛
⎝uY

uB

uR

⎞
⎠ = −2

3
h2

⎡
⎣
⎛
⎝ ΔuY

ΔuB

2ΔuR

⎞
⎠ +

h

9

⎛
⎝ ruY

−ruB

0

⎞
⎠ + O(h2)

⎤
⎦ (5)

where two matrices AY R and ABR are sparse with four non-zero terms (−1)
at most in each row and column. Hence for Dirichlet boundary conditions the
matrix A is non singular because of its weak diagonal dominant.

304 J. Sun

3 Convergence Rate

Lemma 1. If

A =
(

A11 A12
A21 A22

)

is invertible as well as A11 and A22, then

A−1 =
(

A−1
1 −A−1

1 A12A
−1
22

−A−1
2 A21A

−1
11 A−1

2

)

or

A−1 =
(

A−1
1 −A−1

11 A12A
−1
2

−A−1
22 A21A

−1
1 A−1

2

)

where
A1 = A11 − A12A

−1
22 A21, A2 = A22 − A21A

−1
11 A12.

Repeating to referee Lemma 1 leads to the following

Lemma 2. If

A =

⎛
⎝ 4I 0 AY R

0 4I ABR

ARY ARB 8I

⎞
⎠

is invertible then

A−1 =

⎛
⎝ A−1

Y
1
8A−1

Y AY RARBÃ−1
22 − 1

4AY RA−1
R

1
8A−1

B ABRARY Ã−1
11 A−1

B − 1
4ABRA−1

R

− 1
4A−1

R ARY − 1
4A−1

R ARB A−1
R

⎞
⎠

where

AR = 8I − 1
4
(ARY AY R + ARBABR), AY = Ã11 − Ã12Ã

−1
22 Ã21,

AB = Ã22 − Ã21Ã
−1
11 Ã12

Ã11 = 4I − 1
8
AY RARY , Ã12 = −1

8
AY RARB , Ã21 = −1

8
ABRARY ,

Ã22 = 4I − 1
8
ABRARB .

Based on the above Lemma, it is easy to verify the following convergence
theorem.

Theorem 1. Even though the above 5-5-9 scheme (4) only has first order lo-
cal truncation error, it also has second order global convergence rate as well as
13-point scheme (3).

Multi-color Difference Schemes of Helmholtz Equation 305

4 Approximate Matrix Eigen-Decomposition
Preconditioning

As is well known, an approximate sparse inverse may be a good preconditioning
[1]. Now we propose that a reasonable approximate eigen-decomposition, based
on fast algorithms, also can be taken as a preconditioner. In this case, it needn’t
require the preconditioner B to be sparse, but the working amount of Bu must
less O(N2), e.g. O(NLogN), where N is the matrix order.

Suppose Ao is an approximation of A. Let E = I − A−1
o A, if ρ(E) < 1, then

A−1 = {I − E}−1A−1
o = {I +

∞∑
k=1

Ek}A−1
o

We may define various levels of preconditioners for the matrix A

B0 = A−1
o , Bk = {I +

k∑
j=1

Ej}A−1
o , (k = 1, · · ·).

If A is symmetry, then

(B0Au, u)
(u, u)

= 1 − (Eu, u)
(u, u)

,
(BkAu, u)

(u, u)
= 1 − (Ek+1u, u)

(u, u)
(k = 1, · · ·).

As an example, let A = Ao + εQ, E = −εQ, then

(B0Au, u)
(u, u)

= 1 + ε
(Qu, u)
(u, u)

,
(BkAu, u)

(u, u)
= 1 − (−ε)k+1 (Qk+1u, u)

(u, u)
,

(k = 1, · · ·).
Thus, to be an efficient preconditioner, B must be an approximate inverse of
A in some sense and Bu must be done easily. The second reason can explain
why so many people interested in taking sparse matrices as approximate in-
verse preconditioners. However, in numerical PDE problems, the discrete Green
function is completely dense, it is hard to get high efficient sparse approximate
inverse preconditioners directly. In some cases we may find an approximate eigen-
decomposition. The left question is can we find a fast algorithm for Bu in mag-
nitude of O(NLogN). A typical successful example is to solve Laplace equation
in a cube domain by using the traditional FFT.

5 Parallel Fast Solver and Numerical Experiments

Based on the above analysis now we turn to find a preconditioner

B = W ′DW, W = (Wjk) D = diag(dk)

where the eigen-function matrix

306 J. Sun

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

nz = 30720

Fig. 3. 3D 15-point stiffness matrix

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

nz = 30720

Fig. 4. Reordering towards the original

Wjk = e
i π
2 j·k

= i
((3j1−j2−j3)k1+(3j2−j3−j1)k2+(3j3−j1−j2)k3)h

and the related approximate eigenvalue diagonal matrix

1
dk

=8 − 2 cos(k1 + k4 − k6)hπ − 2 cos(k2 − k4 + k5)hπ − 2 cos(k3 − k5 + k6)hπ

−2 cos(k1 + k2 + k3)hπ + Ch2qo.

where the constant C is depends on the volume of Ω3D and schemes.
Figure 3 and Figure 4 represent the non zero structure of the discreteHelmholtz

system over 3-D dodecahedron with periodic conditions, according to natural or-
dering and reordering towards the original point (0, 0, 0), respectively.

Once one obtains an eigen-decomposition for a preconditioner B = W−1DW ,
the left key problem is to find a fast multiplication of z = Wr.

Based on our extended Fast Fourier Transform algorithm over parallel do-
decahedron partition, see [5] and [6], it is not hard to design a parallel fast solver
for the above two schemes.

Test: Fast 3-D Helmholtz solver on a unit rhombic dodecahedron domain
with six direction periodic boundary conditions.

Figure 5 lists CPU time comparison of our approximate eigen decomposition
preconditioning algorithm to the usual ILU, run with the famous software PETsc

Table 1. Iteration counts and CPU time (Sec.) comparison for a rhombic dodecahedron
domain

N CG HFFT ILU(0) ILU(1) ILU(2) ILU(4) ILU(8)
4 0.0014 0.0018 0.0027 0.0065 0.0197 0.0664 0.0792
8 0.0638 0.0127 0.0707 0.1066 0.2026 1.3643 15.176

16 1.1868 0.1831 1.0544 1.2791 1.9904 9.1244 130.154
32 20.107 1.8897 14.977 17.302 23.373 72.985 2454.5
64 328.01 18.133 230.40 231.81 284.90 / /

Multi-color Difference Schemes of Helmholtz Equation 307

0 10 20 30 40 50 60 70
10

−2

10
−1

10
0

10
1

10
2

10
3

1/h

C
P

U
 ti

m
e

PCType none
PCType ilu
PCType fft

322.2

229.1

17.7

20.3

15.0

1.9

Fig. 5. Dodecahedron iteration: CPU comparison

Table 2. Iteration counts and CPU time (Sec.) comparison for non rhombic
dodecahedron

Iter. CPU
N CG ILU(0) HFT CG ILU(k) HFT
8 69 26 16 0.1017 0.0903 0.1140

16 138 50 19 1.9603 1.5171 1.9380
32 272 91 21 33.417 21.935 21.372
64 532 179 22 528.841 355.67 214.65

[2]. Table 1 shows, in this case, high level ILU(k) (k¿0) does not work, our fast
algorithm is one magnitude faster than the traditional ILU for h = 1

64 .

Test 4: Fast 3-D Helmholtz solver on a non rhombic dodecahedron domain
with six direction periodic boundary conditions. Table 2 shows in this case high
level ILU(k) (k¿0) does not work, our fast solver still works with lower efficiency
than rhombic dodecahedron domain case.

More parallel numerical experiments will be reported on the conference.

Acknowledgement. The figures and part computing are done by Yao Jifeng
and Yang Chao.

References

1. L. Yu. Kolotilina, A. Yu. Yeremin, Factorized sparse approximate inverse precondi-
tionings I: theory SIAM Journal on Matrix Analysis and Applications 14 (1993)
45 - 58.

2. PETc home page, http://www-unix.mcs.anl.gov/petsd/petsc-2/, 2004
3. Youself Saad, ILUs and Factorized Approximate Inverses are Strongly. - Bollhöfer,

2000.
4. Jiachang Sun, Multivariate Fourier series over a class of non tensor-product partition

domains, Journal of Computational Mathematics, 21 (2003) 53–62.

308 J. Sun

5. Jiachang Sun, Jifeng Yao , Fast Generalized discrete Fourier transforms on hexagon
domains, Mathetitica Numerica Sinica, 25(2004), N0.3, 351-366.

6. Jifeng Yao and Jiachang Sun, HFFT on parallel dodecahedron domains and its
parallel implementation, Journal on Numerical Methods and Computer Applications
25(2004),303-314.

7. Jiachang Sun and Huiyuan Li, Generalized Fourier transform on an arbitrary tiran-
gular domain, Advances in Computational Mathematics , 22(2005),223-248.

8. Jiachang Sun, Approximate eigen-decomposition preconditioners for solving numer-
ical PDE problems, Applied Mathematics and Computation (to appear)

GridMD: Program Architecture for Distributed
Molecular Simulation

Ilya Valuev

Institute for High Energy Densities of the Russian Academy of Science,
Izhorskaya 13/19, 127412 Moscow, Russia

Abstract. In the present work we describe architectural concepts of
the distributed molecular simulation package GridMD. The main pur-
pose of this work is to underline the construction patterns which may
help to generalize the design of an application for extensive atomistic
simulations. The issues such as design-time parallel execution implica-
tion, flexibility and extensions, portability to Grid environments and
maximal adaptation of existing third-party codes and resources are ad-
dressed. The library is being currently developed, with gradually growing
number of available components and tools. The basic GridMD engine is
a free software and is distributed under the terms of wxWidgets library
license [1].

1 Motivation and Strategy

The main subject of atomistic simulations is to study the microscopic behavior of
a system of particles and to deduce physically important quantities from the mi-
croscopic model. Function of potential energy depending on particle coordinates
may be taken from physical models of different kinds: classical, semi-empirical
(with large number of parameters to be fitted for any specific system) or ab-initio
(with much less number of fitting parameters and more generality). Having the
potential defined, the next step is to extract system properties from it either
by solving equations of motion (Molecular Dynamics) or by sampling the en-
sembles of phase space configurations selected by some criteria (Monte Carlo
methods), or by searching the suitable configuration in phase space (transition
state search, geometry optimization, ligand design, etc.). Sometimes the meth-
ods of exploring the system are combined in complicated numerical experiments.
The most popular experiments in MD and MC have however relatively simple
scenarios: take the system in some initial state and propagate it through the
chain of other states by Newton equations solution or temperature-conditioned
random process. Physically most important part of the model is the definition
of the interaction potential. Looking at the simulation from the higher level
as a tool to obtain physically significant results, researchers face the problem
of process and data management which they must solve spending much effort
on developing complex codes. Statistical averaging and variation of experiment
parameters are always necessary to produce reliable data from numerical simu-
lation [2]. Another fact is large simulation times for complex problems and the

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 309–314, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

310 I. Valuev

need to distribute computations. The alternative of taking existing simulation
package and adjusting it for the problem may also require significant time effort
to overcome the limits and inconsistencies in the third-party code.

The idea to create “another parallel Molecular Dynamics package” may seem
not very promising taking in account large amount of fruitful work done in
the field by Molecular Simulation community [3,4,5,6,7]. However, exactly this
popularity of the subject and availability of different codes inspired us to begin
developing Grid M(olecular) D(ynamics) library (GridMD)[8] to serve as flexible
integration tool which may utilize as much of the existing models and methods as
possible and integrate them into a single framework with distributed execution
capabilities. The main strategy of GridMD is to have clear interfaces for all
components, representing common simulation aspects, which may be especially
important for simulation techniques [9] using combined potentials. In the current
work we will cover mostly the upper layers of GridMD, responsible for distributed
execution, leaving the description of MD-specific layers for further publications.

The GridMD code is designed as C++ class library providing construction
tools for atomistic simulations. The library is intended mainly for usage by pro-
grammers who want to quickly build the simulation application. This purpose is
somewhat analogous to the purpose of GUI library supplying its tools and pat-
terns for easy development of applications with graphic interface. The library
is as much platform-independent and flexible as possible. Any tools and com-
ponents, which are platform-dependent or require additional third-party com-
ponents (for example MPI libraries, Grid interfaces, MD packages etc.) may be
used as extensions but are not strictly required. This simplifies selective usage
in research and academic purposes and encourages friendly learning the library
from simple aspects to more complicated. The intended target application is
a statically compiled executable which is transferable to other hosts with the
same OS. The components of the library have clear interplay patterns [10] and
the third-party tools ranging from interaction potentials to Grid execution en-
vironments can be interfaced on different layers.

2 Numerical Experiments

The general structure of GridMD Experiment concept is shown on Fig. 1. The ap-
plication framework logic assumes the definition of one experiment per application,

Inputs

Experiment

Intermediates Outputs Scenario

Parameters Execution graph

System

Iterators

File managerAnalyzer

Fig. 1. Logical composition of Experiment component

GridMD: Program Architecture for Distributed Molecular Simulation 311

this is however not strictly required. The Experiment consists of the following main
components: Inputs, Outputs and Intermediates are data objects (files, numeric or
symbolic parameters);Scenario contains the strategy of how the experiment is exe-
cuted and this knowledge is encapsulated in Execution Graph; System Iterators are
concrete linear process strategies driving the (atomic) system through the chain of
states, the actual Molecular Simulation is performed by mdIterators.

Input Parameters. The numeric and symbolic input Parameters play spe-
cial role, because they may be used as basis for creating experiment scenarios.
The parameters may originate from different levels of the simulation (interaction
potential parameters, propagator parameters, physical initial conditions, algo-
rithmic parameters). GridMD provides a mechanism of registering the parame-
ters via named Variable concept to make the Experiment aware of the available
parameters and automatically create the corresponding entries in application
configuration files if required. The typical parameter-based scenarios are pa-
rameter variation, averaging over a randomly selected sets in parameter space,
parameter fitting. GridMD provides the developer with a set of predefined ba-
sic scenarios. Scenario and Stages. The Scenario concept standardizes the logic
of application execution and allows to split the experiment into a set of sepa-
rate processes (stages). The key point is that the stages may depend on each
other through input and output but are not communicating during the execu-
tion. This process dependence is illustrated by execution graphs (Fig. 2). The
lines show the process Stages with arrows indicating time direction of execution
flow, the nodes represent process dependencies. Generally the stages coming out

production

Init

System

cycle

Finalize

logical

stage2

stage1

stage2

stage1

Checkpoint

Restart

data files:

trajectory

log

data files:

trajectory

log

a b

A2 B2A2 B1A1 B2A1 B1

select parameter A

select parameter B

c d e

s0 s1 s2 s3 s4

Fig. 2. Basic execution graph elements used in Molecular Simulations: a – simple lin-
ear single-process stage, b – chain of processes with intermediate data generation and
checkpoints. The intermediate data is indexed by stage ids. Different experiment scenar-
ios with their execution graphs: d – branching of single processes, the most frequently
used scenario for parametric modeling, e – branching with checkpointing, important for
lengthy simulations and distributed environments with time-limited queues, f – general
tangled incompletely determined execution.

312 I. Valuev

of a node depend on the stages coming in, meaning that the outgoing stages
can not be started until the ingoing are successfully completed. Note that con-
crete Scenario implementation may have its own understanding of a successfully
completed node, sometimes not requiring that all ingoing stages are finished
(important for unreliable distributed environments). We distinguish the logical
nodes and stages which may be introduced to Execution graph for structural pur-
poses only and not reflecting encapsulated computational activity (white circles
and thin lines) and production nodes and stages that represent computations
(black circles and thick lines). The production stages, connecting mandatory
Init and Finalize production nodes may be transferred to other hosts for remote
execution.

Execution graphs can take different forms, generally the execution graph is
not completely defined in advance by the application start. The Scenario com-
ponent maintains the graph and can be divided into manager and worker parts.
The worker part is used to start the required stage of the scenario. To simplify
the development, GridMD uses single-application paradigm, so the worker and
manager parts are contained in one executable. When distributed processing is
required, the executable must be transferred to a remote system, switching to
worker mode is usually based on the command line parameter passed to the
executable. The Scenario component has four major tasks:

– execution graph construction before or in course of experiment execution,
storage of up-to date graph state;

– determining the pending for execution production stages on the basis of the
current graph state or terminating the execution if no stages are left;

– updating the graph state according to the results of the stage execution;
– invoking actual production stage execution for the pending stage by the

request, identifying the stage.

The first three tasks are manager tasks and the last one is the worker task. The
nodes and stages are indexed by symbolic identifiers, uniquely specifying their
positions in the graph. The up to date graph itself is accessible for browsing by
worker application components, which may wish to identify what part of the
work is to be done based on the position of the stage in the graph.

Stage identifiers may contain enough information for starting a produc-
tion stage, not requiring the implementation components to go into execution
graph details. The rules for creating and parsing symbolic identifiers may de-
pend on the Scenario. Although GridMD supports very general formulation of
execution graphs, the main attention is paid to the most popular and clear
forms (Fig. 2 c, d). For example, for the form from Fig. 2 c, used for pa-
rameter sweep, the symbolic stage identifier contains the branch number, mak-
ing the definition of parameter set to start with in worker mode
straightforward.

File Management. The node and stage identifiers may be used for the purpose
of indexing files generated or required by worker components. This is done by
scenario File Manager. By default it only composes the fully qualified local
system file names from the identifiers and specified reference names, but also

GridMD: Program Architecture for Distributed Molecular Simulation 313

may be used for remote storage management. For example, the remote Grid
data storage for intermediate data may be preferable in the cases when the phase
space trajectory has to be recorded by production stages of Molecular Simulation
experiment. The costs of data transfer to the local system may be high in case
of limited local bandwidth. This transfer is usually also unnecessary because the
trajectory data is used as intermediate for experiment result analysis, which may
be as well performed remotely. Thus the intermediate data storage management
can be delegated to the experiment Scenario and execution graph-based file
management system. This system must then accomplish a task of locating the
file by its name and graph id and is easily implemented, for example, on the
basis of such services as Globus RLS [11].

Analyzer. Another component of the Scenario is Analyzer. It is included
separately because frequently the analysis phase of Molecular Simulation is per-
formed after the creation of intermediate trajectory data. It is normally less
demanding computationally than the production phase but may be repeated
several times with different parameters. The analysis scenario is connected with
production scenario and uses by default the same execution graph. The Analyzer
component is used to construct and tune the analysis phase of the experiment,
which logically is just another version the the same experiment. GridMD pro-
vides a set of standard analysis tools for the trajectories generated by MD:
property extraction as function of time, time correlations, particle correlations,
distributions. These tools support ensemble averaging for execution graphs of
the forms from Fig. 2 c, d. and may be accomplished by the same executable
in analysis phase. The only difference between analysis and production stages
of the scenario is the ”MD propagator” of the system: the Newton equations
solver is replaced by trajectory file reader, which loads the trajectory files gen-
erated by production stages. Some Analyzer components (such as tempera-
ture or energy log writers) may be as well used in production phase for
monitoring purposes.

System Iterator. The System Iterator component is the core of any produc-
tion stage, encapsulating the strategy of iterative cycle with possibility of check-
pointing. This component may be requested to perform a number of pending
iteration cycles and then record its complete state, supplying the transferrable
files required for restarting. It must also inform the Scenario component about
the termination when no more pending iterations are left. Optionally System
Iterator may supply information about the total number of its cycles and/or
the computational cost per cycle, expressed in normalized units. Note that this
information is not always known, but is very useful in job splitting strategy. The
chain scenarios, which can split the jobs in time can utilize this information to
control the duration of each chain.

System iterator designed for Molecular Simulations (mdSimulator) is supplied
with GridMD. It serves also as a manager for the physical part of the experiment,
having atomic systems, interaction potentials, propagators and other model tools
as components.

314 I. Valuev

3 Integration to the Grid

As described in the previous sections, the design of GridMD implies easy Grid
integration, because the application itself generates a sequence of jobs to be ex-
ecuted. The aims of distributed execution environment are then limited to the
actual transfer and execution of jobs, and also accompanying tasks such as job
monitoring and scheduling. Global job execution is managed in GridMD by Job-
Spooler component which receives the stage execution requests from Experiment,
converts them to appropriate system or external commands submitting jobs and
informs the Experiment of the stage execution status.

The execution environment tool to be used as primary testbed for Grid in-
terface of GridMD is NIMROD/G [12,13]. This project utilizes concepts of com-
putational experiments and parameter variation which are very close to that of
GridMD. The parameter sweep scenarios, shown on the Fig. 2 c may be directly
mapped to NIMROD experiments, and the scenarios from the Fig. 2 d can be
converted to a sequence of NIMROD experiments. The web portal functionality
of NIMROD provides monitoring and resource selection facilities which are not
managed by GridMD but necessary for efficient operation.

Acknowledgements

This work was performed with support from the Russian Foundation for Basic
Research (grants RFBR-03-07-90272-v, NWO-047.016.007/ RFBR-04-01-89006)
and the Russian Academy of Science (RAS program N17).

References

1. http://www.wxwidgets.org
2. A. Yu. Kuksin, I. V. Morozov, G. E. Norman, V. V. Stegailov, and I. A. Valuev,

to appear in Molecular Simulation (2005)
3. Charm++ website: http://charm.cs.uiuc.edu/
4. GAMESS grid portal: https://gridport.npaci.edu/gamess/
5. Takashi Amisaki, Shin-Ichi Fujiwara, Proceedings of the 2004 Symposium on Ap-

plications and the Internet-Workshops (2004), 614
6. J.Pytlinski, L.Skorwider, K.Benedyczak, M.Wronski, P.Bala, V.Huber in

P.M.A.Sloot et al. (Eds.): ICCS 2003, LNCS 2658, 307–315, Springer-Verlag, 2003
7. Y. Li and M. Mascagni, Grid-based Monte Carlo Application Lecture Notes in

Computer Science, 2536:13-25, GRID2002, Baltimore, 2002.
8. GridMD development website: http://biolab1.mipt.ru/gridmd
9. I. Valuev, Comput. Phys. Comm. 169 (2005) 60-63.

10. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides Design Patterns.
Elements of Reusable Object-Oriented Software Addison Wesley Longman, 1995

11. http://www-unix.globus.org/toolkit/docs/4.0/data/rls/
12. NIMROD website: http://www.csse.monash.edu.au/∼davida/nimrod/
13. Sudholt, W., Baldridge, K., Abramson, D., Enticott, C. and Garic, S. New Gener-

ation Computing 22 (2004) 125-135.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 315 – 325, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Visuel: A Novel Performance Monitoring and Analysis
Toolkit for Cluster and Grid Environments*

Kuan-Ching Li1,**, Hsiang-Yao Cheng1, Chao-Tung Yang2, Ching-Hsien Hsu3,
Hsiao-Hsi Wang1, Chia-Wen Hsu1, Sheng-Shiang Hung1, Chia-Fu Chang1,

Chun-Chieh Liu1, and Yu-Hwa Pan1

1 Parallel and Distributed Processing Center,
Department of Computer Science and Information Management,

Providence University, Taichung 43301, Taiwan
kuancli@pu.edu.tw

2 High Performance Computing Laboratory,
Department of Computer Science and Information Engineering,

Tunghai University, Taichung 40704, Taiwan
ctyang@thu.edu.tw

3 Department of Computer Science and Information Engineering,
Chung Hua University, Hsinchu 300, Taiwan

chh@chu.edu.tw

Abstract. The computing power provided by high performance low-cost PC-
based Cluster and Grid platforms are attractive, and they are equal or superior
to supercomputers and mainframes widely available. In this research paper,
we present the design rationale and implementation of Visuel, a toolkit for
performance measurement and analysis of MPI parallel programs and real
time resources monitoring in cluster and grid computing environments. The
proposed toolkit is web-based interface to show performance activities of all
computing nodes involved in the execution of a MPI parallel program, such
as CPU and memory usage levels of each computing node, and monitors all
computing nodes of a computing platform by displaying real time
performance data. In addition, this toolkit is able to display comparative
performance data charts of multiple executions of MPI parallel application
under investigation, which facilitates the “what-if” analysis. The usage of this
toolkit shows that it outperforms in easing the process of investigation of
parallel applications.

Keywords: Monitoring, MPI Parallel Program, Distributed Computing,
Performance Visualization.

* This research is supported in part by National Science Council, Taiwan, under grants no.

NSC93-2213-E-126-010 and NSC94-2213-E-126-005, and National Center for High
Performance Computing, Taiwan, under “Taiwan Knowledge Innovation National Grid”
Project.

** Corresponding author.

316 K.-C. Li et al.

1 Introduction

In recent years, the cluster computing technology has become a cost-effective
computing infrastructure, because it aggregates resources of computational power,
communication and storage [6, 8]. It is also considered a very attractive platform for
low-cost supercomputing.

Cluster of workstations are easy to build, cost effective and highly scalable. It
consists of a number of personal computers or workstations that are interconnected
through a high-speed network (Gigabit Ethernet, Myrinet or Infiniband) for
information exchange and coordination among them. They run commodity operating
systems, such as Linux. In addition, we can connect a number of cluster platforms to
form a grid platform, which advantage is to obtain more computational power at low
cost. Grid computing offers a model for solving massive computational problems
using large numbers of computers arranged as clusters embedded in a distributed
infrastructure. Grid computing has the design goal of solving large problems as any
single supercomputer, whilst retaining the flexibility to work on multiple smaller
problems. It involves sharing heterogeneous resources (based on different platforms,
hardware/software, computer architecture, computer languages), located in different
places belonging to different administrative domains over a network using open
standards.

With advances in networking technology, interconnecting PCs and workstations is
not a problem anymore. Despite of this fact, there is still much to do in the software
domain. Parallel programs can behave in a number of unexpected ways, because of
their complex structure, the number of computing nodes used to execute the
application in a cluster or grid platform, the dataset used by the parallel code, the
regularity of applications and algorithms in space and time, the heterogeneity of
software and hardware platforms, among a number of other reasons. In addition,
effective partitioning, allocation and scheduling of application programs on a network
of workstations are crucial to achieve high performance. Thus, the performance is
very sensitive to the strategy used to distribute data to the processors or clients [1].

There are several performance monitoring toolkits available, to visualize
graphically the performance of an application’s execution, e.g., VAMPIR [11] and
DIMENAS [9]. One way to improve the performance of a parallel application is to
analyze its performance metrics, e.g., CPU load, memory usage, I/O load, among
others, and see what happened with the execution of that particular MPI parallel
application at given conditions. In this paper, we designed and implemented Visuel
toolkit for cluster and grid environments, providing in this way graphical performance
data visualizations of MPI parallel applications executed in either cluster or grid
platforms.

The remainder of this paper is organized as follows. In section 2 is discussed some
related researches in performance and monitoring tools for distributed systems.
Section 3 introduces the Visuel toolkit and its implementation for cluster and grid
platforms. Later in section 4, a MPI parallel program is executed using Visuel toolkit,
showing performance data and comparative performance data charts. Finally, in
section 5, a brief conclusion and future researches are presented.

 Visuel: A Novel Performance Monitoring and Analysis 317

2 Background

Several performance-monitoring tools are available as recent researches in distributed
platforms, in order to achieve higher performance and to visualize graphically the
performance data of an application’s execution, e.g., VAMPIR [11] and DIMEMAS [9].

A number of monitor tools that generate HTML pages containing performance
graphical images and data are also available. MRTG (Multi Router Traffic Grapher)
[4], based on Perl and C. It is a tool to monitor the traffic load on network links. It
generates HTML pages containing PNG images, which provide a live visual
representation of the traffic. It consists of Perl script that uses SNMP to read the
traffic counters and a fast C program that logs the traffic data. RRD (Round Robin
Database) [7] is a system that stores and displays time-series data (e.g., network
bandwidth, machine-room temperature, average load). The RRD stores in a compact
way that does not expand over time.

The advantage of MRTG over RRD is that it is easier to use, whilst RRD has
more graphical display options than MRTG. However, the main disadvantage is that
MRTG has fixed format data (it can only shown the data over time), and it depends
fully on the use of SNMP to obtain the data, otherwise, it cannot work. The
advantage of MDS is easy to get information and quick, but it does not have
graphical display options.

Several well-known tools such as Ganglia Cluster Toolkit [2] and CACTI [5] are
particular implementations of RRD tool developed by independent research teams
around the world. As mentioned before, tools such as VAMPIR, Ganglia,
DIMEMAS, and CACTI can only show the data over time of each one of the
computer nodes in a cluster system, not possible to show in particular periods, such as
the start and end of execution of an application in a grid system.

3 System Overview

The Visuel toolkit is designed and implemented based on RRD tool [7]. The main
reason why we started to work on this toolkit is that we need a tool to visualize the
performance data of MPI application during its execution, the moment it starts until
the moment it finishes. In addition, we need a tool which we can perform “what-if”
analysis, that is, to compare performance results of a parallel application during its
development stage, and know whether it is cost-effective using a given number of
computing nodes.

Visuel toolkit is scalable, i.e., it is able to measure long running MPI applications
on as much computing nodes in either cluster or grid platforms as they are involved in
the computations. It is able to generate from minutes to several hours MPI parallel
programs’ executions. This toolkit supports heterogeneous and homogeneous clusters
of workstations; this tool can work on any platform where RRD tool is able to run and
installed.

In next subsections, design and implementation of this monitoring and analysis
performance toolkit are introduced and discussed.

318 K.-C. Li et al.

3.1 Components of the System

The Visuel performance toolkit is composed of two components. The first one is
Performance Visualization Manager (VM), which provides to the user graphical
visualization of application execution’s data, while the second component is the
DP*Graph Code Visualization Manager (CVM), responsible to bring parallel timing
graph representation using DP*Graph, as discussed in [13]. The Visuel toolkit scheme
is shown in figure 1.

Visuel Toolkit

Node 1

0

Node 0

1

Node 2

3

Node 3

2

Fig. 1. Visuel toolkit and its components

Essentially, the visualizations are processed in three steps, as shown in figure 2.

1. rrdtool create: set up a new Round Robin Database (RRD),
2. rrdtool update: store new data values into an RRD,
3. rrdtool graph: create a graph from data stored in one or several RRD.

Fig. 2. Visualization creation process in Visuel toolkit

The Performance Visualization Manager (VM)’s main objective is to monitor the
amount of resources used to execute a MPI parallel program, from its start to end
points, e.g., CPU load, memory usage, network bandwidth. These data are used for
performance analysis and tuning as next step.

Different from other monitoring tools that provides performance data since the
system is on, not being able to provide specific measurements in a specific time.
Additionally, we cannot have in our chart past time data for analysis. The application
developer can use performance data obtained from successive executions to perform
code tuning, in order to observe the performance improvements in most recent tuned
parallel program.

 Visuel: A Novel Performance Monitoring and Analysis 319

3.2 Execution Data Collection

The data collection and later visualization are performed according to following steps:

Step 1: for the purpose of record the performance data selected at this initial step, the
RRD database is built every time on those computing nodes involved in our
computation.

Step 2: before executing our MPI parallel program, the master node should execute
MDF (Monitor Daemon Parent process), which goal is to fork MDC (Monitor Daemon
Child process) to each of involved computing node. The MDC in each computing node
involved is going to detect when master node starts with the distribution of tasks
(segments of code of MPI parallel program), its job is at this moment recording the
performance data, originated from the execution of MPI parallel program. Before the
beginning of execution, each involved computing node is in “waiting” state, since the
tasks did not reach to the computing nodes yet. See figure 3 for details.

Fig. 3. Master node (MDF) parent process forked to a number of child processes (MDC), which
is equal to the number of computing nodes involved in the computation

Step 3: As the MPI parallel program is started to run in each of involved computing
nodes, MDC in each computing node is acknowledged. MDC will get defined system
resource usage from each computing node, and through network file system protocol,
these performance data are written back to RRD database in Master Node and log file.

At the moment of overlapping two data charts of the same MPI parallel program
executed, since their execution time are different, they will appear side by side in
different execution times. The log file is used to correct this problem, and it helps us
in overlapping the two performance data charts in the same execution, beginning at
the same start point. As MDF detects the end of execution of MPI parallel program,
this process will broadcast a message to each involved computing node for the sake of
stopping monitoring the computing nodes and the process of obtaining performance
data can be stopped. See figure 4 for detailed explanations of this step.

Step 4: During the programmer starts the performance tuning process, by reviewing
several executions of the same MPI parallel program, the programmer can choose
some of several executions of this MPI parallel program to display a combined data
chart of these selected executions. The scheme in figure 5 shows the details of this
selection process.

320 K.-C. Li et al.

Fig. 4. File system in RRD database and log file

Fig. 5. Selection of specific executions of a MPI parallel program during its development

Step 5: The Visuel toolkit will clean up pending processes by checking each of
computing nodes, since these only cause marginal errors in performance data.
Otherwise, it is possible to cause programmers misinterpret obtained results.

3.3 MDS Data Acquisition and Visualization

MDS (Monitoring and Discovery System) is information services provider of Globus
Toolkit [11, 12]. It is based on LDAP protocol, which assists in acquiring system
information. It is divided to 2 parts. The former one is Information Providers (IPs),
which is used for information collection. The latter is GRIS, which is used to search
specific information we need. Get Info is a collection of scripts used to collect all
computing nodes’ GRIS. First, we must run a slapd daemon. Later, we utilize grid-
info-search or globus-job-run to get every computing nodes’ info and save them as
a log file.

Several versions of MDS available does not support Globus Toolkit in MacOS, and
consequently, if the computing node is Apple’s RISC-based processor, we use
globus-job-run to execute the customized script we developed for MacOS, while any
other computing node that run MDS, we use globus-info-seach to collect those
information we need.

 Visuel: A Novel Performance Monitoring and Analysis 321

Information system is divided into three parts:

Part 1: Information Providers (IPs) are used for information collection. User
cannot get information by IPs directly. It must be used by GRIS,

Part 2: Grid Resource Information Service (GRIS) that is used to search specific
information we need,

Part 3: Grid Index Information Service (GIIS) is used to find where nodes are and
we can via this to use other nodes’ GRIS. GIIS doesn’t need run on every node, being
just needed only on the master node.

We have two ways to connect GRIS. One is to connect directly. Use this way we
have to connect every nodes by ourselves. The other is to connect by GIIS. If via
GIIS, we only use one instruction and then will return all nodes’ information we need,
as show in figure 6.

Fig. 6. MDS usage scheme to obtain information

Fig. 7. Hostfile in the grid-hostfile Fig. 8. List of folders inside main folder

Get Info is a collection of scripts used to collect all computing nodes’ GRIS.
Hostfiles are referenced by these scripts, and it is used to record the number of
computing nodes we have. We use cluster platform name to be the hostfile name. All
of these information are stored in a folder named grid-hostfile, as shown in figure 7.

322 K.-C. Li et al.

The process to add/removing computing nodes in Visuel toolkit has three steps. In
the first step, user must input cluster platform name and computing node name. As
second step, some scripts are executed to check the computing node, which is
authenticated and added. Finally, in the last phase, users just refresh the webpage,
when it will be shown in the computing node webpage together with other computing
nodes.

4 Using Visuel Toolkit

We have used Visuel toolkit to study several MPI parallel applications. In this
research paper, we will show the execution and visualization of a MPI parallel matrix
multiplication program.

The experimental environment is a grid platform built using a number of cluster
platforms available in our laboratory. The first cluster platform, namely Intel
Heterogeneous Cluster, is built using a number of Intel processors of different speeds
(P2 300MHz to P4 2.8GHz) and amounts of memory (from 128MB to 768MB),
interconnected via Fast Ethernet. The second cluster platform is a homogeneous
platform, built up using 17 PCs with AMD Athlon 2400+ CPUs and 1GB memory in
each node, interconnected via Gigabit Ethernet. The third homogeneous system,
named Apple Cluster, is built up using 2 nodes with PowerPC(970) 1.6GHz CPU and
1.25GB memory. Finally, the fourth homogeneous cluster system is built using 4
computing nodes, where each of them contains 1 AMD Sempron 64-bit 2800+ CPU
and 1GB memory, interconnected via Gigabit Ethernet.

As user logs in the management system, the user will see a list of programs,
executables and visualizations of his research in the main screen. The user can remove
or edit older or unused files, to compile recent created new parallel programs, choose
to delete older and unused visualized files and choose to delete older and unused
compared files to be deleted. See figure 9 for the visualization of the user’s workplace.

Before proceeding with manual selection of computing nodes, the Visuel toolkit
shows the listing of all computing nodes available, its system information, speed,
numbers of CPUs, memory capacity and OS kernel installed.

Fig. 9. User’s workplace screen shot

 Visuel: A Novel Performance Monitoring and Analysis 323

Under little usage, the background of machine name is Blue, meaning that CPU
usage is between 0%~80%. When under quite full utilization, the color is Red, while
color Green is displayed that specific computing node is off. See figure 10 for
computing node page of Visuel Toolkit for our local PDPC/PU Grid platform.

Fig. 10. PDPC/PU Grid platform computing node selection webpage

Fig. 11. Parallel program performance visualization

Once finished the execution of MPI parallel application, performance data of
selected execution are available and it is able to be displayed anytime. As in figure 11,
specific performance data of each computing node is displayed separately.

The developer can perform “what-if” analysis, that is, comparison of several runs of
same parallel program, for example, minor changes in his program code, modifications
in the loop levels, data distribution. The Visuel toolkit allows the developer to perform
comparisons of different runs, by calling previous results. Note that performance data
of each computing node are draw for each performance data category, e.g., CPU load,
memory usage. Example of comparisons can be seen in figure 12.

The first experiment involves the development and execution of parallel versions
of matrix multiplication program, using four computing nodes of our grid platform.

324 K.-C. Li et al.

The execution of parallel application is shown in figure 11, while figure 12 shows the
comparison of two different versions of the matrix multiplication program, where the
“red line” executes “ijk” and the “black line” executed “ikj” shown in this chart.

Performance evaluations are quite easy using Visuel toolkit. By looking at each
selected computing node, it is possible to see and compare performance “before” and
“after” modifications in the developer’s parallel program.

Fig. 12. Performance data comparison screenshot

5 Conclusions and Future Work

We show in this paper the viability of implementing a toolkit that brings to developers
performance data visualizations originating from executions of his parallel
applications. In addition, this toolkit is a place where the developer can perform
“what-if” analysis on his parallel application, in order to tune the application either to
achieve to higher performance or to fulfill the developer’s parameters.

As future work, several directions of this research are ongoing. The first activity is
to include this performance visualization in our PDPC/PU (Parallel and Distributed
Processing Center/Providence University) webportal. This webportal provides access
of registered members to run their parallel applications on cluster and grid computing
platforms in a secure way, as also easier will be the management to system
administrators.

Once this visualization tool is included in the computing system, the developer is
able to develop and modify his parallel program as much as he needed, and work on
performance analysis of his parallel program with successive attempts under “what-
if” analysis, efforts to try to obtain higher performance of his parallel program.

As part of our investigation, we will analyze possibilities that thread migration and
thread level parallelism techniques are included in DP*Graph Code Visualization
Manager, in order to assist with achieving higher performance in the developer’s
parallel applications.

Another idea is to implement automatic computing nodes selection algorithm and
integrate it in our cluster and grid computing platforms. Computing nodes in each site
are chosen based on information provided in real-time basis, then the Visuel toolkit
can also be used to perform “what-if” analysis, in the sense that which of selected
computing nodes should execute what pieces of sequential code, since in a

 Visuel: A Novel Performance Monitoring and Analysis 325

heterogeneous cluster and grid computing environments, the processors of computing
nodes are different in speed. However, the automatically computing nodes selection
problem is still an open challenge.

References

[1] L. Cheung and A.P. Reeves. High performance computing on a cluster of workstations,
IEEE, 1992.

[2] Ganglia Cluster Toolkit. http://sourceforge.net
[3] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, A high-performance, portable

implementation of the MPI message passing interface standard, in http://www.mcs.anl.
gov/mpi/mpicharticle/paper.html, Argonne National Laboratory, 1996.

[4] MRTG Webpage, in http://www.mrtg.org
[5] CACTI Webpage, in http://www.cacti.net/
[6] D.K. Panda and L.M. Ni, Special Issue on Workstation Clusters and Network-based

Computing: Guest Editors’ Introduction. Journal of Parallel and Distributed Computing,
40(1), January 1997.

[7] RRDtool Webpage, in http://www.rrdtool.org
[8] J. Sang, C.M. Kim, T.J. Kollar and Isaac Lopez, High-performance cluster computing

over Gigabit/Fast Ethernet, Informatica, 23, pages 19-27, 1999.
[9] DIMEMAS Tool Webpage http://www.cepba.upc.es/dimemas/

[10] Pallas Products Webpage (VAMPIR tool) http://www.pallas.de/e/products/vampir
[11] Globus Toolkit Webpage, in http://www.globus.org/
[12] MDS Tool Webpage http://www-unix.globus.org/toolkit/mds/
[13] K.C. Li, H.C. Chang, C.T. Yang, L.M. Sato, C.Y. Yang, Y.Y. Wu, H.K. Liao, M.C.

Hsieh, C.W. Tsai, and M.Y. Pel, "On Construction of a Visualization Toolkit for MPI
Parallel Programs in Cluster Environments", in AINA'2005 The 19th IEEE International
Conference on Advanced Information Networking and Applications, vol. II, Taipei,
Taiwan, 2005.

M. Hobbs, A. Goscinski, and Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 326 – 335, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Introduction to a New Tariff Mechanism for Charging
for Computer Power in the Grid

Sena Seneviratne and David Levy

School of Electrical and Information Engineering,
The University of Sydney, Sydney, NSW, Australia
{auntvini, dlevy}@ee.usyd.edu.au

Abstract. In order to charge the computer power in the grid, we have made an
effort to work towards a standard pricing unit. Currently there is a lot of work
done towards the development of grid economy models and architectures. But
when it comes to charging, the usual metric which has been popularly used is $
per CPU per Hour which seems to be too simple. Our effort is to make this met-
ric more meaningful to both grid service provider and client. We argue that in a
particular grid host the metric should reflect the true load consumed by the cli-
ents and the delays caused due to the other loads. Further it should eventually
reflect the network, memory etc consumed by the client as well.

Previously we have studied about the prediction in the grid after introducing
the division of the load average at the kernel level. This gave more meaning to
the historical load collection as CPU historical load data had been collected
separately for each login user. Interestingly, later on the division of load strat-
egy has been helpful in the development of a meaningful tariff mechanism and
would be demonstrated in this paper.

Eventually this fare mechanism would be used to predict the computational
costs, which would certainly contribute to the scheduling in the grid.

1 Introduction

Varying CPU load has a significant effect on the running time of CPU-bound applica-
tions. Indeed, for certain types of applications the running time of a computer-bound
task is linearly proportional to the average CPU load it encountered during the execu-
tion [5]. Important information is the composition of the users who are logged in a
grid host at a particular time. The focus of this paper is to develop a tariff mechanism,
which reflects the net load average and delays due to other loads etc. Our focus is on a
grid of computers. Our contribution is to introduce a fairer approach for charging the
client. This is better than the existing flat $/CPU/hour mechanism.

Working towards a tariff mechanism has been motivated by previous work done by
David Abrahamson on Nimrod/G project [1, 2, 3]. They have proposed economic
based models for managing resource allocation in Grid computing environments. The
Nimrod-G has been one of the main landmarks in this regard. The economic approach
provided a fair basis in successfully managing decentralization and heterogeneity that
is present in human economies. The models can be based on bartering or prices. In

Introduction to a New Tariff Mechanism for Charging for Computer Power in the Grid 327

the bartering-based model, all participants need to own resources and trade resources
by exchanges. In the price-based model, the resources have a price, based on the de-
mand, supply, value, and the wealth in the economic system.

But the dynamic nature of the grid encourages us to develop a standard yet a
changing price unit. In a grid, which is implemented through Globus, a user will have
to register himself with the provider and needs to be allocated a separate login ac-
count. Thus the user is only allowed to submit his HPC jobs to this particular account.
Therefore if we can measure the load under that particular user-login, such collection
of historical load profiles will influence the behavior of that of other user logins. This
fact emphasizes the importance of the division of the load signal, which we have
already conducted to improve the prediction solution in grid.

The division of load means after making some necessary changes to the kernel
code, the load signal could be collected separately for each login user. Previously we
have shown that using the division of the load signal we would predict the load signal
better. The division of load signal is going to be helpful in the development of a better
pricing/tariff mechanism

2 Problem Statement

Our aim is to introduce a dynamic pricing/tariff mechanism for the grid. Our analysis
has been done at the source or service provider level.

We argue that the currently most popular charging method which is $ per CPU per
hour is unfairly static. The grid is multi user system; this means multiple users should
be able to submit jobs simultaneously, if they chose to do so. For example if there are
3 users who have been registered with a particular host/service provider, when the
actual owner is not logged in, then all these 3 users are eligible to submit jobs. Under
such complex situations it would be unfair to have a static charging mechanism.

3 Analysis of the Load Signal

3.1 The Load Signal and the Run Time of a Task

Dinda and O’Halloren has related the running time of a task [5], nomt to the average

load it experiences while it runs using the following continuous time model:

nom
t

exec

exec
t

dttz
t

t
exec

=

+
0

)(
1

1
(1)

Here)(tz is the load signal, shifted such that)0(z is the value of the signal at the

current time, nowt . The nomt
is free load runtime and exect

is under load normal run-
time. It has been assumed that the majority of the workload runs at similar priority.

328 S. Seneviratne and D. Levy

As the average background load, =
exect

exec
ta dttz

t
l

0

)()(
1

Therefore, { })(1 tltt anomexec +∗=

 Thus, nom
exec

t
tla

t =
+)(1

 (2)

4 Theory of Tariff Mechanism

4.1 Dynamism of Tariff Under Changing Load Profiles

A particular user runtime is get elongated as a result of all the other user submissions. If
we can calculate the free load runtime from the elongated runtime and background load,
then we would be able to charge in a fairer manner. This is because the charging should
be based on the runtime of a particular job under free background load or no load.

4.1.1 Calculation of the Correction Factor for the Charge C $/CPU/Hours
We ague that a correction for the traditional grid or cluster computer charge
$/CPU/hours is necessary as

There should be a consideration for the delays due to the background load.
The charges should also depend on the load average
The Calculation Process for a correction factor for delays due to background loads:

Fig. 1. Running under background loads

The Job-1 has been submitted to the grid node. After a time delay of AB1, Job-2
has been submitted to the same node. The load profile of job-1 has been plotted on the
Fig. 1. Thereafter the load profile of job-2 has been added on with that of Job-1.
Therefore what Figure 1 indicates is normal load diagrams. In Fig. 2 we have super-
imposed (would be) free load curves of Job-1 and Job-2.

Let us say in Fig. 1 B1B2 is one sampling period in the kernel. In fact in Digital
Unix this is 1s and in the most of other Unix and Linux this is 5s. We will say this
distance is measured in sampling units.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0

1

2

3

4

5

6

7

8

9

Lo
ad

 A
ve

ra
ge

T im e (m in u t e s)

j o b -1
jo b -2

C A B 1
D

B 2

Introduction to a New Tariff Mechanism for Charging for Computer Power in the Grid 329

Fig. 2. Super imposed free load curves

Therefore
121 unitsamplingBB =

)1('2'1 δ−= unitsamplingBB

We assume that sampling unit elongated by δ as a result of the background load.
Further let us say the background load due to Job-1 at time t is)(1 tla .

At time t , under the load)(1 tla 1 sample unit has been elongated to 2_exectΔ
Applying equation (2) for the task

loadfree
normalexec

t
tla

t
_

1

_2

)(1
Δ=

+
Δ

dt
yla

dy =
+)(1 1

 (3)

Therefore, =
+

freetnormaltexe
dt

yla

dy _

0

_

0 1)(1

Therefore, loadfree
t

normalexec

normalexec
t

dttz
t

t
normalexec

_

0_2

_2

_2

)(
1

1

=
+

(4)

We can say from equation (3) that at time y for duration of dy

the new charges should be = C
yla

dy ×
+)(1 1

Where C is the charge $ per CPU per seconds
We state that the client should be charged after reducing the delays due to back-

ground load. This means the client should be charged for the free load runtime. In
general case, the total cost can be explained by the following equation.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0

1

2

3

4

5

6

7

8

9

Lo
ad

 A
ve

ra
ge

T im e (m in u t e s)

jo b -1
jo b -2

C ' A ' B 1 '
D '

B 2 '

330 S. Seneviratne and D. Levy

The cost calculated based on the free load runtime= Ct loadlfrre ×_

Therefore () normalexecloadlfrre tCmFCt _2_ ∗∗=×

From equation (4)

+
=

normalexect

normalexec

normalexec
loadlfrre

dttz
t

t
t

_2

0_2

_2
_

)(
1

1

() normalexec
t

normalexec

normalexec
tCmFC

dttz
t

t
normalexec

_2

0_2

_2

_2

)(
1

1

∗∗=×
+

Therefore the resultant runtime multiplication factor,

 mF =

+
normalexect

normalexec
dttz

t

_2

0_2
)(

1
1

1
(5)

The existing Unix/Linux has the sampling rate of 5s and therefore the load average
has been reported every 5s.

Let us assume for the period of 5s, error multiplication factor is stable.
Therefore for any 5s duration, new cost =
Cost calculated based on the free load runtime =

C
yla

dy ×
+

5

0 1)(1
= CmFr ×∗5

Since there is no change of load average over 5s,)(1 yal is a constant.

=
exect

exec

ya dttz
t

l
0

)(1)(
1

=
5

0

)(
5

1
dttz

Therefore runtime multiplication factor rmF =

+
5

0

)(
5

1
1

1

dttzr
(6)

Therefore from the first 5s sampling to the Nth 5s sampling the runtime multiplication
factors can be calculated as

rnrrr mFmFmFmF,3,1,1

Introduction to a New Tariff Mechanism for Charging for Computer Power in the Grid 331

The Calculation Process for a correction factor for load average dependency:
The load signal or load average of a job at a particular time is an important factor

for charging. In general load average 1 means 1 task is scheduled and load average 2
means 2 tasks are scheduled. As far as the supplier is concerned there should be an
increase in charging when he increases the number of task on schedule.

Let us say our normal computer charge is C $/CPU/load average/second or C
$/CPU/task/second. As far as a job is concerned if scheduled, both per load average
and task depict the same meaning.

If we consider the total runtime then the resultant Load factor, Lf = average of load
signal during the runtime.

 Therefore ==
exect

exec

a dttz
t

lLf
0

)(
1

(7)

If we consider a certain 5s duration,

then average of load signal during the runtime =
5

0

)5()(
5

1
dttzl ra

Load factor = =
5

0

1)(
5

1
dttzLf rr (8)

Therefore from the first 5s sampling to the Nth 5s sampling the Load factor can be
calculated as

nLfLfLfLf,3,2,1

Therefore at a certain 5s duration the correction factor = rr mFLf ∗

At a certain 5s duration corrected computer charge = ()rr mFLfC ∗∗

The total correction factor = mFLf ∗

Therefore corrected computer power charge= ()mFLfC ∗∗

5 Experimental Methodology and Results

Experiment 1:
In the first part of the experiment, the job 1 has been submitted to account ,1U and let
the job run until it finishes. Then in the second part the job 1 has been submitted to

,1U and job 2 has been submitted to 2U after time of delayT . Thereafter in the 3rd part
the job 1 has been submitted to ,1U and job 2 has been submitted to 2U after time of

1delayT and job 3 has been submitted to 3U after time of 2delayT . In all 3 occasions, the
client job is job 1. The job 2 and job 3 are background jobs. Once the job 1 finishes,
calculate the cost1 according to the runtime and C $/CPU/s. Thereafter using the
multiplication correction factor in section 4 the new cost2 have been calculated. The

332 S. Seneviratne and D. Levy

costs have been compared. Please refer to figure 3 for details of actual runtimes and
load averages.
Experiment 2:
Take 4 pcs in the middleware grid and submit jobs in the following manner
pc1- Job-A, background1: pc2- Job-A, background2: pc3- Job-A, background3:
pc4- Job-A, background4: Then calculate the cost of the Job-A in each occasion.

6 Calculations

Experiment 1: we have used 1 pc. The C $/CPU/load average/second = 2 grid $
Experiment 1 part 1:
There is no background load, therefore from equation 6 the resultant mF=1
From equation 7 and Figure 3.1, resultant Lf = 0.77.
adjusted C = 2 * mF * Lf = 2 * 1 * 0.77 = 1.54
cost1= runtime*adjusted C = 850 * 1.54 = 1309 grid $
cost2 without correction = runtime * C=850 * 2 = 1700 grid $
The Figure 3.2 shows the calculated profiles of mF and Lf using equations 5 and 8
every 5s.
Experiment 1 part 2:
From equation 6 and Figure 3.3, the resultant mF = 0.58.
From equation 7 and Figure 3.3, the resultant Lf = 0.83.
The adjusted C = 2 * mF * Lf = 2 * 0.58 * 0.83 = 0.9628
The cost1 = runtime * adjusted C = 1100 * 0.9628 = 1059.08 grid $
The cost2 without correction = runtime * C=1100*2 =2200 grid $
The Figure 3.4 shows the calculated profiles of mF and Lf using equations 6 and 8
every 5s.
Experiment 1 part 3:
From equation 6 and Figure 3.5 the resultant mF = 0.42.
From equation 7 and Figure 3.5 The resultant Lf = 0.86.
The adjusted C = 2 * mF * Lf = 2 * 0.42 * 0.86 = 0.7224
The cost1 = runtime * adjusted C = 1380 * 0.7224 = 996.91 grid $
The cost2 without correction = runtime * C=1380*2=2760 grid $
The Figure 3.6 shows the calculated profiles of mF and Lf using equations 5 and 8
every 5s.

Fig. 3.1. of experiment 1.1 Fig. 3.2. of experiment 1.1

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
ad

 A
ve

ra
ge

Time(s)

Load Average for Job-A

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
ad

 f
ac

to
r

Time(s)

Lf factor for Job-A

Introduction to a New Tariff Mechanism for Charging for Computer Power in the Grid 333

Fig. 3.3. of experiment 1.2 Fig. 3.4. of experiment 1.2

Fig. 3.5. of experiment 1.3 Fig. 3.6. of experiment 1.3

Fig. 4.5. of experiment 2.3 Fig. 4.6. of experiment 2.3

Experiment 2: we have used 4 pcs. The C1 $/CPU/load average/second = 2 grid $,
The C2 $/CPU/load average/second = 2.2 grid $, The C3 $/CPU/load average/second
= 2.5 grid $, The C4 $/CPU/load average/second = 2.8 grid $
Experiment 2.1:
The cost1 = runtime * adjusted C = 900 * 1.092 = 982.8 grid $
The cost2 without correction = runtime * C= 900 * 2 = 1800 grid $
The Figure 4.2 shows the calculated profiles of mF and Lf using equations 5 and 8
every 5s.

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
ad

 A
ve

ra
ge

Time(s)

Load average for Job-A
Load average for background load

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
he

 f
ac

to
rs

Tim e (s)

L f fac tor fo r Job-A
m F fac tor fo r Job-A

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
ad

 A
ve

ra
ge

Time(s)

Job-A
Background load-1
Background load-2

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
he

 f
ac

to
rs

Tim e(s)

L f fac to r for Job -A
m F fac to r for Job -A

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
ad

 A
ve

ra
ge

Time(s)

Load average of Background load-3
Load average of Job-A

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
he

 f
ac

to
rs

Time(s)

Lf fac tor for Job-A
m F fac tor for Job-A

334 S. Seneviratne and D. Levy

Experiment 2.2:
The cost1 = runtime * adjusted C = 1000 * 1.2584 =1258.4 grid $
The cost2 without correction = runtime * C=1000 * 2.2 = 2200 grid $
The Figure 4.4 shows the calculated profiles of mF and Lf using equations 5 and 8
every 5s.
Experiment 2.3:
The cost1 = runtime * adjusted C = 1200 * 1.2505 = 1500.6 grid $
The cost2 without correction = runtime * C=1200 * 2.5 = 3000 grid $
The Figure 4.6 shows the calculated profiles of mF and Lf using equations 5 and 8
every 5s.
Experiment 2.4:
The cost1 = runtime * adjusted C = 1270 * 1.4336 = 1820.672 grid $
The cost2 without correction = runtime * C=1270 * 2.8= 3556 grid $
The Figure 4.8 shows the calculated profiles of mF and Lf using equations 5 and 8
every 5s.

7 Conclusion and Further Work

The multiplication factor mF and the load factor Lf have been derived considering the
influence of background load on a particular job. In fact some background load al-
ways exists as some administrative jobs run as “root”. In the experiment 1 we have
demonstrated that with the change of background load mF is ever changing. The Lf
too would change over time. In the experiment 2 we have submitted job-A to 4 pcs of
the “Middleware grid” under different background load conditions.

In the experiment 1 we have first lounged job-A. The experiment has been repeated
3 times under different background loads. The total cost for job-A has been calculated
and compared under experiment 1, section 6. In part 1 the runtime of Job-A is 850s
sans any background load means mF=1. As the load changes the resultant Lf = 0.77.
After considering the factors, the cost1 = 1309 grid $. But otherwise the cost2 be-
comes 1700 grid $. In part 2 with 1 background load resultant Lf = 0.83 and resultant
mF = 0.58. The cost1 = 1059 grid $ and cost2 = 2200 grid $. In part 3 with 1 back-
ground load resultant Lf = 0.86 and resultant mF = 0.42. The cost1 = 996.9 grid $ and
cost2 = 2760 grid $.

In part 1 as Job-A runs under free load mF=1. The difference between cost1 and
cost2 is 391 grid $. This means one would have unfairly paid 391 grid $ extra, if the
previous flat charging mechanism would have been used. But in part 2 with 1 back-
ground load this difference has increased to 1141 grid $. In part 3 with 2 background
loads the difference has further increased to 1763 grid $. In part 2 and 3 as the back-
ground load increases the difference between cost1 and cost2 increases and such in-
crements in difference further reinforce the necessity for a fairer charging mechanism.

In the experiment 2 we have run job-A in 4 different computers under different
background load conditions. The charging of each computer differs. They charge 2,
2.2, 2.5, 2.8 grid $ respectively. Using the experimental results in section 5, the total
running costs have been separately calculated and compared under experiment 2,
section 6. In 2.1 with background load-1 resultant Lf = 0.78 and resultant mF = 0.70.
The cost1 = 982.8 grid $ and cost2 = 1800 grid $. In 2.2 with background load-2 re-
sultant Lf = 0.80 and resultant mF = 0.65. The cost1 = 1258.4 grid $ and cost2 =
2200 grid $. In 2.3 with background load-3 resultant Lf = 0.82 and resultant mF =

Introduction to a New Tariff Mechanism for Charging for Computer Power in the Grid 335

0.61. The cost1 = 1500.6 grid $ and cost2 = 3000 grid $. In 2.4 with background
load-4 resultant Lf = 0.80 and resultant mF = 0.64. The cost1 = 1820.67 grid $ and
cost2 = 3556 grid $. The least costs 982.8 grid $ is for pc1, yet had we used the flat
charging mechanism it would have been 1800 grid $.

In a previous experiment [8] we have performed the prediction of the load profiles/
runtimes using free load profile of a particular job. The prediction results have been
hence used for scheduling the jobs in the grids. In our future work we would be able
to predict the set of costs for a particular job in the grid and that information too
would be useful for better scheduling in the grid.

References

1. Buyya, R, Abramson, D. Giddy, J and Stockinger, H. “Economic Models for Resource
Management and Scheduling in Grid Computing”, Journal of Concurrency: Practice and
Experience, Grid computing special issue 14/13-15, 2002, pp 1507 - 1542.

2. Abramson, D, Buuya, R. and Giddy, J. “A Computational Economy for Grid Computing
and its Implementation in the Nimrod-G Resource Broker”, Future Generation Computer
Systems. Volume 18, Issue 8, Oct-2002.

3. Abramson, D, Lewis, A. and Peachy, T., “Nimrod/O: A Tool for Automatic Design Optimi-
zation”, The 4th International Conference on Algorithms & Architectures for Parallel Proc-
essing (ICA3PP 2000), Hong Kong, 11 - 13 December 2000.

4. C. Liu, L. Yang, I. Foster, and D. Angulo, "Design and Evaluation of a Resource Selection
Framework for Grid Applications," presented at Proceedings of the 11th IEEE International
Symposium on High-Performance Distributed Computing (HPDC 11), Edinburgh, Scot-
land, 2002.

5. P. A. Dinda, "On line Prediction of Running time of Tasks”, Journal of Cluster Computing,
5(2002).

6. Sena Seneviratne and David Levy 2004: Improving the Measurement of the Load Signal
Through More Appropriate Sampling Rate, Proceedings of International Conference on Par-
allel and Distributed Processing Techniques and Applications (PDPTA'04), Las Vegas, Ne-
vada, USA.

7. Neil J. Gunther, “Analyzing Computer Performance”. Publisher: Springer-Verlag GmbH
8. Sena Seneviratne, David Levy “Enhanced Host Load Prediction by Division of User Load

Signal for Grid Computing” submitted to Journal of Cluster Computing.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 336 – 344, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Host Load Prediction for Grid Computing Using Free
Load Profiles

Sena Seneviratne and David Levy

School of Electrical and Information Engineering,
The University of Sydney, Sydney, NSW, Australia
{auntvini, dlevy}@ee.usyd.edu.au

Abstract. In Order to increase the overall performance, we have studied meth-
ods for improving load prediction, which would help improve load balancing in
the Grid. Current software designed to handle distributed applications does fo-
cus on the problem of forecasting the computer’s future load. The UNIX five-
second-host load has been collected and used to predict the host load, but the
solution of forecasting can be further improved if CPU historical load data had
been collected separately for each login user. Another important aspect of his-
torical data collection is that before submission to the grid, the user separates
his HPC program into sizable parallel programs and test runs them supposedly
on load free computers. This means the user can obtain the load profile of the
parallel program on a load free computer together with other important informa-
tion. Once the free load profile is known, load behaviour of a job under certain
variable background load conditions can be predicted. Thus the forecast can be
performed for each user before adding the weighted values towards the final so-
lution of prediction. In this paper we have proved that load prediction using free
load profiles provided better results. In fact once the user based load data are
collected, the forecasting is somewhat like that of the Stock market.

1 Introduction

In a multi user host computer to which more than one user can submit their jobs, the
applications are in active competition with unknown background workloads intro-
duced by other users. Varying CPU load has a significant effect on the running time
of CPU-bound applications. Indeed, for certain types of applications the running time
of a computer-bound task is linearly proportional to the average CPU load it encoun-
tered during the execution [1, 5]. The focus of this paper is predicting the CPU load of
shared computing resource. Our focus is on a grid of computers. Our contribution is
to introduce a new approach for the collection of historical data, which is based on
individual users in the system. That is to calculate and store the load averages against
the individual users separately. Important information is the composition of the users
who are logged in at a particular time. Then, we will introduce a new prediction
methodology, which is based on free load profiles, which were obtained beforehand.
Our work though focuses a grid of computer networks and has been based on the
previous work done in the field of CPU load prediction by Dinda and O’Hallaron

 Host Load Prediction for Grid Computing Using Free Load Profiles 337

[1, 2, 3, 4, 5]. Further we have been quite influenced by the previous works of By-
oung-Dai Lee and Jennifer M. Schopt [9]. At last but not least we have studied les-
sons from Rich Wolkski’s work including Network Weather Service [3, 10].

2 Problem Statement

We argue that the individual CPU load can be predicted using free load profiles of
that particular job and historical CPU load values collected for that particular individ-
ual user. The final CPU load prediction would be calculated from the weighted indi-
vidual user load predictions. In this paper our aim is to prove that the free load profile
technique is always give better predictions than previous such efforts in total load
signal predicting [1] using only AR(16).

The important assumptions are that the set of application input parameters that can
affect the application run time is known. We do not consider parallel applications
with run times that are non deterministic or that depends on the distribution of the
input data. Ex. Iterative Jacobi Computation [9].

3 Analysis of the Load Signal

3.1 Theory of the Load Signal

The existing Unix/Linux host load average or load signal has been calculated in the
kernel after sampling the task-list run-queue of the CPU. In this case the processes
that are runnable and therefore waiting in the queue, executing on CPU, or suspended
(uninterruptible) waiting for some other external condition, have been counted for
further calculation [7].

Tasks (n) =TASK_RUNNING (and Runnable) +
TASK_UNINTERRUPTIBLE

(A)

This can be written in more conventional mathematical notation as:

)1()()1()(// rr etnetloadtload σσ −− −∗+∗−= . (B)

If)(tload is the current estimate of the load average (signal),)1(−tload is the estima-

tion of the load average from the previous sample, and)(tn is the number of currently
active Unix/Linux processes. The sampling period is σ and reporting period is r .

3.2 The Experimental Analysis of the Division of Load Signal

After making some necessary changes to the kernel code, the load signal can be col-
lected separately for each login user. In a previous experiment [6, 8], we have proved
that at any time t the collective divisible load, which is the resultant load signal, is
equal to the total load signal as demonstrated by Figures 1 and 2.

i.e. Total UnUrUUUU ++++++=321

338 S. Seneviratne and D. Levy

Fig. 1 Fig. 2

4 Theory of Load Signal Prediction

4.1 The Load Signal and the Run Time of a Task

Dinda and O’Halloren has related the running time of a task [5], nomt to the average
load it experiences while it runs using the following continuous time model:

nom
t

exec

exec
t

dttz
t

t
exec

=

+
0

)(
1

1

(1)

Here)(tz is the load signal, shifted such that)0(z is the value of the signal at the

current time, nowt . The nomt is free load runtime and exect is normal runtime. It has

been assumed that the majority of the workload runs at similar priority.

As the average background load, =
exect

exec
ta dttz

t
l

0

)()(
1

Therefore, { })(1 tltt anomexec +∗=

 Thus, nom
exec

t
tla

t =
+)(1

 (2)

4.2 Prediction of Load Signal

We argue that the calculation of the predicted resultant CPU load is better than pre-
dicting the CPU load based on the historical total CPU load values which have been
the traditional way of the prediction of the load average.

Suppose the users ,1U ,2U 3U and ,4U ……… nU are users at a particular time t
Then at that time 1+t where times step is 5s.

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

9
Lo

ad
 A

ve
ra

ge

Time(s)

Calculated Resultant

(root
U1
U2
U3
Resultant

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

9

Lo
ad

 A
ve

ra
ge

Time(s)

Total Load Average

Total Load Average

 Host Load Prediction for Grid Computing Using Free Load Profiles 339

Final predicted resultant CPU load =
=

n

r 1

(rW) Predicted CPU load of rU +

CORRECTION

(C)

In the Separate Load Average case the historical values of ,1U ,2U ,3U …. ,nU and
root have been included in the prediction methodology. After predicting them sepa-

rately, the resultant would be calculated as .10 ≤≤ Wr In general as at the time of

prediction if ,1U ,2U ,3U ………. ,nU is 0 the historical data of such a component or
components would not be taken into consideration for prediction assuming that they

would not revive soon. This means any of the weighted values norW54,3,2,1 =0.

If ,1U ,2U ,3U ………. ,nU NOT 0 then norW54,3,2,1 =1.

4.3 Prediction Methodology

4.3.1 Load Free Profile Matching
The load free profile of the application is the most important part of our prediction
strategy. The following steps would show that how we can predict the future load,
using load free profile of the application.
The Calculation Process:

Fig. 3. Superimposed load curves

The Job-1 has been submitted to the grid node. After a time delay of AB1, Job-2 has
been submitted to the same node. The load profile of job-1 when run on a load free
machine has been plotted on the Figure 3. Thereafter the load free profile of job-2 has
been superimposed with that of Job-1. Therefore what Figure 3 indicates is superim-
posed diagrams. Let us say in Figure 3, B1B2 is one sampling period in the kernel. In
fact in Digital Unix this is 1s and in the most of other Unix and Linux this is 5s. We
will say this distance is measured in sampling units.

Therefore

121 unitsamplingBB =

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0

1

2

3

4

5

6

7

8

9

Lo
ad

 A
ve

ra
ge

T im e (m in u t e s)

jo b -1
jo b -2

C A B 1
D

B 2

340 S. Seneviratne and D. Levy

Fig. 4. Normal running under background load

In Fig. 4, we have assumed and plotted the might be plot of Job-1 and Job-2.

)1('2'1 δ+= unitsamplingBB

We assume that sampling unit elongated by δ as a result of the background load.
Let us say the background load due to Job-1 at time t is)(1 tla .

At time t , under the load)(1 tla 1 sample unit has been elongated to 2_exectΔ
Applying equation (2) of section 4 for the task

)}(1{ 1_2_ tltt aunitsampexec +∗Δ=Δ (3)

)}(1{ 1 tldtdy a+=

Our main assumption is that)(1 tla is same over 1 sampling unit and over

)1(δ+unitsampling

Therefore we would do the following integration.

+=
exec normt t

a dttldy

0 0

1)}(1{ (4)

Where nomt is free load runtime and exect is normal runtime

+=

normt

anomexec dttltt
0

1)((5)

From Figure 3 =
normt

aa dttlCtoBfromtlofArea
0

11)(1)(

Therefore loadaveragenormalanomnomexecexec ltttt ____2 ∗+== (6)

That is under free load conditions.

normloadaveragenormala ttimeoveraverageloadofaveragel =___

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8

9

Lo
ad

 A
ve

ra
ge

Tim e(m inu tes)

job -1
job -2

C ' A ' B 1 '
D '

B 2 '

 Host Load Prediction for Grid Computing Using Free Load Profiles 341

Under the influence of load of Job-1, B1’C’ section has new normexec tt _2_2 >

Anyway still the maximum load average of Job-2 is the same. As a result of the
additional load of Job-1 B1C has been elongated to become B1’C’.

The same can be said about the Job-1 as well.
The error generated due to our major assumption would be proven very small. Cur-

rently Unix/Linux uses sampling period of 5s. If we reduce it the error generated can
be further reduced.

Usually, we expect up to 3 users would submit jobs to a node. In generally 3 users
mean 3 jobs and 3 jobs means the maximum load average around 3. It is generally
accepted and we too have empirically found that if the load average exceeds beyond
3, it would hinder performance.

5 Experimental Methodology and Results

Our infrastructure hardware consists of Pentium-3 hosts, which are part of the “Mid-
dleware Grid” of School of Electrical Engineering, University of Sydney. Currently
“Middleware grid” consists of 27 Intel Pentium-3 Linux workstations. In each pc, it
has been configured to measure the load signals separately, that is in accordance with
the log in user.

Experiment 1: Firstly the job 1 has been submitted to account ,1U and job 2 has been
submitted to 2U after time of delayT . The moments before the job 2 is submitted, the
predicted run times of job 1 and job 2 has been calculated using the methodologies
discussed in the section 4. Thereafter they have been compared against the actual
runtimes of job 1 and job 2. By changing the value of delayT , the experiment has been
repeated thrice.

Experiment 2: Firstly the job 1 has been submitted to ,1U and job 2 has been submit-
ted to 2U after a time delay of 1delayT . The moments before the job 2 is submitted, the
predicted run times of job 1 and job 2 has been calculated using the methodologies
discussed in the section 4. Thereafter the job 3 has been submitted to 3U after a time
delay of 2delayT . The moments before the job 3 is submitted, the predicted run times
of job 1, job 2 and job 3 have been calculated using the methodologies discussed in
the section 4. Thereafter they have been compared against the actual runtimes of job
1, job 2 and job 3. By changing the value of 1delayT and 2delayT the experiment has
been repeated thrice.

Experiment 3: In this experiment, 10 computers of the middleware grid have been
used. Firstly all 10 computers have been submitted with 10 different HPC jobs. Say
the pcs are ,1p ,2p ,3p ………. 10p . The name of the grid user account is user5a.

After 1delayT s 10 identical HPC jobs have been submitted the grid user account
user5b. This time the jobs are to be done a particular task. They are Bio-informatics
applications that analyses certain Gene expressions. We have borrowed them from
High Performance Computing Support Unit University of New South Wales. The
jobs are considered to be independent. Please refer to the table 2 for results.

342 S. Seneviratne and D. Levy

Table 1. The Job submission and results of Experiment 3

nameComputer 5p 6p 7p 8p 9p 10p

sJfreeLoadauser)105(,5 − 2058 2175 2605 2685 2725 3035
TdelayDelay ≈ 298 308 315 930 1265 1300

0,5 freeJLoadbuser 885 885 885 885 885 885
)(5'Pr sauruntimeedicted 2488 2688 3277 3357 3497 3671
)(5' sauruntimeMeasured 2405 2518 3175 3220 3520 3750
)(5'Pr sburuntimeedicted 1380 1442 1454 1458 1601 1651
)(5' sburuntimeMeasured 1322 1400 1580 1445 1685 1700

Fig. 5 Fig. 6. Case 1.1a-Exp1

Fig. 6. Case 2.2a-Exp2 Fig. 6. Case 2.2b-Exp2

6 Conclusion and Further Work

The predictor we used is based on Free Load Profiles and the Division of Load Sig-
nal, which has been introduced to measure the load separately. Further as a result of

0 5 10 15 20 25 30 35 40 45 50 55 60
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

R
oo

t
M

ea
n

S
qa

re
d

E
rr

or

Time(s)

AR(16)-AutoCorreRelation Hybrid
AR(16)

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo
ad

 A
ve

ra
ge

Time(seconds)

Predicted Profile of Job-1
The Actual Profile of Job-1

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Lo
ad

 A
ve

ra
ge

Time(seconds)

Predicted Profile of Job-1-2
The Actual Profile of Job-1-2

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo
ad

 A
ve

ra
ge

Time(seconds)

Predicted Profile of Job-3 with 120s delay
The Actual Profile of Job-3 with 120s delay

 Host Load Prediction for Grid Computing Using Free Load Profiles 343

the division of load signals our predictor will be able to weight the individual pre-
dicted results in accordance with a selected algorithm.

As Dinda has performed load prediction using AR(16) so that we have compared it
with ours. In Figure 5 we have presented the plot of RMS error of AR(16) over 100
samples. In the same diagram we have plotted the case of the Hybrid method which is
slightly better than AR(16). Our Hybrid method consists of curve matching technique
and AR(16). When there is a repetition in the submission of the job it switches on to
curve matching. In this comparison [8] we have predicted only 60s into the future, yet
you find an ever-increasing RMS error. The problem with AR(16) is as the lead time
increases margin of error too increases. We have shown that our new approach had
helped to reduce the margin of error considerably. Apart from that our new approach
can predict the total runtime of an application. In fact this is the main advantage over
the existing AR(16). According to the results of current experiments we would pre-
dict up to 3600s (1 hour) with about 5% error.

In the experiment 1 we have first lounged job 1. After Tdealy1, we predicted the
profile of job 2 before lounging it. Thereafter the actual load profile has been plotted
using collected load signals. In Figure 6 Case1.1a shows the predicted and measured
load curves of job1. In the complete diagrams Figure 6: Case1.1a, Case1.2a and
Case1.3a depict the behavior of job1. The complete diagrams Figure 6: Case1.1b,
Case1.2b and Case1.3b depict the behavior of job2. In all 3 cases the average predic-
tion error in runtime is less than 5%.

In the experiment 2 we have first lounged job 1. After Tdealy1 we predicted the
profile of job 2 before lounging job2. Thereafter after Tdealy2 predicted the profile of
job 3 and then lounged. The actual load profile has been drawn using collected load
signals. In Figure 6 Case2.2a shows the predicted and measured load curves of job1
and job 2. In Figure 6 Case2.2b shows the predicted and measured load curves of job
3. The complete diagrams of Figure 6: Case2.1a, Case2.2a and Case2.3a depict the
combine behaviors of job 1 and job 2. The complete diagrams of Figure 6: Case2.1b,
Case2.2b and Case2.3b depict the behavior of job 3. In all 3 cases the average predic-
tion error in runtime is less than 10%.

In the experiment 3 we have tested our prediction methodology in the grid envi-
ronment. We have used the 10 computers of the “Middleware grid”. It has been
shown that most suitable 5 pcs were predicted as far as runtime is concerned. The
table 1 shows the actual and predicted runtimes of the first set of jobs and the 2nd set
of job. In this manner we will be able to predict the shortest runtime for the Bio-
informatics applications that analyses certain Gene expressions.

The response time of the predictor itself is an important factor we have taken into
consideration. Another factor is the execution time of the predictor. We have ob-
served that although both these factors are somewhat higher than the AR (16), they
are within tolerable range.

Improving the accuracy of the predictor is the major focus of this paper. We also
must keep the response time and execution time of the predictor within an acceptable
range. In fact they should be well less than the sampling period 5s. Future work will
address the usage of prediction techniques for scheduling jobs in the “middleware
grid”.

344 S. Seneviratne and D. Levy

References

1. Dinda P.A. and O’ Hallaron, D.R. “Host Load Prediction Using Linear Models, Journal of
Cluster Computing”, 3 (2000).

2. Dinda P.A. and D. R. O’ Hallaron:2000a “Realistic CPU Workloads Through Host Load
Trace Playback”. In: Proc. Of 5th Workshop on Languages, Compilers, and Run-time Sys-
tems for Scalable Computers (LCR2000), Vol 1915 of Lecture Notes in Computer Sci-
ence, Rochester, New York, pp. 246-259.

3. R. Wolski, N. Spring, and J. Hayes, "The Network Weather Service: A Distributed Re-
source Performance Forecasting Service for Metacomputing," Journal of Future Genera-
tion Computing Systems, pp. 757-768, 1998.

4. C. Liu, L. Yang, I. Foster, and D. Angulo, "Design and Evaluation of a Resource Selection
Framework for Grid Applications," presented at Proceedings of the 11th IEEE Interna-
tional Symposium on High-Performance Distributed Computing (HPDC 11), Edinburgh,
Scotland, 2002.

5. P. A. Dinda, "On line Prediction of Running time of Tasks”, Journal of Cluster Comput-
ing, 5(2002).

6. Sena Seneviratne and David Levy 2004: Improving the Measurement of the Load Signal
Through More Appropriate Sampling Rate, Proceedings of International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA'04), Las Vegas,
Nevada, USA.

7. Neil J. Gunther, “Analyzing Computer Performance”. Publisher: Springer-Verlag GmbH
8. Sena Seneviratne, David Levy “Enhanced Host Load Prediction by Division of User Load

Signal for Grid Computing” submitted to Journal of Cluster Computing.
9. Byoung-Dai Lee, Jennifer M. Schopf, “Run Time Prediction of Parallel Applications on

Shared Enviorement” Proceedings of Cluster 2003, December 2003. Extended version is
available at Argone National Laboratory Technical Report #ANL/MLS-P1088-0903, Sep-
tember 2003.

10. R. Wolski, "Dynamically Forecasting Network Performance Using the Network Weather
Service," Journal of Cluster Computing, 1998.

11. Lingyun Yang, Jennifer M. Schopf, Ian Foster, “Conservative Scheduling: Using Predicted
Variance to Improve Scheduling Decisions in Dynamic environments”.

Active Link: Status Detection Mechanism for
Distributed Service Based on Active Networks�

Zhan Tao1, Zhou Xingshe1, Liao Zhigang2, and Chen Yan2

1 Computer Science and Technology Department,
Northwest Polytechnical University, Xi’an 710072, China

2 Institute of Computer Architecture & Network,
Xi’an Jiaotong University, Xi’an 710049, China

Abstract. For network service, it is obvious that “PUSH” method is
more efficient than “PULL” method for bandwidth consuming. One
problem for “PUSH” method is that the client is difficult to keep track
with the status of server. Traditional polling method is bandwidth con-
suming and put much burden on server. Active link is an active network
based service which builds a tree structure between clients and server.
Different clients and service can share link information if they have the
same middle nodes in the link path. This mechanism can reduce band-
width consumption and burden of server.

1 Introduction

Internet is still expanding, as well as the type and number of services are increas-
ing day by day. Many applications require clients to keep track with the server.
So far, there are two popular way to achieve this: one is that client sends query
timely to the server, this is called “PULL” method; the other way is that client
wait silently for notification of changes from the server, this is called “PUSH”
method. The difficulty for “PULL” method is to determine the interval of poll;
if it is too long, it will lose freshness; if it is too short, it will bring heavy burden
on network throughput. And both methods have a common shortage that one
application cannot share information with other applications. The availability
of service can be classified into two parts: the state of the service and the con-
nectivity of the network. Active networking technology [1] provides activity for
the network, it makes possibility to share the information between different ap-
plications. Active link is a service based on active network to achieve this goal.
The mechanism has been successfully implemented on the ANTS 1.3.1[2].

2 Active Link

Active link provides an active method for status tracking between server and
cache nodes. If a cache node intends to detect the state of server in traditional
� This paper is supported by the Nation Science Foundation of China (No.60173059).

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 345–350, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

346 Z. Tao et al.

network, a typical way is to send a query message to detect whether the server
is ok or not. The state can be divided into two parts: the state of network
connection and the state of the server. When the server receives a query message,
it will send a reply message. If the cache node receiving reply message, it means
that the server is ok; if the cache node cannot receive a valid reply message
within a given period, it will retry the above action for several times and if still
no result back it can make a judge that the server is transiently out of service.
If the cache node wants to trace the state of server it will send query message
repeatedly to the server. This method has the following problems: (1)The major
problem is bandwidth consumption and heavy burden on server. (2) If no reply
message sending back, it’s difficult for cache node to identify the fault is caused
by the network connection or the server.

Active networking technology provides a way to solve these problems. In
active link, the status tracking can be achieved by a dynamic service and it can
be shared among different cache nodes, thus it can reduce network bandwidth
and relieve the server from heavy burden of replying to all cache nodes.

2.1 Principles

Assume a cache node intends to keep track with server’s state. Firstly, it sends
request capsule to the server. As well as server receiving the request, it sends
back a reply capsule; each node on the route from server to the cache node will
activate the active link service, which will monitor the next and the previous
node to see whether the neighbor is reachable. As shown in figure 1, this result
in a dual link from the server to the cache node and a group of node pairs. In
figure 1, it has generated three node pairs: (CacheNode, AN1), (AN1, AN2) and
(AN2, Server). Each node in the pair will inspect the availability of the other.
The availability of the server includes connectivity and service availability, and
as to other nodes, it just includes connectivity. The normal state is that all nodes
in the link connected together and the service is running. If the service on the
server is down, the adjacent node, in this case AN2, will aware of the failure
and notify the client along the link. AN2, AN1 and cache node will release the
resource and may do their predefined procedure such as sending alert to web
user. If the connectivity is broken, nodes in the same link pair cannot reach each
other. Both of them will send a connection fail message along the two sublinks
until reaching the cache node or server. All nodes that receive the message will
release the resource. The client will fall in a temporary state and find another
route to the server. In figure 1, assuming that pair (AN1, AN2) is broken, AN2
will release the resource and send a message to the server; the server then releases
the resource too. AN1 does the similar action but sends a message to cache node;
the node received the message then convert to a temporary state. It will try to
find another route then; if it finds one, it resume to available state otherwise it
will convert to connection fail state and it will send message to the server timely
to detect the service.

Multiple cache nodes can share link in the same route end to end. As shown
in figure 3, the route from C1 to S is [C1, R1, R5, S] and the route from C2

Active Link: Status Detection Mechanism for Distributed Service 347

C AN2 SAN1

Active Node Query capsule Virtual Link

Fig. 1. Each node keeps track with adjacent nodes, and makes a virtual link between
server and cache node

to S is [C2, R1, R5, S]; they can share pair (R1, R5) and (R5, S). R1 and R5,
as they are active routers, can easily record share information and save network
bandwidth especially in large scale networks.

C

R

R

R

CCC C

R

R

R

CCC

S Active Node

S:Server

R:Router

C:Client

Fig. 2. Traditional query method will accumulate the flush; the server would burden
heavily when cache nodes number increasing

Since every node in the route just keeps track with adjacent nodes, it is also
easy to reuse them with different servers or different services running on the
same server.

The one major advantage of active link is to share information among differ-
ent links. The server’s state is kept not only in cache node but also spread all over
network; it becomes possible to share information among different cache nodes.

2.2 Status Tracking Information Sharing for One Server

The level of share is determined by (1) network topology and (2) deployment of
the related server. Tree is a usual topology applied in Internet. For convenience,
full binary tree is considered as network topology in following discussion. The
server is the root node; all cache nodes make up the leaves and middle nodes
(usually router) make the branch. Let T be a full binary tree. (From now on,
the tree is always a full binary tree.) Let m + 1 be the levels of T and let nj be
the total node number in the level j(0 ≤ j ≤ m). Then nj should be: nj = 2j .

Let P denotes the amount of query packet that a cache node sent per second
and let S denotes the size of a query packet. We assume the response packet has
the same size with the query packet. In traditional way, the server will receive

348 Z. Tao et al.

C1

R2

R5

R1

C4C3C2 C5

R4

R6

R3

C8C7C6

S
Query Capsule

Response Capsule

Fig. 3. By active link, the query and response are distributed to each active router; so
the server has a fixed burden no matter the number of cache nodes

C11

R2

S1

R1

C2C1C12 C21

R3

C22

Query Capsule Response Capsule

S2

Reused Link

Fig. 4. Virtual link information can be shared for different service. The links colored
blue are shared by two different servers.

query packets from all cache nodes and then send response packet to respective
node. So the throughput in the server Bs is

Bs = 2PSnm = 2m+1PS (1)

To compare, for active link, the throughput in the server Bs′ is

Bs′ = 2PSn1 = 4PS (2)

It is obvious that Bs’ is a constant whereas Bs will increase greatly if the levels
of tree increase. The reason for this is that each middle node partake the total
task. And all its children will share each middle node’s information. Take the
case of figure 3, the information of (R1, R5) can be shared by C1 and C2; and
the information of (R5, S) can be shared by C1, C2, C3 and C4. The higher the
middle node in the tree level, the more cache nodes can share the information
from the node.

2.3 Information Share for Multi Server

Moreover, information can be shared among different servers. Figure 4 shows an
example for sharing information between two services which deployed in different

Active Link: Status Detection Mechanism for Distributed Service 349

nodes. As figure 4 shows, C1 keeps track with S1 and S2 and these two links can
share pair (C1, R2). The same thing is also occurred in node C2. It is obvious
that the nearer the two servers are, the more the two link sets can share. To an
extreme, the two servers are deployed in the same node and the clients can share
all the connectivity information.

3 Implementation

We use ANTS (Active Network Transport System) [2][3] to implement a prototype
of active link. There are two reasons to chooseANTS: one is that ANTS is one of the
famous activenetworking runtime environments; the other is that it is implemented
by JAVA, a promising language based on OOP (Object Oriented Programming).

In active link, each client tracks status of the server, and the routes of infor-
mation tracking set up a virtual link.Figure 5 shows how a link establishing. It
can be divided into three steps:

Fig. 5. The process of one link establishing

1. The cache node sends a RequestCapsule to server.
2. The server, if accepting the client request, sends a ResponseCapsule to the

cache node.
3. Each node in the route from the cache to the server will invoke a ’ping’

action by sending PingCapsule repeatedly to adjacent node(s) in the route.
The node adjacent to the server will also send a PingServiceCapsule to detect
the service’s state.

After above steps the link will be established. The client should set the original
link state to ok and do following works:

1. If all of ping actions, including the PingCapsule and the PingServiceCapsule,
return true to each node, then the link is ok. otherwise,

2. If one or more ping action(s) fail(s), two neighboring nodes will receive no
reply and they will send a DestroyCapsule to client and server reversely along
the link respectively. Then each node in the link would release the resource
allocated for the link.

350 Z. Tao et al.

3. When the client receives a DestroyCapsule, it sets its state to a temporary
state. It will try to build another link to the server. If another link is available,
it then changes its state to ok; otherwise it would change its state to failure.

4 Conclusion

Active link makes an effort on information share in active networks. Active link
is an active network based service which builds a tree structure between clients
and server. Different clients and service can share link information if they have
the same middle nodes in the link path. This mechanism can reduce bandwidth
consumption and burden of server.

References

1. David L Tennenhouse, Jonathan M Smith, W David Sincoskie et al.: A Survey of
Active Network Research. IEEE Communication Magazine, Jan 1997, 35(1): 80-86.

2. David Wetheral.: Active Network Vision and Reality: Lesson from a capsule-based
system. Proceedings of 17th ACM Symposium on Operating Systems Principles
(SOSP ’99), December 1999.

3. David Wetheral.: Service Introduction in Active Networks. PhD Thesis, Mas-
sachusetts Institute of Technology, April 1999.

Performance Monitoring for Distributed Service
Oriented Grid Architecture

Liang Peng, Melvin Koh, Jie Song, and Simon See

Asia Pacific Science and Technology Center, Sun Microsystems Inc.,
Nanyang Center for Supercomputing and Visualization,

Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
{pengliang, melvin, songjie, simon}@apstc.sun.com.sg

Abstract. Computational Grids provide an emerging highly distributed com-
puting platform for scientific computing. Recently, service oriented architecture
(SOA) is a trend of implementing software systems including Grid computing
systems. SOA provides more flexibilities for Grid users at the service level. Since
performance is still one of the major concerns in Grid environments, Grid service
performance issues needs to be extensively investigated and studied. However, a
lot of issues are still open to be explored and few work has been done on them.

In this paper, we propose a Grid service monitoring architecture for flexible
monitoring on various Grid services. We implemented it for monitoring WSRF
(Web Service Resource Framework) services in this paper. We show how the ser-
vice oriented Grid monitor work with a simple example WSRF-compliant Math-
Service. Moreover, the relationship of the monitor and Grid super scheduler is
also analyzed. In this way, the scheduler may produce service performance ori-
ented policies that ensure optimal quality of services for Grid applications.

Keywords: Grid Performance Monitoring, Grid Service Performance, Service
Oriented Grid Architecture.

1 Introduction

In recently years, Grid computing is a fast developing technology as an approach to do
high performance scientific and engineering computation. Grid performance evaluation
and modeling, as an important supporting factor for Grid architecture, is still imma-
ture and not extensively explored. The performance information are usually not fully
considered in Grid middleware design as well. The Grid middleware usually does not
reveal or utilize performance information (e.g. performance model, evaluation results,
etc) that can be used to improve the efficiency of Grid scheduling.

Scheduler oriented Grid performance evaluation is an approach that enables per-
formance evaluation, monitoring, and modeling units closely cooperates with or even
become a component of Grid scheduler so that the Grid scheduler is able to get more
information about the performance of both computation resource and application and
hence improve the scheduling policy for Grid jobs and ensure the quality of service.

Meanwhile, with the widespread emergence of Web services and service-oriented
architecture [6] implementations in enterprise IT environments, service orientation is

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 351–356, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

352 L. Peng et al.

a trend for implementation of Grid architectures. In this environment, the Grid service
performance problem can no longer be ignored.

In this paper, we propose a Grid service monitoring architecture for flexible mon-
itoring on various Grid services. We implemented a prototype for monitoring WSRF
(Web Service Resource Framework) services. We also show how the service oriented
Grid monitor work with a simple example WSRF-compliant MathService. In addition,
the relationship of the monitor and Grid super scheduler is also analyzed in order for the
scheduler to produce service performance oriented policies that ensure optimal quality
of services for Grid applications.

The remainder of this paper is organized as follows: section 2 introduces Grid ser-
vice and performance in computational Grid environments and presents the Grid service
performance monitoring architecture and its interaction with Grid super scheduler; The
implementation details of our Grid service performance monitoring architecture and
a simple example are introduced in section 3; Some related work are introduced in
section 4 and finally we give a conclusion in section 5.

2 Service Oriented Grid Performance Architecture

2.1 Performance of Grid Services

The performance of Grid is not well defined, neither is the performance of Grid services.
The obstacles are mainly the nature of Grid (heterogeneity, dynamism, wide distribu-
tion, etc) and these make traditional performance metrics not directly applicable to Grid
environments.

In Grid environments, the following metrics can be considerred to monitor for Grid
services:

– Availability: whether a Grid service is present and ready for immediate use.
– Throughput: how many requests can be serviced in a given time period.
– Latency (or response time): how much time elapses between the request and the

response.
– Scalability: whether a Grid service is horizontally and vertically scalable.

2.2 Grid Service Performance Architecture

A Grid performance architecture consists of multiple components such as performance
monitor, performance modeling, interfaces between performance components and Grid
middleware (e.g. Grid super scheduler), etc. Figure 1 shows the monitoring components
at the resource site. The Grid services located/running at the computing resource are
monitored by local monitoring service called sensor. The sensor abstracts the lower
level format of Grid services (e.g. WSRF services, OGSI/OGSA services, etc). When
a Grid service monitoring request comes, the sensor invokes some local monitoring
mechanisms to get the required information of the services. The information is then
feed back to the requiring monitoring component. This is a “pull” mode of information
retrieval. It can also be “push” mode, in which case the local sensor actively gets the
monitoring data of Grid services and feed back to remote monitoring component even if

Performance Monitoring for Distributed Service Oriented Grid Architecture 353

local computing resource

Local Monitoring
Service Provider

Local Services
(Web services,

Grid services, etc)

Local Service
IndexHigher level

Grid service
monitoring
components

To Grid Super Scheduler

Push

Pull

Fig. 1. Service monitoring for Grid computing resources

Fig. 2. The Service Monitor and Grid Super Scheduler

there is no requirements. In practice, the implementation can be based on either mode,
or the combination of both.

Grid service monitoring can be a relatively independent module. It can also a com-
ponent that feeds back information to Grid super scheduler. Figure 2 shows the posi-
tion of service monitor in Grid super scheduler architecture. The Grid user can monitor
the performance of the Grid job, and the data collected by monitor can also be fed to
performance modeling and performance tuning modules, which in turn affect the Grid
performance evaluation. The Grid super scheduler takes the performance evaluation re-
sults into consideration, select the most appropriate resource, and distributes the job to
the local scheduler of the selected resource.

In this scenario, the user submits the job to the computational Grid via his local
agent. The local agent forwards the user’s resource requirements to the super

354 L. Peng et al.

scheduler, which will interact with the virtual resource index to find the most suitable re-
source. Here the virtual resource index may contain the performance model (this can be
achieved by, for example, analyzing historical benchmarking results) and correspond-
ing parameters (e.g. hardware/software configuration) of the computing resources. The
super scheduler may take the performance model into consideration and find the most
appropriate resource for the user’s job. The information of the selected resource will be
sent back to the user’s local agent, so that the local agent can submit the Grid job to the
remote site with the selected resource. When the job is being executed, the job moni-
toring module is activated. The job status and some performance data are collected and
sent back to the agent and the scheduler, so that the user is able to view the performance
and status, while the super scheduler is able to update or adjust the existing performance
model or policy accordingly. If possible, the super schedule might also do performance
tuning and optimization by migrating the job to some other computing resources in case
of the monitored performance is not as good as expected (this can happen especially for
QoS guarantee). In this scenario, the performance issues are considered by the sched-
uler in almost every step of the job submission and execution. This ensures that the job
scheduling policies are performance-aware and the overall Grid performance is optimal.

3 The Implementation and Example

3.1 WBEM and CIM

In implementation of the Grid monitoring service, we utilize the Web-Based Enterprise
Management (WBEM [2]). WBEM is a set of Internet standards which gives the ability
to interconnect between different management standards and environments. WBEM al-
lows to manage both software (OS, applications) and hardware (computers, network de-
vices) by creating a common player which unifies and simplifies management through
WBEM compliant applications. There are a lot of WBEM implementations by different
vendors including WBEMServices (Sun Microsystems), Pegasus (The Open Group),
OpenWBEM (Caldera), SBLIM (IBM), WMI (Microsoft), etc.

The data specification model for WBEM is the Common Information Model [1],
which is an objected oriented description of information. WBEM uses XML/CIM lan-
guage for encoding CIM objects. The communication protocol for WBEM is HTTP.

The sensor we mentioned is a server called CIM Object Manager, which is the
central element of the WBEM environment architecture.

3.2 Service Monitoring Based on WBEM/CIM

We implemented a service provider called “Grid service monitor” and plugged it into
the WBEM/CIM architecture. As for the triggering mechanism, we use WS-Notification
specified by WSRF. Figure 3 illustrates the Grid service monitoring architecture.

3.3 An Example for Performance Monitoring

As a testing example, a MathService is selected from GlobusToolkit4 user manual as
a WSRF-compliant service to provide mathematical computing. Meanwhile, we use

Performance Monitoring for Distributed Service Oriented Grid Architecture 355

Fig. 3. The Grid service monitoring implementation based on WBEM/CIM

our Grid service monitoring provider to monitor the status of the MathService. The
MathService does nothing but some mathematical computations.

Figure 4 shows the monitored service information through CIM workshop service
and

Fig. 4. The service information monitored by CIM workshop service

4 Related Work

Very few work has been done on Grid service performance monitoring. GSMon [5],
developed at Tsinghua university in China, is one of the few systems for monitoring
Grid services. However, GSMon sticks to OGSI/OGSA services and does not provide
an abstract layer for various Grid services.

356 L. Peng et al.

There are some other research work focused on Grid performance monitoring and
evaluation. Few of them are inherently embedded into a Grid super scheduler and most
of them are stand-alone. Many of them are extended from local performance tools.

Netlogger [3] is a distributed application, host, and network logger. It can be used
for performance and bottleneck analysis and correlating application performance with
system information. But it is basically a central collector and does not scale well with
the number of resources.

Network Weather service (NWS) [4] is a distributed system that periodically moni-
tors and dynamically forecasts the performance of various networks. It scales well with
the number of Grid resources, but it does not measure the Grid application performance.

Recently work include Grid job superscheduler architecture and performance in
computational Grid environments by Shan et al. [7]. In their work they propose several
different policies for superschedulers and use both real and synthetic workloads in sim-
ulation to evaluation the performance of the superschedulers. They also present several
Grid performance metrics including response time and Grid efficiency.

5 Conclusion

In this paper present our work on Grid service performance monitoring. We provide
some analysis of the performance of Grid services and then proposed an architecture
design of our service oriented Grid performance monitoring and its prototype imple-
mentation utilizing WBEM/CIM and WS-Notification mechanism. The implementa-
tions of other components of the architecture are still in progress. Our future work may
include how to adjust Grid super scheduling policies based on monitoring information
fed back by Grid service performance monitors; defining the interfaces for interactions
between monitors and schedulers, etc.

References

1. Common Information Model (CIM) Standards, Distributed Management Task Force.
http://www.dmtf.org/standards/cim/.

2. Web Based Enterprise Management (WBEM) Services. http://wbemservices.sourceforge.net/.
3. D. G. et al. NetLogger: A Toolkit for Distributed System Performance Analysis. In the

Proceedings of the IEEE Mascots 2000 Conference, 2000.
4. R. W. et al. The Network Weather Service: A Distributed Resource Performance Forecasting

Service for Metacomputing. Journal of Future Generation Systems, 1998.
5. C. He, L. Gu, B. Du, Z. Huang, and S. Li. A WSLA-based monitoring system for Grid

Service–GSMon. In Proceedings of IEEE International Conference on Services Computing
(SCC’04), pages 596–599, Shanghai, China, Sept. 2004.

6. M. P. Papazoglou and D. Georgakopoulos. Service-Oriented Computing. Communications of
The ACM, 46(10):25–28, Oct. 2003.

7. H. Shan, L. Oliker, and R. Biswas. Job Superscheduler Architecture and Performance in
Computational Grid Environments. In the Proceedings of ACM Super Computing 2003, 2003.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 357 – 362, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Distributed Defense Against Distributed
Denial-of-Service Attacks

Wei Shi, Yang Xiang, and Wanlei Zhou

School of Information Technology, Deakin University,
Melbourne Campus, Burwood 3125, Australia

{shiwei, yxi, wanlei}@deakin.edu.au

Abstract. Distributed defense is a promising way to neutralize the distributed
Denial-of-Service attacks by detecting and responding the attacking sources
widespread around the Internet. Components of the distributed defense system
will cooperate with each other to combat the attacks. Compared with the
centralized defense systems, distributed defense systems can discover the
attacks more timely from both source end and victim end, fight the attacks with
more resources and take advantage of more flexible strategies. This paper
investigates 7 distributed defense systems which make use of various strategies
to mitigate the DDoS attacks. Different architectures are designed in these 7
systems to provide distributed DDoS defense solutions. We evaluate these
systems in terms of deployment, detection, response, security, robustness and
implementation. For each criteria, we give a recommendation on which
technologies are best suitable for a successful distributed defense system based
on the analysis result. Finally we propose our idea on the design of an effective
distributed defense system.

1 Introduction

Distributed denial-of-service attacks (DDoS) bring a tremendous threat to the Internet.
The report form the Computer Emergency Response Team (CERT) says the security
incidents each year have doubled since 1988 [1]. A large number of network servers,
routers and hosts have been pulled down worldwide by the DDoS attack. Effective
approaches to defeat DDoS attack are desperately demanded [2, 3].

Although some current solutions can detect DDoS attacks and drop the attacking
packets in some circumstances, there is still no successful solution to DDoS attacks.
Most of the current DDoS defense systems are centralized and isolated systems
which are used to protect a single network. It is very difficult for the centralized
defense systems to detect the attack before it was launched or at the beginning of the
attacks. When the attacks are full-fledged, it becomes more difficult for defense
systems to resist the flooding. And centralized defense systems themselves are more
vulnerable to be attacked by the hackers. The centralized defense systems are mostly
deployed on the victim network because of the economic reasons. Thus such defense
systems are irresponsible systems which could only respond to the attacks, but not to
stop the attacks.

358 W. Shi, Y. Xiang, and W. Zhou

Distributed defense systems overcome the shortcomings of centralized and isolated
defense systems. Deployed on all around the Internet, distributed defense systems can
detect the attacks before they are launched by inspecting the traffic on many edge
networks in which the computers are compromised by hackers. The most important and
attractive feature of the distributed defense system is that the components in the
distributed defense system can cooperate with each other to fight against DDoS attacks.

This paper focuses on the distributed solutions to the anti-DDoS issue. To obtain
an insight of the current methods used in the current distributed defense system, we
evaluate 7 systems according to some criterion proposed by us. This evaluation is also
beneficial to identify the weakness of the current distributed systems to motivate the
development of better solutions. Based on the evaluation result, we propose a
distributed defense system which will not only adopt the current mature and effective
technologies, but employ some new methods to neutralize DDoS attacks in a more
effective way.

2 Evaluations on the Strategies of Distributed Defense System

We sample 7 distributed defense systems. They are DefCOM (Defensive Cooperative
Overlay Mesh) [4], IDIP (Intrusion Detection and Isolation Protocol) [5], ACC
(Aggregate-based congestion control) [6], ASSYST (Active Security System) [7],
Secure Overlay Services (SOS) [8], MANANET [9], COSSACK [10]. Different
strategies are employed by these systems. We can not say one system is better than
the other because different systems are applied onto different scenarios. However, we
can compare the strategies used by these systems to get the insight of what strategies
are more useful in the campaign with DDoS attacks. This section proposes some
criterion to compare these strategies. Table 1 shows the summary of comparison
among these 7 systems. We hope that the evaluation of these strategies can lead to the
development of better strategies and even distributed defense systems.

Table 1. Comparison of 7 distributed defense system

Criterion SOS DefCOM MANANet COSSACK IDIP ACC ASSYST
Deployment Source

/Victim
Throughout
the network

Victim end
as a group

Source
/Victim

Distribute
d groups

Throughout
the network

Throughout
the network

Security IPSec PKI N/A CA IPSec N/A N/A
Detection Filtering Traffic tree

discovery
PEIP Spectral

Analysis
Intrusion
detection

Congestio
n detection

Intrusion
detection

Response Rate-
limiting

Rate-
limiting

Rate-
limiting

Dropping
all packets

Dropping
all packets

Rate-
limiting

Dropping
all packets

Robustness Strong Weak Weak Weak Weak Weak Weak
Implementation Difficult Difficult Difficult Easy Easy Difficult Difficult

2.1 Deployment

Since a distributed defense system has many nodes that can be homogenous or
heterogeneous nodes, these nodes must be deployed at different locations in the
network. The functionalities of defense nodes include detection of potential attack,

 Distributed Defense Against Distributed Denial-of-Service Attacks 359

alarm generating and multicasting, attack source finding, and attack traffic
controlling. Different nodes can be deployed at the edge networks and core networks.

Some approaches such as DefCOM [4], ACC [6] and ASSYST [7] deploy their
nodes throughout the network. This deployment requires that every participating node
must be able to perform the detection and traffic controlling functions, communicate
and coordinate well with each other. It could raise the unnecessary traffic burden at
the intermediate nodes. Moreover, it could not be the best place to detect the attack at
the intermediate nodes. We envision the best deployment is the mixture deployment at
both source end and victim end. The reason for this deployment is that first, the victim
end aggregates the most information for the detection and can achieve the most
accurate detection true positive rate; second, by detecting preliminary attack
signatures at source end allows the defense system to mitigate a DDoS attack at its
initial phase; third, the source end traffic controlling can protect the network’s
availability to a max degree because not only the victim but also the rest of network
can be free of network congestion.

2.2 Detection

We classify the detection functions into three categories, signature-based detection,
traffic anomaly detection and traceback [11][12]. Signature-based detection is very
accurate because it can find specific characteristics of attacks. It is applied in many
current intrusion detection systems and some of the distributed defense system we
mentioned in the related work [5, 14]. A main drawback of it is that it can only detect
known attacks, but not the unknown/new attacks or some variants of previous attacks.

DDoS attacks bring network anomaly such as the sudden surge of network traffic
volume, increase of the packets with random source IP addresses, and asymmetric
amount of packets associated with some network protocol such as TCP SYN.
Detection and filtering is a straightforward approach to defend such attack. The
objective a successful distributed defense system should be the fast and sensitive
detection by using a fine granularity detection method.

IP traceback is the ability to trace IP packets to their origins [11]. Among the
traceback mechanisms, packet marking schemes are relatively easy to implement, and
require a modest computation load and bandwidth [12]. Actually, packet marking
traceback can be applied in two ways. One is the real-time traceback, which is to find
the attacking sources during the attack and then punish the sources. Another
application is DDoS detection and filtering. If the packets are marked, the information
carried by the packets can be used to detect DDoS attacks [15].

2.3 Response

Rate-limiting is the most popular strategies used in the current distributed defense
systems, such as in DefCOM, SOS, ACC and MANANet. Because no defense
systems can detect the attacking packets with 100 percent accuracy, it is advisable to
limit the rate of high-bandwidth flows rather than to drop all the suspicious packets.
Rate-limiting also gives the defense system flexibility to adjust the limit to which the
suspicious network traffic is suppressed. The disadvantage of the rate-limiting
strategy is that it will allow a certain amount of attacking packets to pass through.
This will bring problems when rate limiting is deployed on the network in which there

360 W. Shi, Y. Xiang, and W. Zhou

are resource-demanding applications (e.g. video stream) and the bandwidth is not big
enough. However, currently there seems to be no better solutions unless the detection
accuracy can be improved to a satisfying extent.

2.4 Security

A distributed defense system must be able to protect the information to be exchanged
from being intercepted by the hackers. Current security mechanisms such as IPSec,
PKI, CA are sufficient to meet the requirement to obtain the above two goals. The
examples of security implement can be found in [5, 8] (IPSec), [4] (PKI), and [10]
(CA). Some research has been done to deal with the denial of service problems in the
security protocols [13, 14]. Here we do not specifically consider how to defend the
security architecture because we assume the motivation of the DDoS attacks is to
prevent the legitimate users from accessing the desired resources, but not to crash the
security architecture, which is more difficult to achieve.

2.5 Robustness

Here robustness means the degree to which the distributed defense system itself can
resist the attacks. When the distributed defense system is deployed and is known to
the hackers, they will launch attacks to the distributed defense system so that they are
further attack the protect networks. Although the distributed defense system is less
vulnerable to such attacks than the centralized defense system, it is still possible that
the distributed defense system fails due to the attacks targeting it. Unfortunately this
issue is less concerned in the design of the current distributed defense system.

2.6 Implementation

If a distributed system is in good design and has good experimental results, such
system still can not be accepted by the security community if they are not easy to be
implemented or even impossible to be implemented under current Internet
infrastructure. Among the 7 distributed defense systems, DefCOM, SOS, ASSYST,
ACC and MANANet need routers to support specific functions. We can see that a
large portion of current distributed defense systems require the Internet infrastructure
to be modified. That is one of the reasons why no successful solutions which can
defeat DDoS attacks are available up to now.

3 Our Proposed Distributed Defense System

We propose a distributed defense system as shown in Figure 1.
Our system has the following characteristics:

(1) Deployed on source end networks and victim end networks. Nothing is required
to be installed on intermediate networks (ISPs). Currently ISPs are not willing to
deploy anti-DDoS systems on their networks because they can not obtain economic
benefits from such systems. Not involving with ISPs, our system is more likely to be
accepted by the security communities. And the components in our system will run on
the servers connected to routers so we do not have the need to modify routers.

 Distributed Defense Against Distributed Denial-of-Service Attacks 361

mirror

IPSec
Marked
packets

Confirmation
of attacks

component

Source
network

Source
network

Detect and
rate-limit

Victim
network

mirror mirror

Fig. 1. Architecture of our distributed defense system

(2) Attack detection is done by analyzing the attack signatures and traffic anomaly.
As for the analysis of the traffic anomaly, we will take advantage of neural network
algorithms so as to potentially identify new attacks which can not be identified by
analyzing the attacking signatures. And also we will use packet marking technology
to improve the detection accuracy. The suspicious packets in the source network will
be marked by the component monitoring that source network. When the marked
packets reach the destination network, the component in the destination network will
take this information from the marked packet into consideration when judging if there
is a DDoS attack occurring and where the attacks originate from. If the marked
packets are confirmed to be the attacking packet, attacking alarm will be sent to the
component in the source network. By the combination of attacking signature
detection, network traffic anomaly detection and packet marking, we anticipate that
our system can achieve a high accuracy of detection of DDoS attacks.

(3) IPSec is used to encrypt the communications among different components in
our distributed defense system

(4) Rate-limiting is taken advantage of to suppress the DDoS traffic
(5) Each component will have a corresponding mirror site to improve system’s

robustness.

4 Conclusions

In this paper, we investigate 7 distributed defense system against DDoS attacks and
compare these systems according to the deployment, detection, response, security,
robustness and implementation. Based on these discussions, we propose our
distributed defense system which encompasses many superior features enabling our
system a potentially better solution to the DDoS attacks. As an example of distributed
defense system, MDAF shows strong capability to identify and filter out attack
traffics and let most of legitimate traffics pass through.

362 W. Shi, Y. Xiang, and W. Zhou

References

[1] CERT/CC, “Security Statistics during 1988-2002”, Computer Emergency Response
Team, Carnegie Mellon University, ttp://www.cert.org/stats/cert_atates.html, Pittsburgh,
PA., Oct. 20, 2002.

[2] Cisco QoS and DDoS Engineering Issues for Adaptive Defense Network, MITRE.
7/25/2001,
http://www.mitre.org/support/papers/tech_papers_01/moore_cisco/index.shtml

[3] S. Gibson, “Distributed Reflection Denial-of-Service Attacks”, Gibson Research
Corporation, http://grc.com/dos/drdos.htm, 2002.

[4] J. Mirkovic, M. Robinson, and P. Reiher, "Alliance Formation for DDoS Defense," New
Security Paradigms Workshop 2003, pp.11-18, 2003.

[5] D. Schnackenberg, K. Djahandari, and D. Sterne, "Infrastructure for Intrusion Detection
and Response," Proc. of the DARPA Information Survivability Conference and
Exposition 2000, 2000.

[6] R. Mahajan, S. M. Bellovin, and S. Floyd, "Controlling High Bandwidth Aggregates in
the Network," Computer Communications Review, Vol.32, No.3, pp.62-73, 2002.

[7] R. Canonico, D. Cotroneo, L. Peluso, S. P. Romano, and G. Ventre, "Programming
Routers to Improve Network Security", Proc. of the OPENSIG 2001 Workshop Next
Generation Network Programming, 2001.

[8] A. D. Keromytis, V. Misra, and D. Rubenstein, "SOS: Secure Overlay Services," Proc. of
Network and Distributed System Security Symposium (NDSS 02), 2002.

[9] Cs3, Inc. MANAnet DDoS White Papers, http://www.cs3-inc.com/mananet.html
[10] C. Papadopoulos, R. Lindell, J. Mehringer, A. Hussain, and R. Govindan, "COSSACK:

Coordinated Suppression of Simultaneous Attacks," DARPA Information Survivability
Conference and Exposition III, pp.2-13, 2003.

[11] H. Aljifri, "IP Traceback: A New Denial-of-Service Deterrent?," IEEE Security &
Privacy, Vol.1, No.3, pp.24-31, 2003.

[12] Y. Xiang, W. Zhou, and J. Rough, "Trace IP Packets by Flexible Deterministic Packet
Marking (FDPM)", IEEE International Workshop on IP Operations & Management,
2004.

[13] P. Eronen, "Denial of Service in Public Key Protocols", Proc. of the Helsinki University
of Technology Seminar on Network Security, 2000.

[14] J. Leiwo, T. Aura, and P. Nikander, "Towards Network Denial Of Service Resistant
Protocols," 8th International Security Protocols Workshop, Cambridge, UK, pp.301-310,
April 3-5, 2000.

[15] Y. Xiang, and W. Zhou, "Mark-aided Distributed Filtering by Using Neural Network for
DDoS Defense", IEEE GLOBECOM 2005.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 363 – 369, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Security and Safety Assurance Architecture:
Model and Implementation (Supporting Multiple

Levels of Criticality)*

Li Zhongwen**

Information Science and Technology College, Xiamen University, Xiamen 361005, China
Zhongshan institute of UESTC, Zhongshan City, GuangDong Province, China

lizw@xmu.edu.cn

Abstract. A combined architecture is described to protect the system against
malicious attacks as well as unplanned system failures. Discussions are laid on
its characteristics, structure, safety assurance technologies. Safety kernel (shell)
and integrity policy for criticality are used to ensure the system safety. Further-
more, to implement rules of integrity policy, the reflective technology based on
metaobject is adopted and how to apply reflective technology to implement
these rules is analyzed in details. Finally, an experiment illuminates the feasibil-
ity of the proposed architecture.

Keywords: Distributed Control System, Safety Kernel, Security and Safety As-
surance Architecture; Integrity Policy for Criticality.

1 Introduction

The safety and security (in brief, we call them s&s in the rest of this paper) of net-
work-based systems is considered as a crucial issue to guarantee the proper behavior
of sophisticated distributed applications [1]. Systems that are now being built are fre-
quently required to satisfy these properties simultaneously [2]. However, due in part to
the evolutionary growth of the approaches to safety and security specification tech-
niques, they have largely been developed in isolation. There are many nodes in dis-
tributed control system, of which the s&s assurance is divided into two parts: one is
within domain[3]; the other is between domains. The safety requirement of these sys-
tems at least includes two aspects. One is to protect critical devices to avoid wrong
damage resulting from software errors. The other is to ensure that a non-critical task
(for example, the passenger information system) not be able to corrupt an extremely
critical task (such as the automatic pilot)[4]. There are many solutions to these new

* This work is supported partly by This work is supported partly by Fujian young science &

technology innovation foundation (2003J020), NCETXMU 2004 program, and Xiamen
University research foundation(0630-E23011).

** Corresponding author.

364 L. Zhongwen

safety problems. A compromise among the high cost solution and the non-
effectiveness solution, is using safety kernel (shell)[5] and integrity policy. They are
not needed to validate all the tasks with the same effort, but only those which accom-
plish critical tasks and those which provide data to critical devices. Integrity policy for
criticality is different from Biba policy, the more critical a component is, the more it
needs to be trusted so the higher must be its level of integrity.

This complexity constitutes the main problem in distributed control systems:
how to deal with safety/security effects in an integrated way, as a basis for developing
homogeneous protection solutions. In this paper, we further focus on the issues of
mediation by enforcing a multilevel integrity policy and safety kernel (shell) technol-
ogy, and base on our previous work [6] to present a assurance architecture PSAD
which combine safety and security effects together.

2 The Structure of PSAD

2.1 The Exterior View of PSAD

PSAD has three levels, see figure 1:

Fig. 1. Exterior view of PSAD

1. The management level: it is made up of modules to complete the installation,
debugging, monitor, maintenance and rebuilding of PSAD.

2. The agent layer of security and safety assurance services: it consists of all the
security and safety agents, and they cooperate with each other to ensure the se-
curity and safety of the system.

3. The realization level of security and safety assurance services.

Integrity policy for criticality defines rules on data flow that ensure that no low
integrity data can corrupt high integrity objects. The s&s management database stores
all related information concerning the security and safety of the system.

2.2 S& S Service

Figure 2 describes s&s service agents and their relationships in PASD.

 Appliance agent: it saves instructions of all types of appliances supported
in domain and standard security and safety information; it also records security
and safety requirements of appliances. In addition, it checks the rationality of

Agent layer of s&s
services

s&
s m

anagem
ent da-

tabase

Realization layer of
s&s services

Management layer
of s&s Integrity policy

 Security and Safety Assurance Architecture: Model and Implementation 365

Fig. 2. Relationships of s&s service agents

security and safety requirements of appliances according to standard security
and safety information and makes proper response.

 Safety kernel agent: It provides safety kernel service for protected devices.
 Monitor agent: it receives data collected by s&s management agent and records

the data in security and safety management database through its agent.
 Environment agent: it carries through initial security check to users, appliance

data and data from other domains.
 Outside domain data agent: it is used to deal with heterogeneous problems.

In PSAD, we quote five kinds of standard communication security service prescribed
by International Organization for Standardization ISO for OSI environment. S&s
safety services within domain:

 Safety kernel service: Safety kernel service is classified into four groups. They
are used respectively in maintaining equipment control policies, policies for the
state of Internet applications, diagnostic policies for equipment’s mistakes and
policies for responding to mistakes.

 Integrity authorization service: it refuses an access that can provoke a contami-
nation of a higher or non-comparable integrity level.

 Database service: It quotes the database security services in open system envi-
ronment. That is, apart from access control of OSI, data secrecy and integrality
service, it also includes two kinds of services: to keep safety consistency of data
stream and to prevent deducing data.

 Security and safety check service: it detects events relating to security and
safety.

2.3 The Realization of Safety Service

Safety policies in safety kernel are described by FSM (finite state machine). As we
analyze CRTOS[8] and RT-Linux, safety kernel mechanism can provide in many
ways[6]. In our design, safety kernel is put in RTOS and the safety kernel mechanism
is still provided by operating system. When no safety service is needed, the system
will not provide such service.

Application Data outside
domain

User

Environment agent

s&s admin. agent App. agent Data agent

Recovery agent

S&s database agent

Safety kernel agent

User agent

Integrity
policy

Domain

Monitor agent

366 L. Zhongwen

We define an object is an entity that provides one or more services that can be
requested by a client. It is composed of both internal data items (known as attributes)
and methods (which provide services). We use three kinds of objects and flow control
policies of these objects in paper [4]: SLOs (single level obejects), MLOs (multi-level
objects) and VOs (validation objects). Here we study how to use metaobjects[7] to re-
alize authorization based on integrity policy for criticality (see figure 3). In figure 3
the flow control policies are in the integrity management aware (IMA) which is in-
serted in operating system kernel. Assume component 1 with criticality level of 1
wants to invoke a read/write method of component 2 with level 3.

Fig. 3. Authorization realization based on integrity policy

MetaObject intercepts information of this call req..
MetaObject asks for IMA to authorized this call req..
IMA returns authorization information to MetaObject.

 Meta_HandleMethod checks the validity of authorization information, and rea-
sonable call request will be supported, namely, transferring this call request to
BaseObject. Unreasonable call request will be refused.
BaseObject returns results to MetaObject.

 and complete the authorization of results. If the results is reasonable,
MetaObject transfers them to component 1 by process , else deals with errors and
informs component 1.

3 Implementation on TCS[6]

Unlike paper [6], here three PCs and DC are used respectively to simulate TCS (see
figure 4). IMA(Integrity management aware) of domain 3 is inserted on PC3 to test
the feasibility of the proposed approach and the performance of separate IMA in the
domain with more than one nodes. Hardware configurations are: PC1: Intel Pen-
tium , PCI bus, 32M RAM; PC2: Intel Pentium , PCI bus, 128M RAM;

Integrity Management Aware
(IMA)

 User level
Kernel level

MOP

Int Base_Method()
{ ……..;
}

OBJECT

BASE-LEVEL

Void Meta_MethodCall ()
{ do general metalevel process;

IntegrityManKernelHandleMethod();
………;
}

META-LEVEL

METAOB-

return

trap

call

 Security and Safety Assurance Architecture: Model and Implementation 367

PC3: Intel Pentium 120, PCI bus, 32M RAM; DC: i386 EX (40 MHz), CRTOS
2.0[8], 3712K. TCS’ security and safety requirements includes: Without receiving
PC1’s instructions, PC2 or DC should make sure that traffic lights in the same cross
don’t be set to green simultaneously. To ensure data integrality in TCS.

Fig. 4. Topology of TCS

Domain 1 is the mother domain of domain 2 and 3. Domain 2 and 3 is equal, their
security & safety system have same structure. The structure of domains’ s&s system
is like that in [6]. Here we introduce the realization of integrity policy of domain 3. In
domain 2 or domain 3, environment agent, safety kernel agent, management database
agent are realized respectively by task SC, SK and Proc. SK provides safety kernel
service. WD imitates SK’s monitor, once it finds that SK behaves abnormally, it will
stop the SK immediately and start another safety kernel SK’, which is a back-up of
SK. The COMM task issues orders to change the color of traffic lights which conflict
with each other in their directions according to the instructions received by SC. Soft-
ware Trafficlight simulates traffic light and changes its color in accordance with the
orders from COMM. If the traffic light does not change the color for 5 times in suc-
cession according to orders from COMM, SC will send information M1, M2 or M3 to
domain 1 and ask for its help. Compared with domain 2, domain 3 has an additional
test, namely integrity policy test. The IMA used of integrity authorization is imple-
mented as a kernel modular of RTLinux on PC3. Every object which appears at run-
time on the host computer (object name, type, level, method types, and accessible ob-
jects for validation objects) is as following:

SLO Trafficlight{Criticality=1; Sensor(r), Executive(w), COMM(w),
SK/SK’(w)};
SLO Proce{Criticality=2; Securitycheck(object), SC(w)};
SLO WD{Criticality=3, SK(r), SK(w), SK’(r), SK’(w)};
MLO IMA{Criticality=3; Authorization (Object)};
MLO SC{Criticality=3; Proce(r), COMM (w), SK(r), dataoutside(r), dataout-
side(w)};
MLO COMM{Criticality=3; SC(r), SK/SK’(w), SK(r), Trafficlight(r)};
MLO SK’{Criticality=2; Safetycheck(Object), Trafficlight(r), Trafficlight(w)};
MLO SK {Criticality=2; Safetycheck(Object), Trafficlight(r), Trafficlight(w)};
VO FT-Sensor{Criticality=2; VSensor(r)};

CROSS1 CROSS2

Instructions

PC1 Traffic command
center

Domain 1

Instructions abnormal
situation

PC2 Domain 2
Domain 3

DC PC3

368 L. Zhongwen

If any non-referenced object appears, it is supposed to be at the lowest integrity
level, with all methods in read-write mode. Sensor data are given a low integrity
level since they are unreliable. It is common to use several redundant sensors to be
able to tolerate the failure of some of them. Of course, a more trustable information
than any single sensor will be produce by this way. So the criticality of VO FT-
Sensor is set to 2.

To prove the validity of the experiment (without IMA), we set three arrays for
COMM: Data1, Data2 and Data3. Data1 consists of correct orders changing traffic
lights’ color. Data2 adds incorrect orders on the basis of Data1 in order to check the
security assurance function of domain 2 if without interference from domain1. Data3
adds more than 5 incorrect orders on the basis of Data2 to check the correctness and
security of function of domain 2 or domain 3 if domain1 has interfered them. Results
of the experiment prove that the security & safety system are valid. The experiment is
repeated 10 times for the same tasks and the results are averaged over these runs. Af-
ter using security and safety system, the efficiency of domain 2 is 98% of the initial
one. We use same data in domain 3 and repeat test for 10 times. The average invoca-
tions with IMA is 632 μs, however the average invocation without IMA is 95 s. The
invocation overheads is consisted of : Communication delay induced by the inter-
cept or trap of reflection technology; Time overhead dues to integrity authorization
in IMA; Transfer overhead between user state and kernel state.

4 Conclusion

In this paper a architecture was described to protect the system against malicious at-
tacks as well as unplanned system failures. In our simulation, the safety kernel and in-
tegrity policy enforcement mechanisms are inserted in a micro-kernel so that they
cannot be bypassed and to minimize time overheads during object invocation. Ac-
cording to test data, the bulk of the integrity authorization overhead is due to the
metaobject trapping mechanisms and the communications times they induce. We need
to improve the performance of refection technology. Now we are working on our
simulation system, there is more and more work left.

References

[1] Grosspietsch K E, Silayeva T A. A combined safety/security approach for co-operative
distributed systems, Proceedings of the 18th international parallel and distributed process-
ing symposium (IPDPS’04), 2004

[2] Eames D P, Moffett J. The integration of safety and security requirements,
SAFECOMP’99, 1999, 468~480

[3] Qin Z G, Lin J D. Design and implementation of global security system in open system
environment, Journal of applied sciences [in chinese], 1999, 17(3):27~32

[4] Totl E, Blanquare J B, Deswarte Y, et al. Supporting multiple levels of criticality, IEEE
Symposium on fault tolerant computing systems, 1998: 70~79

 Security and Safety Assurance Architecture: Model and Implementation 369

[5] Sahraoui A E, Anderson E, Katwijk V, et al. Formal specification of safety shell in real-
time control practice. Proceedings of the WRTP’S 2000, 25th IFAC workshop on real-time
programming. Oxford: Elsevier. 2000: 117~123

[6] Li Z W, Qiu Z P. A new type of security and safety architecture for distributed system:
Models and Implementation, Proceedings of the Third International Conference on Infor-
mation Security (infosecu’04), 2004: 107-114

[7] Fabre J C, Perennou T. A metaobject architecture for fault-tolerant distributed systems: the
FRIENDS approach, IEEE Trans. On Computers, 1998, 47(1):78~95

[8] Li Z W, Xiong G Z. Research and realization of safety kernel mechanism, Computer Sci-
ence [in chinese], 2001, 28(4): 87~90

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 370 – 375, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Modeling and Analysis of Worm and Killer-Worm
Propagation Using the Divide-and-Conquer Strategy

Dan Wu, Dongyang Long, Changji Wang, and Zhanpeng Guan

Department of Computer Science, Zhongshan University,
Guangzhou 510275, Guangdong, PRC

wuliudan@163.com,{issldy, isswchj}@zsu.edu.cn

Abstract. A new approach to fight against Internet worms through the use the
worm-killing worm has been presented. This paper attempts to model the inter-
action between the two worms using the divide-and-conquer strategy. We ex-
tends the idea of the killer-worm and divide it into three basic types. 1) Patching
type: It only installs the patches on the susceptible machines; 2) Predator type:
It only kills the worm (it may also patch the infected machines); 3) Composition
type: It does both the jobs. The state transition diagram of the two worms and a
mathematical model for every type are given. The results by dynamic simula-
tion with the help of MATLAB are obtained.

1 Introduction

Since the Morris [1] worm arose in 1988, active worms have become a persistent
security threat on the Internet. Active worms propagate by infecting computer sys-
tems and by using infected computers to spread the worms in an automated fashion.
In 2001, the Code Red [2] [3] [4] and Nimda [5] [6] worms infected hundreds of thou-
sands of systems, causing millions of dollars loss to our society. The SQL Slammer
[7] [8] appeared on January 25th, 2003, and grew into its full-fledged state in just 10
minutes with its super fast scan rate. Only seven months later, on August 11th, the
famous Blaster worm [9] broke out and spread out quickly on the Internet.
Worm.Netsky, Worm.Lovgate, and Worm.Sasser etc. are all notorious and awesome
worms in 2004 [10] [11].

Malicious mobile codes, known as computer viruses or worms, have become a sig-
nificant social problem recently. To protect against malicious worms, traditional hu-
man-intervened response is no longer adequate to preempt the epidemic. Worm inci-
dents all above have served as existent serious proofs. A new defense mechanism to
counter the attack in time has been proposed for some while [12] [19] [22]. It is
known as the good-will mobile code [12] or anti-worm [19]: worm-killing worm. We
call it killer-worm in this paper. Its main characteristic aspect is that it spawns exactly
as worms do. In fact, it is a worm, except that it is a good-will one that cures the in-
fected and preventively patches vulnerable machines.

The main idea of the killer-worm is that through and only through worm-like
spawning, it can par with fast worms in speed.ïComparing with the commercial anti-
virus applications nowadays, the killer-worm approach has one important advantage:

 Modeling and Analysis of Worm and Killer-Worm Propagation 371

It is not a C/S application model with bottleneck while updating the latest files. How-
ever, there are many controversial aspects too. How does the killer-worm gain entry?
How to set up trust association among normally mutually distrustful administrative
network? What additional security problems will arise? Despite these concerns, there
were several reports [13] [14] [15] saying that some real killer-worm mobile codes,
dubbed Code Green, CRclean, and Nachi, were actually released to the Internet to
fight the Code Red and Blaster. No doubt the new era of killer-worm needs much
more going on study. In this paper we put aside the ethics and other non-technical
ramifications and focus only on the interaction between the worm and killer-worm.
First, we try to recognize the killer-worm by the divide-and-conquer strategy, which
helps us to know the effectiveness and efficiency of the killer-worm technology under
different circumstances. And then we give mathematical models on the worm and
killer-worm accordingly. We believe the result can help to design the killer-worm
more properly.

The rest of this short paper is organized as follows. Session II discusses related
work and the system assumption. Three types of killer-worms are analyzed in Session
III with the divide-and-conquer strategy. Session IV presents and simulates different
models with the help of MATLAB(the details are omitted). Discussion and conclu-
sion will be in Session V and Session VI, respectively.

2 Related Work

The Internet is a huge dynamic system. The easy access and wide usage makes it a
primary target for malicious activities. An Internet worm model provides insight
into worm behavior. It helps to identify the weakness in the worm spreading chain
and provides accurate prediction for the purpose of damage assessment for a new
worm threat. Internet worms are similar to biological viruses in their self-replicating
and propagation behaviors. Thus the mathematical techniques developed for the
study of biological infectious diseases can be adapted to the study of computer
Internet worm propagation. Our work bases on the simple epidemic model (SEM) in
some extent. Zou etc. derive the simple epidemic model by using infinitesimal
analysis in detail [16]. Other work on worm propagation includes the KM model
[17], the two-factor model [18] [19] [22] etc. These all help us to model the two
worms propagation.

The notation of worm-killing worm has been in the folklore for some time. In [12],
the Lotka-volterra equations are employed to model the prey-predator dynamics be-
tween the worm and the killer-worm. The shortcoming of the prey-predator model is
that it didn’t concern the environmental capacity, i.e., the number of susceptible hosts.
Yang [19] proposed a SIAR model on the interaction between the two worms. How-
ever, they didn't distinguish the different behaviors of killer-worm which in reality
could be varied according to given requirements. This paper attempts to model the
interaction between the two worms using the divide-and-conquer strategy, which
means we extend the killer-worm into several types in detail because of actual vari-
able circumstances. We will discuss it later in session III and session IV.

372 D. Wu et al.

3 The Divide-and-Conquer Strategy in Analysis of Killer-Worm

Before modeling on the propagation of the two worms, one important thing should be
clear: what a killer-worm will exactly do. We know its behavior is designed by "good-
will" so that we stop for some while and think about the "good-will" carefully. Here
we use the “Divide-and-conquer” strategy. It means that we study different cases and
try to define different types of killer-worm accordingly. The basic idea is that the
killer-worm can be assigned different jobs. For example, it may immunize the suscep-
tible node or kill the worm or do the both. With such considerations, we extend the
idea of killer-worm and decide to divide it into three basic types:

 Patching type: It only installs the patches on the susceptible machines.
 Predator type: It only kills the worm (it may also patch the infected machines).
 Composition type: It does both the jobs and is the relatively strongest killer-

worm.

We admit that there may be other more complicated types. Our proposal may be
perfected in later work. In Session IV, we will analyze the application timing, present
state transition diagram of the two worms and give a mathematical model for every
type. We also show the results by dynamic simulation with the help of MATLAB. We
shall omit the details of those results because of limitation of the paper length.

4 Modeling on the Two Worms Propagation

4.1 Case 1: Patching Type

Most of Internet worms always exploit the existing vulnerability in order to gain ac-
cess to the system. An initial method to contain the spread of worm is to reduce the
number of the victims as many as possible. And we believe that to be immunized
ahead is much better than to be recovered from infection. A very common way to
protect the susceptible machines is to patch them. In addition, we know that worm can
spread in a very fast way (in tens of seconds!) [20]. As a result, the time taken for
patching is very crucial. Nowadays current approaches to patch distribution are pri-
marily centralized, namely the C/S application model. Hence both the server/push
approach, in which servers broadcast patches to client machines, and the client/pull
approach, in which clients download the patch from a server, suffer from bottlenecks
when updating the latest files due to centralization.

Here we introduce a killer-worm that patches the system to solve the problem. It
acts like a worm infects the system in order to catch up with the worm speed. Fur-
thermore, patching type has the potential of containing the spread of a worm, by con-
tinually patching machines until a stable infection rate is reached. The reason is that
both of the two worms are competing for the same target.

4.2 Case 2: Predator Type

It is natural to consider another type of killer-worm. We also call it predator [12]. Its
job is to find out the worms and then kill them. Comparing with the patching type,

 Modeling and Analysis of Worm and Killer-Worm Propagation 373

this type only pays close attention to the infectious machines. They hunt for different
targets. From mathematical model, we know that the predator is a fast way to clear the
worm. This would also serve as a useful stopgap measure for containment of worms
until a patch becomes available. The patch could then be distributed by traditional
means or by another killer-worm of patching type. In reality, the predator can be ei-
ther passive or active. Passive type waits for the worm locally while active type will
go out and search the worm. And according to different strategy, the predator type
may patch the victims or not. When the predator packaged with a patch, its data will
increase and it costs more time to multiply them. However, in some case people may
not be able to get proper patch in time to immunize the system. Hence we divide the
predator type into two sub-types (a) Sub-type I: state transition diagram and (b) Sub-type I:
two worms’ model.

4.3 Case 3: Composition Type

Based on the patching type and the predator type, it is right time to discuss a more
complicated case. We obtain a relatively stronger killer-worm by a compositive ap-
proach. Exactly the third type composites the former two types’ functionalities. We
call it the composition type. This type seems to be a subclass that inherits from the
former two types as its super classes. Maybe the most perfect method is that we can
control the killer-worm dynamically. This is left for our future work.

5 Discussion and Future Work

The main weakness of the results presented in this paper is that they are all based on
simple system assumption and simulation. Real systems often display behaviors that
are more complex and variable. In reality, all the system parameters, such as infec-
tion rate and death rate, should be evaluated based on detecting and monitoring sys-
tem for more proper input data helps to display more veracious results. In our sys-
tem, we also ignore other defense factors (such as human countermeasures, network
capability etc.). Also, we haven’t mentioned the time delay to release the killer-
worm. It is reasonable and necessary to introduce it for we cannot unleash the killer-
worm the moment the worm epidemic breaks out. Here we take the composition type
(see 4.3) as an example. As killer-worm is introduced some delay time, say T, after
the outbreak.

Other issues confronted by a person wishing to release a killer-worm onto a network
is much more than what we have discussed in this paper. One is how the killer-worm
gains entry into the target system. If the killer-worm exploits the same vulnerability as
the worm, as was originally assumed and not all users on the network have given con-
sent, then the release of the killer-worm is a criminal act. So there may eventually be
some sort of legal authority that authorizes the release of killer-worms. This is very
easy and suitable to Intranet that has centralized administrative power. Furthermore,
we can develop a secure infrastructure that can support the entry of authorized killer-
worm and aid in controlling the propagation of the killer-worm. Such infrastructure
sounds alluring and abstracts us to make follow-up study in later work.

374 D. Wu et al.

6 Conclusion

The results presented in this paper demonstrate that killer-worms have the potential to
quickly clean-up networks infected by self-propagating malicious code and also im-
munize networks from future attacks. Killer-worms have a potential for becoming a
practical emergency patch distribution mechanism, when many machines need to be
quickly patched in the face new a worm. Simulation techniques could be used to tune
the killer-worm's behavior prior to release so that killer-worms are quickly eliminated
while the only minimum amount of necessary bandwidth is consumed. Killer-worms
can potentially provide timely control on the spread of self-propagating worms,
thereby reducing the monetary losses due to their unchecked spread.

Acknowledgments. This work was partially sponsored by the National Natural Sci-
ence Foundation of China (Project No. 60273062) and the Guangdong Provincial
Natural Science Foundation (Project No. 04205407).

References

1. E.H. Spafford, The internet worm incident. In ESEC’89 2nd European Software Engineer-
ing Conference, Coventry, United Kingdom, 1989.

2. eEye Digital Security, ANALYSIS: .ida "Code Red" Worm.
http://www.eeye.com/html/Research/Advisories/AL20010717.html

3. eEye Digital Security, ANALYSIS: CodeRed II Worm.
http://www.eeye.com/html/Research/Advisories/AL20010804.html

4. R. Russell, A. Machie, Code Red II Worm. Tech. Rep, Incident Analysis, Secrity Focus,
Aug. 2001

5. A. Machie, J. Roculan, R. Russell, M. V. Velzen, Nimda Worm Analysis, Tech. Rep, Inci-
dent Analysis, Security Focus, Sept. 2001

6. CERT/CC, CERT® Advisory CA-2001-26, Nimda Worm.
http://www.cert.org/advisories/CA-2001-26.html

7. CERT/CC, CERT® Advisory CA-2003-04 MS-SQL Server Worm,
http://www.cert.org/advisories/CA-2003-04.html

8. D. Moore et al., The spread of the Sapphire/Slammer worm, a NANOG presentation,
http://www.nanog.org/mtg-0302/ppt/worm.pdf.

9. EEye Digital Security. Blaster worm analysis. 2003.
http://www.eeye.com/html/Research/Advisories/AL20030811.html

10. CCERT, CCERT advisory on W32.Sasser,
http://www.ccert.edu.cn/notice/show.php?handle=102 (in Chinese)

11. db.Kingsoft.com., Worms report, 2004.
http://db.kingsoft.com/c/2004/12/29/164830.shtml(in Chinese)

12. H. Toyoizumi, A. Kara, Predators: good will mobile codes combat against computer vi-
ruses, New Security Paradigms Workshop 2002, Sept. 23-26, Virginia Beach, USA

13. Herbert HexXer, Code Green, http://www.securityfocus.com/archive/82/211428
14. CCERT, CCERT advisory on W32, Nachi.Worm,

http://www.ccert.edu.cn/announce/show.php?handle=93 (in Chinese)
15. Douglas Knowles, Frederic Perriot, Peter Szor, Symantec security response:

W32/Nachi.A, http://www.f-prot.com/virusinfo/descriptions/nachi_A.html

 Modeling and Analysis of Worm and Killer-Worm Propagation 375

16. Zou CC, Gong W, Towsley D, On the performance of Internet worm scanning strategies,
Technical Report, TR-03-CSE-07, Electrical and Computer Engineering Department, Uni-
versity of Massachusetts, 2003

17. Frauenthal JC, Mathematical Modeling in Epidemiology, New York: Springer-Verlag,
1980

18. Zou CC, Gong W, Towsley D, Code Red worm propagation modeling and analysis, In:
Proc. of the 9th ACM Symp. on Computer and Communication Security. Washington,
2002, 138~147

19. Yang Feng, Duan Haixin, Li Xing, Modeling and analysis on the interaction between the
Internet worm and anti-worm, SCIENCE IN CHINA Ser. E Information Sciences, 2004,
34(8): 841~856 (in Chinese)

20. S. Staniford, V. Paxson, and N. Weaver, How to Own the Internet in Your Spare Time, In
11th Usenix Security Symposium, San Francisco, August, 2002

21. Zou CC, Gao L, Gong W, Towsley D, Monitoring and early warning for Internet worms,
Technical Report, TR-CSE-03-01, Electrical and Computer Engineering Department, Uni-
versity of Massachusetts, 2003.

22. Wen WP, Qin SH, Jiang JC, Wang YJ, Research and Development of Internet Worms, J.
of Software, V.15(2004)8, 1208-1219. (in Chinese)

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 376 – 385, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Efficient Reliable Architecture for
Application Layer Anycast Service

Shui Yu and Wanlei Zhou

School of Information Techonolgy,
Deakin University, Burwood, Victoria 3125, Australia

{syu, wanlei}@deakin.edu.au

Abstract. Anycast is a new service in IPv6, and there are some open issues
about the anycast service. In this paper, we focus on efficient and reliable as-
pects of application layer anycast. We apply the requirement based probing
routing algorithm to replace the previous period based probing routingalgorithm
for anycast resolvers. We employ the twin server model among the anycast
servers, therefore, try to present a reliable service in the Internet environment.
Our theoretical analysis shows that the proposed architecture works well, and it
offers a more efficient routing performance and fault tolerance capability.

1 Introduction

With the dramatic development of computer network technologies, a lot of new applica-
tion requirements appear, and researchers are trying to develop new protocols, models
to meet the ever increasing and changing requirements. Partridge, Mendez, and Milliken
[9] originally proposed the idea of anycast in the network layer. They defined IP anycast
as a service to deliver an anycast datagram to one of the members of an anycast group.
The idea of anycast met the requirements of mirrored or replicated servers in the Inter-
net, therefore, a number of researches were quickly conducted in the area.

At the middle of 1990s, some researchers found the limitations of network-layer
anycast, for example, inflexibility and limited supported by current routers, hence,
they presented the idea of application-layer anycast [1], [2], [7], focusing the research
on anycast in the application layer. Our previous research [12] proposed a require-
ment based application layer anycast routing algorithm. Compared with the periodical
based anycast routing algorithms [2], [7] the proposed algorithm possesses some
advantages, therefore, we will apply an improved requirement base algorithm in this
paper for the proposed architecture.

Fault-tolerant distributed systems are designed to provide transparent, reliable and
continuous service despite the failure of some of its components. Anycast servers are
mirrored and distributed servers in the Internet environment. As we know, the Internet
is dynamic and unstable with possible server crashes and link failures, therefore, an
anycast service needs reliable and continuous service guarantee for anycast users. In
this paper, we extend the twin server model [14] from the local area network to the
Internet environment for anycast services, and apply the queuing theory to analyze the
changes when an anycast server failure occurs. Paper [13] has explored this issue, and
an enforced version will be deployed in this paper.

 An Efficient Reliable Architecture for Application Layer Anycast Service 377

The remainder of the paper is organized as follows. Section 2 introduces related work
and background. In section 3, we present the efficient and reliable architecture for
anycast service, and related algorithms, the periodical probing routing algorithm and
the twin server model algorithm. We compare the performance and capability of the
proposed algorithms in section 4. Finally, section 5 summaries the paper and dis-
cusses the future work.

2 Related Work and Background

A number of anycast routing algorithms [2],[8],[11],[12] have been proposed. Paper [8]
took use of round trip time on an anycast router for server selection decision for net-
work-layer anycast. Paper [2] proposed a network status and server load mixed applica-
tion-layer anycast algorithm, but the data of anycast resolver is updated periodically
based on periodical probing on network performance and server load. Paper [12] created
a requirement-based probing algorithm for application-layer anycast routing.

The critical problem of application-layer anycast is how to map an anycast query
into one IPv4 address. Paper [2] presented 4 metrics about how anycast performs: 1)
server response time, 2) server-to-user throughput, 3) server load, and 4) processor
load. The paper identified four possible approaches to maintain replicated server per-
formance information in the anycast servers’ database: remote server performance
probing; server pushing; probing for locally-maintained server performance; and
user experience.

The topic of fault tolerance for distributed systems has been explored for many
years. [5] introduced the concept of unreliable failure detectors and studied how they
can be used to solve the consensus problem in asynchronous systems with crash fail-
ures. [6] studied the quality of service (QoS) of failure detectors. The paper focused
on two issues in terms of QoS: a) how fast the failure detector detects actual failures,
and b) how well it avoids false detections. The paper first proposed a set of QoS met-
rics to specify failure detectors for systems with probabilistic behaviours, such as the
detection time for how fast a detector detects crashes, and the query accuracy for how
well a detector avoids mistakes. The paper then presented a new failure detector algo-
rithm and analyzed its QoS in terms of the proposed metrics.

[14] researched the fault-tolerant problem in the scenario of distributed operating
system, and tried to provide continuous services in the case of a server or even a host
failure, without or with little impact on the whole distributed system. For each ser-
vice, two servers (twin servers) are maintained to provide the fault-tolerant service. If
one server dies, its twin will continue its job. The background of the research is that
the servers are located very “near”, such as in a local area network and all the twined
servers are symmetric computers.

Network traffic properties have been intensely studied for a quite long time. Ex-
amples of analysis of typical traffic behaviours can be found in [3],[10]. Traffic vari-
ables on an uncongested Internet wire exhibit a pervasive nonstationarity. As the rate
of new TCP connections increases, arrival processes (packet and connection) tend
locally toward Poisson, and time series variables (packet sizes, transferred file sizes,
and connection round-trip times) tend locally toward independent [4]. Here the Pois-
son arrivals are given by

378 S. Yu and W. Zhou

,...2,1,0,
!

}{ === − ke
k

kXP
k

λλ (1)

The statistical properties of the Internet congestion reveal long-tailed (lognormal)
distribution of latencies [16]. Here the possibility of latency time TL are given by

() ()
−=

2

2

2

ln
exp

2

1

σπσ
L

L

L

T

T
TP

(2)

Where represents the workload of the network. Latencies are measured by per-
forming a series of experiments in which the round-trip times of ping packets are
averaged over many sent messages between two given nodes.

3 The Efficient and Reliable Architecture for Application-Layer
Anycast

In this section, we combine our previous work on anycast routing algorithm [12] and
fault tolerance research [13] to propose an efficient and reliable architecture for appli-
cation layer anycast, shown as Figure 1. In the architecture, there is an application
program, anycast resolver, running all the time for anycast routing services. We sup-
pose that there are N servers in the anycast group, S1, S2, …, Sn, which are distributed
in the Internet, and there is one anycast resolver severing for the anycast group.

As we found in paper [2] that the foundation of anycast resolver algorithms is the
remote server performance probing based on periodical testing, we name it as periodi-
cal probing routing algorithm. Paper [2] mixed the different methods together in prac-
tical applications. There are several disadvantages for the periodical probing algo-
rithm: accuracy problem; networkload problem; completeness problem; and resolver
server load problem. In this paper, we employ an algorithm, requirement based prob-
ing routing algorithm, which can overcome most of the disadvantages of the periodi-
cal probing routing algorithm. The main idea of requirement based probing routing
algorithm is described as below.

• A client submits an anycast request to the anycast resolver for anycast routing
service (step 1 in Fig. 1),

• he resolver will broadcast N probing packets, such as ping, to each member in
the anycast group, respectively (step 2 in Fig. 1). In this case, the probed servers will
respond for the probing requirements, respectively. If a server’s workload is heavy or
performance is bad, then the responding will last longer than a server whose workload
is light or performance is good. Therefore, the probing packets can not only probe the
servers’ performance at that moment, but also the network workload at the same pe-
riod. Based on the analysis, we define that the first responsive server as the “best”
server in the anycast group, because the responsive time represents the network per-
formance and server performance.

• The anycast resolver delivers the IPv4 address of the “best” server to the client
(step 3 in Fig. 1).

• The client then tries to find the server using the traditional IPv4 procedures (step
4 in Fig. 1).

 An Efficient Reliable Architecture for Application Layer Anycast Service 379

The advantages of requirement based probing routing algorithm include higher ac-
curacy, better system performance, and less workload for both network and resolvers
than the periodical probing routing algorithm. It is also practical and easy to imple-
ment. In section 4, we will present the performance comparison of the two categories
of application-layer anycast routing algorithms.

Client

 Anycast
 Resolver

Internet

S1

S2

S3

Sn

Anycast
Request

(1)

Anycast
Response

(3)

Messages
(4)

Broadcast

N/N (2)

1/N

Internet

Fig. 1. An Efficient and Reliable Architecture for Application Layer Anycast

In order to provide transparent, high performance and reliable services, we organise
the distributed mirrored anycast servers in pairs, and the anycast resolver takes the
responsibility of deciding the pairs. For each server in an anycast group, say SP, we
try to find a backup server, ST, from the other anycast servers in the same anycast
group of SP. Once SP fails, then ST will continue the uncompleted services of SP. We
name server SP as primary server, and server ST as twin server. For example, in Figure
1, {S1, S2} is a pair, and S1 it the primary server, and S2 is the twin server. More details
of this fault-tolerance model are shown as Figure 2.

SP

ST

Reserve Queue

Normal Queue
Client

Reserve Queue

Normal Queue

Fig. 2. The Reliable Model for Anycast Servers

380 S. Yu and W. Zhou

The Algorithm at the Primary Server (Sender)

Ts = the mean service time for requests of primary server;
P = the pointer for the normal queue;
 t = 0; // t is the service time for a request
while (True)
 if (t < 2Ts) then
 MessageSend (p)
 t = 0;
 endif
 if (t >= 2Ts) then
 MessageSend (“ I am alive”);
 t = 0;
 endif
end while.

The Algorithm at the Twin Server (Receiver)

Ts = the mean service time for requests of primary server;
P = the pointer for the reserve queue;
Td = the network delay between the two servers;
t = 0; // t is the interval between two coming messages
while (True)
 if (t < 2Ts + Td) and (MessageReceive () <> null) then
 p = MessageReceive (); // update the pointer
 t = 0;
 end if
 if (2Ts + Td <= t < 2*(2Ts + Td) and (MessageReceiver() = “ I am alive”) then
 t = 0;
 endif
 if (t > = 2* (2Ts + Td)) and (MessageReceive() = null) then
 // suspect that the primary server is dead
 QueueAppend (Normal Queue + Reserve Queue)
end while

List 1. The Algorithms for Reliable Anycast Servers

For each server, there are two queues, normal queue and reserve queue, for the in-
coming requests. If there comes an anycast request for server SP, then the request will
be stored in the normal queue of server SP, at the same time, Sp sends a copy of the
request its twin, ST, and the copy will be stored in the reserve queue of SP. each server
takes the requests from its normal queue and executes the requests respectively. There
is a pointer from the normal queue of the primary server to the reserve queue of the
twin server to indicate the progress of the execution of the requests in the primary
server. Once a request is executed successfully by the primary server, the copy of the
request will be deleted from the reserve queue of the twin server by moving the
pointer. Once the twin server finds that the primary server is down, it will push the
request(s) in the reserve queue into its normal queue, therefore, the uncompleted re-
quests of the primary server will be executed by the twin server. The procedure of the
requests transfer is quick and transparent to the users.

 An Efficient Reliable Architecture for Application Layer Anycast Service 381

The key issue in the reliable model is server failure detecting, therefore we propose
a server failure detecting algorithm, shown as List 1. The purposes of the sever failure
detecting algorithm are to synchronize the normal queue of the primary server and its
counterpart reserve queue of the twin server, and to detect the crash failure of the
primary server as well.

The main idea is that the primary server sends messages to the twin server, and
the twin server decides to trust the primary server (the primary server is alive) or
suspect the primary server (the primary server is dead). In order to avoid a request is
executed twice by the primary server and the twin server respectively, once a request
is completed successfully, the primary server will send that information to the twin
server immediately. Therefore, the frequency of that kind of message transmission is
high. If the twin server gets one of the messages, then it is true that the primary server
is alive. It is possible that there is no that kind of message transmission for a long
time. For this reason, we set two timers in the primary server and the twin server
respectively to calculate the time consuming. Once a request is processed in the pri-
mary server, the server will send a message about the pointer to the twin server, and
the later will adjust its pointer of the reserve queue. If a request’s service time is
longer than a given time (2Ts in this paper, Ts is the mean service time of the primary
server), then the primary server will send a message (I am alive) to the twin server to
hint that the primary is alive. On the other hand, if the twin server does not receive a
message from the primary server for a long time (2*(2Ts+Td) in this paper, Td is the
average network delay) then it will suspect the primary server and it will take the
primary server’s uncompleted duties.

4 Performance and Capability Analysis for the Architecture

In this section, we will compare the performance of the requirement based routing
algorithm with the periodical probing routing algorithm based on queuing theory and
the pervious researches. We also analyze the capability of the twin server model in the
Internet environment.

4.1 Performance Comparison for Anycast Routing Algorithms

We compare the two categories of application-layer anycast routing algorithms based
on research of statistics characteristics of the Internet traffic and the queuing theory.
There are some assumptions for the calculations:

1) Customer arrival rate and the service rate are Poisson distributions.
2) The time unit for both algorithms is 1.
3) During the time unit of 1, there are N customers for both algorithms.
4) There is one server in the system acting as the resolver, and the service ve-

locity, μ , can be obtained from formula (2).

2

2

1

)(

1 σ
μ

−
== e

xE
 (3)

382 S. Yu and W. Zhou

There are two important parameters to measure the performance of a system. One
is the average time used in the system for a customer, denoted as Tq. Another one is
the average waiting time for all customers, denoted as Tw. For both algorithms, we
will calculate these two parameters respectively. We use p as the subscript for the
periodical probing algorithm, and r as the subscript for the requirement based probing
algorithm.

We have obtained the result in [12] as follows,

2

2

2

1

2

1

21

1
1

)1(
)1(

σ

σ

e
p

N

ep
TppTT qpqpqp

−
−

−=−+=

(4)

2

2

2

121

1
1

)1(
σ

σ

e
p

N

Ne
TppTT wpwpwp

−
−

=−+=

(5)

2

2

2

1

2

1

1
1

1

σ

σ
μ

Ne

e

e
Tqr

−
=

−
=

(6)

2

2

2

1

1
)1(σ

σ

ρμ
ρρ

Ne

Ne
TT qrwr

−
=

−
==

(7)

Based on this, we can derive the following two conclusions:

Conclusion 1.
qpqr TT < ,),0(ept ∈ , where

2

2

2

1

2

1

1

21
σ

σ

Ne

Ne
Pe

−

−= .

Based on formula (4) and (6), we obtain the curves shown as Figure 3. If P locates in
(0, pe) then

qpqr TT < , and if p locates in (pe, 1] then
qpqr TT > . That means when the net-

workload becomes heavy (↑σ), or there are more customers (↑N), or both of these
events happen, then Pe becomes smaller. That is when the above situation(s) happen,
in a system’s view, Tqp is less than Tqr, but in practice, we hope that Pe is close to time
point 1, that means we hope the resolver’s database update period is only a small part
of the whole time unit, because during [Pe, 1], resolver will focus on database updat-
ing, therefore the performance of the service is poor. Based on the analysis, generally
speaking, in most of the time unit, (0, Pe), the performance of the requirement-based
probing algorithm is better than that of periodical probing algorithm; only in a very
small part of the time unit, (Pe, 1), the former performance will be worse than
the later.

 An Efficient Reliable Architecture for Application Layer Anycast Service 383

0 pe 1
t

Tq Tqp

Tqr

Fig. 3. The compare of Tqp and Tqr

Conclusion 2:
wpwr TT ≤

This shows that Twr is always less than or equal to Twp, namely the average waiting
time of the requirement-based probing algorithm is always less than or equal to that of
the periodical probing algorithm.

From the two conclusions, we can obtain that: in general, the requirement based
probing routing algorithm is better than the periodical probing routing algorithm.

4.2 Performance Analysis for the Twin Server Model

In order to analyse the capability and performance for the twin server model, we
model the system as Figure 4, where S1 is the primary server, and S2 is the twin server.
Q1 and Q2 are the normal queues for S1 and S2 respectively. When S1 crashes, the
uncompleted jobs in Q1 will be pushed into Q2 to be executed. The specifications of
the related parameters are described below.

μ 2

λ1

λ2

Clients

+

μ 1

S1

S2

Q1

Q2

Fig. 4. The Reliable Model for Anycast Service

λi , i = 1, 2. arrival rate of Poisson arrival.
 μi, i = 1, 2. mean service rate for each arrival.
Ti, i = 1, 2. mean service time for each arrival.
Tqi, i = 1,2. mean time a request spends in the system.

Here, 1=⋅ ii Tμ . The service time Ti includes two parts: the average network delay

of traffic and the average computing delay of the server.

384 S. Yu and W. Zhou

Based on the mathematics model and query theory, we have derived the following
assertions in paper [13]

Assertion 1. If the workloads of n computers)2(≥n are balanced, then in a given

period [0, T] (T is sufficiently big), the sums of the related service time Ts of each
computer are equivalent.
Assertion 2. If the workload of n computers)2(≥n are balanced, then in a given pe-

riod [0, T] (T is sufficiently big), the ratios of arrival rate to the service rate for each
computer are the same.
Assertion 3. If the workload of n computers)2(≥n are balanced, then in a given pe-

riod [0, T] (T is sufficiently big), the relationship between Tq, mean time a request
spends in the system, and the arrival rate λ is reciprocal.

Based on the previous assertions, we obtain a very important conclusion:
Assertion 4. In our proposed fault tolerant anycast server model of Figure 4, if
μ2>>μ1, when the primary server crashes, in the following crash processing period,
Tq for the requests of S2 is decreased, but very close to that before the crash; Tq for the
unfinished request(s) of S1 is dramatically increased in the viewpoint of clients.

The conclusion of assertion 4 is applied by the anycast resolver in the proposed ar-
chitecture to choose the server pair. There are more algorithms for the twin server
model, such as, the twin server failure broadcasting algorithm. The interested readers
please refer to paper [13].

5 Remarks and Future Work

In this paper, we proposed an efficient and reliable architecture for application layer
anycast service. We applied the requirement based probing routing algorithm, instead
of the periodical probing routing algorithm, and generally speaking, the employed
algorithm is better in several aspects, such as, accuracy, network workload, and so on.

The anycast servers are distributed and mirrored in the unstable Internet environ-
ment, therefore, a fault-tolerant mechanism is highly expected for the anycast systems.
We extended the twin server model to propose a reliable and efficient anycast service.

We have proved that the proposed architecture works well by modeling and math-
ematic analysis, and further, a prototype and the experiments in the Internet are the
jobs for the future work.

References

1. S. Bhattacharjee, M. H. Ammar, E. W. Zegura, V. Shah, and Z. Fei, “Application-layer
Anycasting,” Technology report, College of Computing, Georgia Institute of Technology,
1996

2. S. Bhattacharjee, M. H. Ammar, E. W. Zegura, V. Shah, and Z. Fei, “Application-layer
Anycasting,” IEEE INFOCOM’97, April, 1997

3. R. Caceres, “Measurements of wide-area Internet Traffic,” Tech. Report. UCB/CSD
89/550, Computer science Department, University of California, Berkeley, 1989.

 An Efficient Reliable Architecture for Application Layer Anycast Service 385

4. Jin Cao,William S.Cleveland, Dong Lin, and Don X. Sun, “On the Nonstationarity of
Internet Traffic,” Proc. ACM Sigmetrics `01, 102-112, 2001.

5. T. D. Chandra and S. Toueg, “Unreliable Failure Detectors for Reliable Distributed Sys-
tems.” Journal of the ACM, 43(2): 225-267, March 1996.

6. Wei Chen, Sam Toueg, and Marcos K. Aguilera, “On the Quality of Service of Failure De-
tectors,” Proceeding of International Conference on Dependable Systems and Network,
New York, USA, June 25-28, 2000.

7. Z. Fei, S. Bhattacharjee, E. W. Zegura, and M. H. Ammar, “A Novel Server Selection
Technique for Improving the Response Time of a Replicated Service,” IEEE
INFOCOM’98.

8. Hirokazu Miura and Miki Yamamoto, “Server Selection Policy in Active Anycast,” IEICE
Trans. Commun., Vol. E84.B, No. 10 October 2001.

9. C. Partridge, T. Mendez, and W. Milliken, “Host Anycast Service,” RFC 1546, Nov. 1993.
10. Vern Paxson, “End-to-End Internet Packet Dynamics,” IEEE/ACM Transactions on Net-

working, Vol.7, No.3, pp. 277-292, June 1999.
11. Dong Xuan, Weijia Jia, Wei Zhao, and Hongwen Zhu, “A Routing Protocol for Anycast-

ing Massages,” IEEE Transactions on Parallel and Distributed Systems, Vol. 11, No. 6,
June 2000.

12. Shui Yu , Wanlei Zhou, Fuchun Huang, and Mingjun Lan , "An Efficient Algorithm for
Application-Layer Anycasting ", The Fourth International Conference on Distributed
Communications on the Web, Sydney, Australia, April 3-5, 2002

13. Shui Yu , Wanlei Zhou, and Weijia Jia , "Fault-Tolerant Servers for Anycast Communica-
tion". PDPTA'03, June 23-26, 2003, Las Vegas, USA

14. Wanlei Zhou, Andrzej Goscinski, “Fault-Tolerant Servers for RHODOS System,” Journal
of Systems and Software, Elsevier Science Publishing Co., Inc., New York, USA, Vol. 37,
No. 3, pp 201-214, June, 1997

A Distributed Approach to Estimate Link-Level
Loss Rates

Weiping Zhu

ADFA, The University of New South Wales, Australia

Abstract. Network tomography aims to obtain link-level characteris-
tics, such as loss rate and average delay of a link, by end-to-end mea-
surement. A number of methods have been proposed to estimate the loss
rate of a link by end-to-end measurement, all of them, in principle, are
based on parametric statistics to identify unknown parameters. In addi-
tion, they all used the traditional centralized data processing techniques
to complete the estimation, which is time-consuming and unscaleable.
In this paper, we put forward a distributed method to tackle the scal-
ability problem. The proposed method, instead of estimating link-level
characteristics directly, estimate path level characteristics first that can
be executed in parallel and can be achieved by a distributed system.
The path level characteristics obtained can be used to identify link-level
ones later. The proposed method has been proved to be an maximum
likelihood estimate.

1 Introduction

Link-level network characteristics, such as packet loss rate and average delay of a
link, are important to network design and performance evaluation. However, due
to technical and commercial reasons, those characteristics cannot be obtained
directly from a network. To answer this challenge, research community starts to
investigate other alternatives to obtain this information [1], [2], [3], [4], [5]. The
most interesting alternative is called network tomography that aims to obtain
network characteristics by sending probing packets from a source or a number of
sources to a number of receivers, via the networks that we are interested in its
characteristics. By observing the arrivals and their correlations at the selected
receivers attached to the networks, it can find some network characteristics.

Since all observations are carried out at the designated receivers attached
to endpoints, we only have an incomplete view of network reactions to the
probes. We then rely on statistical inference, such as maximum likelihood es-
timate (MLE), to find out the characteristics of those links, including those
cannot be directly observed. MINC is the pioneer to use the multicast-based
approach to obtain the loss rates of a tree-like network [5], [6], [7]. It depends on
a set of high-order polynomial that show the correlation of loss rates in a tree
structure. By solving those polynomials with numeric methods, the loss rates of
links can be obtained. Harfoush et al. proposed to use a unicast-based approach
to discover link-level characteristics [8]. Their simulation confirms the usefulness

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 386–395, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Distributed Approach to Estimate Link-Level Loss Rates 387

of their method. Similarly, Coates and Nowak also used the packet-pair tech-
nique to estimate link-level characteristics. They used EM algorithm to estimate
the correlation between packet pairs, and then loss characteristics on links [9].
Zhu proposed to use Bayesian networks to estimate loss rates [10].

After examining probe propagation in a multicast tree, we have a insight
about the loss rates between paths and links. The insight, called hierarchical
dependency, forms the basis of a new inference method that divides the opti-
mization process into a number of independent subtasks. Instead of estimating
link loss rates directly, we can either estimate the loss rate of a path connecting
the source to an internal node or estimate the loss rates of those subtrees that
connect a node to the receivers attached to the subtrees first. It is then based on
the the path loss rates identified to find the link-level loss rates. The insight fur-
ther leads to two theorems that unveil the relationship between the loss rate of a
link and the loss rates of the two paths that connect the source to the two ends
of the link. Applying one of the two theorems on the obtained path loss rates,
we can obtain the link-level loss rates. The proposed method greatly reduces
the time spent on inference and turns the centralized processing model into a
distributed one that not only reduces the time used in inference, but also reduce
the amount of data exchanged between nodes. In fact, the complexity of a sub-
task is independent to the size of a network and equal to the complexity of the
inference of a two-level tree that makes the method scalable. More importantly,
the method is a MLE.

The rest of the paper is organized as follows. In Section 2, we present the
fundamental of statistical inference and apply it to discover loss rates by end-
to-end measurement. In Section 3, we present the hierarchical dependent insight
in details and derive the two theorems. In addition, a distributed scheme used
to identify link-level characteristics is presented. Section 4 covers the details of
traffics used in our simulations and compares the results obtained from observa-
tion with the actual data collected from the simulator. Section 5 is devoted to
concluding remark.

2 Statistical Inference

The multicast tree used to send probes to receivers can be abstracted by a
three-element tuple (V, E, Θ) as shown in Figure 1(a). The first two elements

0

1

2 3

4 5 6 7

1

2 3

4 6
75

θ

θ θ

θ θ θ θ

1

3

4 5 7

2

6

(a) Multicast
Tree.

X

X

X X

l

l l

0

1

1

2 2 3 3

(b) Virtual
Tree.

388 W. Zhu

represent the nodes and links that have the same definitions as that in graph
theory, i.e., V = {v0, v1, ...vn} is a set of nodes, which correspond to routers and
switches in a network, E = {e1, ..., en} is a set of links that connect the elements
of V to form a network. While, Θ = {θ1, ..., θn} is a n-element vector, one for
a link to describe the network characteristics that we are interested in, and in
loss tomography the characteristics is the loss rate of a link. As a regular tree,
we assign a unique number to each link, starting from 1 to n, we also assign a
unique number to each node, starting from 0 to n. The two sets of numbers map
each other as follows: link 1 connects node 1’s parent (node 0) to node 1, link 2
connects node 2’s parent to node 2, and so on.

To find the loss rates of links, in particular for those that cannot be observed,
a loss model should be assumed, which has some unknown parameters. The model
describes the behavior of losses occurred on a link. Network tomography in this cir-
cumstance aims to determine those parameters fromsamples collectedby receivers.
If those parameters are identifiable, when we have enough samples, we should be
able to determine them correctly. A number of methods, e.g. neural net, Monte-
Carlo, Gaussian approximation, EM, etc., have been developed to identify the un-
known parameters, and all of them adopt an iterative approximating approach to
do it. Mathematically, this process can be expressed as:

sup
Θ

L(Θ) = sup
Θ

∑
y∈ΩR

n(y) log Pr(y; Θ) (1)

where R denotes the set of receivers attached to leaf nodes, and ΩR denotes the
possible observations of R. All the methods listed above aim to find a set of
parameters embedded in (1)that can maximize (1). That is equivalent to search
for a point in a n-dimensional space that can maximize (1), which can take
considerable amount of time and take the risk to get a local maximum. Apart
from those, to send all samples from receivers to a centralized server not only
takes time but also needs bandwidth.

3 Decomposition

What we consider here is whether the inference process can be decomposed into a
number of tasks that can be executed independently by different nodes. This at-
tempt depends on whether the parameters embedded in (1) can be merged and
decomposed. A merged parameter here means grouping some related parameters
together, called meta-parameter, that can be identified first; and later the original
parameters can be recovered from meta-parameters. After studying the unique-
ness ofmulticast trees, we discover two key insights fromprobe propagated in a tree
structure, namely sibling independency and hierarchical dependency. They provide
the foundation to merge and decompose the parameter space.

3.1 Virtual Link

For each internal nodes, we can construct a two level tree, which has an input
virtual link connecting the source to the node that carries probes from the source

A Distributed Approach to Estimate Link-Level Loss Rates 389

to the node, and a number of output virtual links, each for a subtree rooted at
the node. Each internal node has a set of receivers connected to it. For instance,
Figure 3.1 shows how the multicast tree shown in Figure 1(a) is decomposed into
three two-level trees, where node 45 (67) represents the combined observation of
node 4 (6) and 5 (7), the link between 0 and 2 (3) is the path between 0 and 2
(3) in Figure 1(a), the link between 1 and 45 (67) is a subtree in Figure 1(a).

0

1

2 3

4 5 6 7

67

1

3

6 7

0

0

2

4 5

0
45

Fig. 1. Decomposed Figure 1

As stated, each link has a unique number, and every subtree can be named
by the number of its root link and denoted by T (i), i ∈ V . Accordingly we use
V (i) to denote the set of nodes in T (i). Let R denote the receivers attached to
the multicast tree, and then R(i) = R ∩ V (i) be the set of receivers attached to
the multicast subtree rooted at node i. In addition, let path(i) denote the links
that connect the source (node 0) to node i.

1

2 3

7

4 5

6 8 9

y y y y6 7 98

Fig. 2. A Multicast Tree and Subtrees

Every node, apart from the source, has a unique path connecting the source
to itself. Apart from leaf nodes and the source, the rest of V that have a parent
and children are grouped into a set called internal set and denoted by Int,
Int = V \ (R ∪ 0). Let |Int| represent the number of internal nodes. Node
i, (i ∈ Int), observes only those probes that are passed by path(i). Therefore,
from the viewpoint of node i, path(i) can be viewed as the single input link
that forwards probes from the source to the node. In addition to the input link,
node i, since it is not a leaf node, has a number of children, denoted by clinki,
where |clinki| denotes the number of children. Each child of node i is a subtree

390 W. Zhu

rooted at node i, and can be viewed as an output link of node i. Let clinki(j)
denote the output link that is rooted at node i, and via link j, i.e. subtree j is
a child of node i. Based on the above views, each internal node can be virtually
abstracted as a two level tree, called node view in the rest of the paper. A node
view consists of only one input link that connects the source to the node, and a
number of output links connecting the node to its receivers.

To estimate the loss rates of the input link and output links of a node, we
need to combine the observations of a subtree that corresponds to an output link
of the node. Let Ψ(k) denote the view of subtree k for a probe, which equals to:

Ψ(k) =
{

1, ∃i, i ∈ R(k), yi = 1
0, ∀i, i ∈ R(k), yi = 0 (2)

where yi corresponds to the observation of receiver i. Based on Ψ(·), we are able
to estimate the loss rates of the virtual links by running EM or other algorithms.
Let cdk represent the effect of a trial on node k. After n trials, R(k), the receivers
attached to node k, provides its observations, CD = {cd1

k, cd2
k, ..., cdn

k}. Based
on the data provided, the loss rates of the input and output links of the node
can be estimated. More importantly, these estimation can be executed in parallel
and in distributed manner.

In a distributed system, each receiver is responsible for an internal node since
|R| > |Int|. The task assigned to a receiver should consider the locality of other
receivers that form a group for an internal node. Due to the recursive nature of
the tree structure, the task can be assigned easily. Then, each receiver according
to the tasks assigned and its groups passes its observations to those nodes that
assigned the tasks. Whenever a node receives all required observations, it can
start its estimation independently.

3.2 Hierarchical Dependency

Applying EM or other methods on a node view, say i, we can obtain the loss
rates for the input link and output links of the node. To obtain the link-level loss
rates that we are interested in, we need to have a method that can compute the
link-level loss rates from the related path loss rates. Two theorems that reveal
the relationship between these two loss rates are discovered; in which let f(i)
denote the parent node of node i, and let pi denote the input loss rate for node
i, and then, pf(i) denotes the input loss rate of node f(i). Further, let li denote
the loss rate of link i that connects node f(i) to node i. li can be obtained by
the following theorem:

Theorem 1. If we have the input loss rates of node i and node f(i), pi and pf(i),
respectively, the loss rate of link i is equal to:

li =
pi − pf(i)

1 − pf(i)
(3)

A Distributed Approach to Estimate Link-Level Loss Rates 391

Proof. Let ei and epi denote loss events occurred on link i and path(i), respec-
tively. Based on probability addition rule, we have

P (epi) = P (ei ∪ ef(i))
= P (ei) + P (ef(i)) − P (ei ∩ ef(i))
= P (ei) + P (ef(i)) − P (ei)P (ef(i)) (4)

since ei is independent to ef(i), P (ei ∩ ef(i)) = P (ei)P (ef(i)). Then, we have

P (ei) =
P (epi) − P (ef(i))

1 − P (ef(i))

Using pi, pf(i), li to substitute P (epi), P (ef(i)), and P (ei), respectively, we
have (3).

Similarly, we have Theorem 2 to obtain the loss rates of a link from its
related output links. Let cpi(k) denote the output loss rate of subtree k which is
an output link of node i. Then, cpf(i)(i) is the loss rate of output link i, where
link i connects node f(i) to node i. Then, we have

Theorem 2. If we have the loss rates for cpi(k) and cpf(i)(i), the loss rate of
link i is equal to:

li =
cpf(i)(i) −

∏
k∈clinki

cpi(k)
1 −

∏
k∈clinki

cpi(k)
(5)

Proof. Since cpf(i)(i) = li + (1 − li)
∏

k∈clinki
cpi(k), we obtain (5) after reorga-

nizing the equation.

In fact, these two theorems are dependent, from one can obtain the other.
Thus, one should be regarded as a corollary of the other.

3.3 Distributed Algorithm

On the basis of the node view, the inference process can be decomposed into
a number of tasks that can be executed in a distributed system, the number is
equal to the number of internal nodes. For instance, Figure 3 a) shows a multicast
tree used to send probes to the receivers attached to the leaf nodes. There are
6 internal nodes, i.e. 1, 2, 3, 6, 7, and 8, each has its own view when probes are
sent from the source to the receivers. The view of node 6 can be represented by
a two level tree a shown in Figure 3 b), where Ψ(8) and Ψ(9) represent the node
based observations by R(8) = {12, 13} and R(9) = {9}, respectively.

Based on the two Theorems, we put forward a distributed algorithm that
adopts a divide-and-conquer approach to find link level loss rates, which has
three phrases as follows:

392 W. Zhu

0

1

2 3

4 5 6 7

8 9 10 11

12 13

0

6

8 9

a) b)

8 9ΨΨ

Fig. 3. A Multicast Tree and An Internal View

Procedure main {
group observation(T, D);
path-rate estimation();
link-rate calculation();

}

1. Procedure group observation(T, D) has two inputs parameters T and D,
the former is the multicast tree used to propagate probes, the latter is the
samples collected by receivers. The procedure groups observations for each
internal node according to the tree structure and determine a receiver to do
the estimation.
This procedure can be carried out in a distributed manner from bottom up.
For a group of receivers that share the same parent, they selects a receiver to
do the estimation of the 2 level virtual tree created for the parent node. Those
unselected receivers move one level up to join other receivers to compete the
duty to estimate the path loss rates for their grand-parent. This process is
continued until it reaches the source.

2. Procedure path-rate estimation() assigns each node with its observations to
a processor to infer path loss rates. The iterative approximating procedure
used in [9] can be used here to estimate the loss rates of various pathes in
the tree.

3. Except for node 1, the results obtained by other internal nodes are the loss
rates of the corresponding paths. Therefore, after completing step 3, we can
either use Theorem 1 or Theorem 2 to derive the loss rates for all internal
links. The procedure called link-rate calculation() is used to carry out this
operation.

4 Simulation Result

To demonstrate the correctness of the formulas derived in the last section, we
conducted a series of tests on a simulation environment built on ns2 [11] that

A Distributed Approach to Estimate Link-Level Loss Rates 393

0

1

2 3

4 5 6 7

1

2 3

4 6
75

θ

θ θ

θ θ θ θ

1

3

4 5 7

2

6

8 9 10 11 12 13 14 15

θ θ θ
8 9 15θ10

Fig. 4. Simulation Structure

has 16 nodes connected by 15 links as shown in Figure 4. Link 1, 2 and 3 have
3Mbps of bandwidth, while the others have 1.5Mbps. Apart from link 1 that has
2ms as its propagation delay, all others have 10ms of propagation delay. Each
node has a FIFO queue attached to temporarily store packets. The queue length
of a leaf node is 10, while a non-leaf node has a queue with a limit of 20 packets.
The droptail policy is employed by all nodes to handle congestion, i.e. when a
queue is full, newly arrived packets were dropped. A combined TCP and UDP
traffics are added at different nodes as background traffic, where the left hand
subtree is heavily loaded, but the right one is lightly loaded. Probe packets were
periodically multicasted from node 0, the source, to the receivers attached to
the leaf nodes.

Two sets of experiments were carried out on the simulation environment,
apart from the frequency used to send probes, one has its interval as 0.01s, the
other has its interval as 0.02s. Apart from the intervals, these two set experiments
are identical. This arrangement aims to study the impact of sampling frequency
on inference accuracy. In addition, we divide time into slots, each has 5 seconds.
Based on the observations obtained in a slot, we use the formulas previously
derived to calculate the loss rate for each link. The inferred loss rate is compared
against the actual loss rate obtained from the simulator to evaluate the accuracy
of the proposed method.

Since the right subtree is lightly loaded, no loss has been observed in all time
slots. Then, zero loss rates have been assigned to all links of the right subtree.
While, the situation in the left tree is very different. Figures 5(a), 5(b) and 5(c)
shows the inferred loss rates against the actual loss rates at link 2, link 4 and
link 8, respectively, when the probing interval is set to 0.02 second. These three
figures clearly show the inferred results correctly reflect the actual loss trend of
the background traffic.

On the same traffic setting, we carried out the second round simulation by dou-
bling the number of probes sent to the receivers. The inference results against ac-
tual losses are plotted in Figures 5(d), 5(e) and 5(f). Each of these figures is a bit
different from its counterpart in the previous round, including the actual curves.
The difference is created by more probes sent into the network. Although those
extra probes only slightly increase the traffic on those links, the increase of traffic
triggers protocol actions at different points and leads to the change of loss rates
and phases. For instance, such an increase may cause TCP streams to reduce their

394 W. Zhu

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

lo
ss

 r
a
te

 (
%

)

time

actual
inference

(a) Link 2 loss rate (0.02s).

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

lo
ss

 r
a
te

 (
%

)

time

actual
inference

(b) Link 4 loss rate (0.02s).

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

lo
ss

 r
a
te

 (
%

)

time

actual
inference

(c) Link 8 loss rate (0.02s).

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

lo
ss

 r
a
te

 (
%

)

time

actual
inference

(d) Link 2 loss rate (0.01s).

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

lo
ss

 r
a
te

 (
%

)

time

actual
inference

(e) Link 4 loss rate (0.01s).

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 100

lo
ss

 r
a
te

 (
%

)

time

actual
inference

(f) Link 8 loss rate (0.01s).

window sizes earlier, and due to the synchronization effect for all TCP streams be-
cause the droptail policy was used for buffer management, the estimated loss on
link 4 in the second is marginally higher than the actual one. Despite of this, the
curves plotted in the two set of figures have very strong similarity.

5 Conclusion

In this paper, we present a scheme that allow us to divide the inference task of
network tomography into a number independent subtasks that can be executed
in parallel. The advantage of this scheme relies on decomposition to achieve
its scalability, in which receivers that are geographically closely located work
together to find out the characteristics within the network connecting them.

In this paper, we present a distributed algorithm to speed up the inference
of the link-level loss rate by end-to-end measurement. The algorithm is built
on a divide-and-conquer approach with the excellent parallel nature that makes
it scalable. Our simulations show this approach is workable and accurate. Cur-
rently, we are investing methods to control the number of probes used to create
informative observations.

References

1. Felix: Independent monitoring for network survivality.
Technical report, ftp://ftp.bellcore.com/pub/mwg/felix/index.html.

2. Ipma: Internet performance measurement and analysis.
Technical report, http://www.merit.edu/ipma.

A Distributed Approach to Estimate Link-Level Loss Rates 395

3. J. Mahdavi, V. Paxson, A. Adams, and M. Mathis. Creating a scalable architecture
for internet measurement. In INET’98.

4. Surveyor. Technical report, http://io.advanced.org/surveyor.
5. R. Cáceres, N.G. Duffield, J. Horowitz, and D. Towsley. Multicast-based inference

of network-internal loss characteristics. IEEE Trans. on Information Theory, 45,
1999.

6. R. Cáceres, N.G. Duffield, S.B. Moon, and D. Towsley. Inference of Internal Loss
Rates in the MBone . In IEEE/ISOC Global Internet’99, 1999.

7. R. Cáceres, N.G. Duffield, S.B. Moon, and D. Towsley. Inferring link-level perfor-
mance from end-to-end multicast measurements. Technical report, University of
Massachusetts, 1999.

8. K. Harfoush, A. Bestavros, and J. Byers. Robust identification of shared losses
using end-to-end unicast probes. In Technical Report BUCS-2000-013, Boston
University, 2000.

9. M. Coates and R. Nowak. Unicast network tomography using EM algorthms.
Technical Report TR-0004, Rice University, September 2000.

10. W. Zhu. Using Bayesian Networks on Network Tomography. Computer Commu-
nications, Elsevier Science, B.V., 26(2), 2003.

11. The network simulator 2. Technical report, www.isi.edu/nsnam/ns2.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 396 – 405, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Evaluation of Interconnection Network Performance
Under Heavy Non-uniform Loads*

C. Izu1, J. Miguel-Alonso2, and J.A. Gregorio3

1 Department of Computer Science, The University of Adelaide, SA 5005 Australia
cruz@cs.adelaide.edu.au

2 Dep. of Computer Architecture and Technology,
The University of the Basque Country, 20080 San Sebastian, Spain

miguel@si.ehu.es
3 Computer Architecture Research Group,

Universidad de Cantabria, 39005 Santander, Spain
monaster@unican.es

Abstract. Many simulation-based performance studies of interconnection net-
works are carried out using synthetic workloads under the assumption of inde-
pendent traffic sources. We show that this assumption, although useful for some
traffic patterns, can lead to deceptive performance results for loads beyond satu-
ration. Network throughput varies so much amongst the network nodes that av-
erage throughput does not reflect anymore network performance as a whole.
We propose the utilization of burst synchronized traffic sources that better re-
flect the coupled behavior of parallel applications at high loads. A performance
study of a restrictive injection mechanism is used to illustrate the different re-
sults obtained using independent and non-independent traffic sources.

1 Introduction

Methods to evaluate the performance of an interconnection network range from the
construction and measurement of its hardware prototype, to the utilization of overly
simplified simulations. During the first stages of a new interconnection project, a fast
simulation environment is critical, because it allows researchers to test and tune their
design. Once a good tradeoff between expected performance and cost has been at-
tained, the design can be rounded off using more detailed simulators. The evaluation
of expensive prototypes goes just before the manufacture (and, again, evaluation) of
the final product. In all these stages, evaluation has to be done using some kind of
workload that resembles, with the higher possible fidelity, the actual workload that
will be processed by the final network.

For practical reasons, most studies are carried out using synthetic workloads, run-
ning a simulator for a large number of cycles (simulated time) to get performance re-

* This work has been done with the support of the Ministerio de Educación y Ciencia, Spain,

under grants TIN2004-07440-C02-01 and TIN2004-07440-C02-02, and also by the Dipu-
tación Foral de Gipuzkoa under grant OF-846/2004.

Evaluation of Interconnection Network Performance Under Heavy Non-uniform Loads 397

sults with the network in steady state. Although this may not be realistic, we consider
the obtained results as indicators of the level of performance the network could pro-
vide under real conditions. For some SPLASH applications such as Radix or LU, it
has been shown to be a reasonable approach [11].

A synthetic workload is defined by three parameters: the injection process, the spa-
tial traffic pattern and the message size [4]. This can be done in a per-node basis, al-
though very often all nodes share the same behavior. The spatial pattern determines
the distribution of destinations for each source node. The injection process determines
the temporal distribution (in other words, when a packet is generated). The size distri-
bution determines the message length.

Traffic patterns include permutations such as bit-reversal or matrix transpose, uni-
form (also called random) and hot-spot. Each of them represents a worst-case sce-
nario: uniform has no locality, permutations make an uneven use of resources, and
hot-spot models nodes that receive a higher proportion of the traffic.

In general, we cannot assume that applications running on a parallel computer use
fixed-size messages. However, networks often impose a maximum packet size and
messages have to be segmented to fit in several of those packets. For this reason, most
studies are done with fixed-size messages of 8-32 phits [2, 4, 11]. In some cases, mes-
sage length follows a bimodal distribution which reflects network workload for a cc-
NUMA system [10]. In this study, we will limit our discussion and experiments to
fixed-size packets, although conclusions are valid for other length distributions.

Regarding the injection process, nodes are “programmed” to inject packets using
some probability distribution (independently of the others). Injection times usually
follow a Poisson or Bernoulli distribution, which are smooth over large time intervals.
These widely used workloads treat each node as an independent traffic source (ITS).

The purpose of this paper is to show that performance results obtained with ITS for
non-uniform traffic patterns under heavy loads process can be misleading because
they do not reflect the way actual parallel applications make use of the communica-
tion subsystem: their processing nodes may advance tightly or loosely coupled, with
all the possibilities in between but they are never totally uncoupled. To better illus-
trate this issue, we describe an experimental setup designed to evaluate the impact on
network performance of a restrictive injection mechanism, and we compare the results
obtained using ITS with those obtained using burst-synchronized traffic (BTS).

The rest of the paper is organized as follows. Section 2 defines all the relevant pa-
rameters of our experimental setup. Section 3 presents, discuss and compare the dis-
parate results obtained using independent and non-independent traffic sources. Sec-
tion 4 summarizes the findings of this work.

2 Evaluation Environment

In this section we define the experimental setup used to illustrate the impact of the
choice of synthetic workload (focusing on the injection process) on the simulation re-
sults. First, we present the interconnection network as modeled for this study. Then
we describe the context in which the injection process is analyzed, and the rest of
simulation parameters.

398 C. Izu, J. Miguel-Alonso, and J.A. Gregorio

2.1 The Simulated Network

For this work we use FSIN (Functional Simulator for Interconnection Networks), an
in-house simulator, developed to simulate k-ary n-cube networks based on virtual cut-
through (VCT) router architectures.

Cross-
bar

X-

Y+

Y-

X-

Y+

Y-

X+0

X+1

X+2

X+0

X+1

X+2

Injection
queue

Reception

Fig. 1. Architecture of the adaptive VCT router used in the experiments

Fig. 1 shows the architecture of an adaptive virtual cut-through (VCT) router. It
uses three VCs per physical channel, to map a deadlock-free oblivious (dimension-
order routing) sub-network and a minimal adaptive sub-network. Each VC has a
buffer with capacity for 8 packets (128 phits). One of the VCs is used for the escape
sub-network, relying on Bubble Flow Control (BFC) [11] to avoid deadlock in each
dimension. The adaptive sub-network uses the other two virtual channels. Any
blocked packet in the adaptive sub-network can resort to an escape path to break a po-
tential deadlock cycle [6]. Such combination provides low-cost, deadlock-free adap-
tive routing.

In order to reduce the number of figures and better focus our discussions, in this
paper we show results for a 32x32 tori. However, conclusions are valid for other net-
work configurations.

2.2 The Evaluation Context

The choice of synthetic workload has a definite influence on any kind of performance
experiment we may carry out. In order to be more specific, and to show this influence
in a particular (but relevant) context, we describe an experimental setup that was used
to study the advantages of implementing restrictive injection techniques to prevent
network congestion

Congestion control mechanisms limit injection when the network reaches a given
level of congestion, which can be estimated locally or globally. In this paper, we ap-

Evaluation of Interconnection Network Performance Under Heavy Non-uniform Loads 399

ply a local method called in-transit-priority restriction (IPR): for a given fraction P of
cycles, priority is given to in-transit traffic; in those cycles, injection of a new packet
is only allowed if it does not compete with packets already in the network. P may vary
from 0 (no restriction) to 1 (absolute priority to in-transit traffic), although in this pa-
per we will consider only the two extreme cases. This method is used in IBM’s BG/L
[1] and in the Alpha 21364 network [8]. A more detailed discussion of congestion
control mechanisms can be found in [7].

When studying congestion, which appears at high loads, the main figure of merit is
the maximum sustained throughput for loads beyond saturation. However, unexpected
results lead us to examine throughput figures in more detail and identify a significant
level of throughput unfairness, which rends average values to be meaningless. That
finding lead us to redefine the temporal distribution of packets for the synthetic work-
loads used in the experiments, as reported in the next section.

2.3 Network Workload

We have considered fixed-size packets of 16 phits. The traffic patterns used in the ex-
periments are:

− UN: uniform traffic. Each node selects destinations randomly in a packet-by-
packet basis.

− TR: transpose permutation. In a 2-D network, the node with coordinates (x, y)
communicates with node (y, x).

− SH: perfect-shuffle permutation. The node with binary coordinates (ak-1, ak-2, ..., a1,
a0) communicates with node (ak-2, ak-3, ..., a0, ak-1)—i.e., rotate left 1 bit.

We use two types of injection processes:

− Normal: independent traffic sources, each one following a Bernoulli distribution
with a parameter that depends on the applied load. This load is varied from 0 to 1
phit/cycle/node. The simulator runs for a warm-up period of 100,000 cycles, plus a
measurement period of 100,000 cycles.

− Burst-synchronized: non-independent sources, to reflect the synchronized nature
of parallel applications. The injection method is similar to that described in [2].
The same workload (b packets) is assigned to each source of traffic. A burst starts
with an empty network. Nodes inject their b packets as fast as the network accepts
them. The burst ends when all packets of all the traffic-generating nodes have been
consumed. In the experiments, the simulator runs for 5 bursts of 1K packets.

3 Performance for Independent and Burst-Synchronized Traffic
Sources

Most interconnection network simulators model the processing nodes as ITS which are
continuously generating packets. Network performance is reported using two figures: la-
tency (time from packet generation until its delivery) and throughput, which is measured
as the number of packets delivered in a given time interval divided by the interval length
and the network size. In other words, this is the average load accepted by the network
(i.e., the network throughput), which is expected to be even amongst the network nodes.

400 C. Izu, J. Miguel-Alonso, and J.A. Gregorio

In this section we will show such expectation is incorrect for non-uniform loads
once the network has reached saturation, and we will question the validness of aver-
age throughput as the figure of merit under heavy loads. The evaluation of the impact
that a restrictive injection mechanism (IPR) has on the performance of an adaptive
VCT torus network is provided only to illustrate this issue. We could have selected
different router architecture, topology or congestion-control mechanism. It would not
matter because conclusions would be the same: throughput under non-uniform pat-
terns for loads beyond saturation varies widely amongst the network nodes.

3.1 Network Performance Under Independent Traffic Sources

Fig. 2 represents network performance under three different traffic patterns (UN, TR
and SH), with and without IPR, using a typical plot of average throughput versus ap-
plied load.

For the UN pattern, results show that utilization of a restrictive injection mecha-
nism eliminates the throughput loss for loads beyond congestion. However, we cannot
extend this conclusion to the permutations. In fact, results indicate that restrictive in-
jection is counterproductive for TR and SH traffic under heavy load. This result was
unexpected as non-uniform loads suffer more from congestion than UN, so we expect
restrictive injection should be more effective, not less.

Another indicator of network performance is channel utilization: the higher the
channel utilization, the better, because more resources are being productive. Let us
focus on TR traffic without/with IPR. Fig. 2 indicates that, in saturation, throughput is
higher without IPR. However, simulation results also indicate that channel utilization
is higher with IPR. Which figure of merit is correct? How can channel utilization in-
crease while delivering fewer packets? Does IPR increase performance, or not?

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1

Applied Load

A
cc

ep
te

d
 L

o
ad

UN
UN-IPR
TR
TR-IPR
SH
SH-IPR

Fig. 2. Applied load vs. throughput (phits/cycle/node) for UN, TR and SH patterns, with-
out/with IPR

3.2 Discussion of Performance Figures Under Independent Traffic Sources

In [4], Dally & Towles suggested that performance of a network for a given traffic
pattern in which the node injection rate is not the same for all nodes should be re-
ported as the lowest injection rate that matches the desired workload.

Evaluation of Interconnection Network Performance Under Heavy Non-uniform Loads 401

Following this approach, in Table 1 we report maximum, minimum and average in-
jection rates for the six configurations under study. Notice the vast differences be-
tween these values for the TR and SH permutations.

Table 1. Maximum, minimum and average network throughput (phits/cycle/node), for applied
loads beyond saturation, for UN, TR and SH patterns, without/with IPR

IPR off IPR on IPR off IPR on IPR off IPR on
Max. 0,219 0,267 0,559 0,716 0,973 0,974
Min. 0,194 0,217 0,013 0,000 0,002 0,000
Avg. 0,205 0,243 0,132 0,098 0,125 0,119

UN TR SH

Such large variations of throughput under TR and SH permutation patterns were
also observed in other popular IN simulators such as Flexsim [12] and the Chaos
simulator [3] for a range of network designs. Dally & Towles [4] state that average
and minimum rate differ in some routers due to their unfair design, citing the chaos
router with prioritizes traffic in its internal queue over incoming or new packets as an
example of that unfairness.

We should note that the time a packet awaits in an injection buffer before entering
the network depends not only on the arbitration method, but also on the local router
state. Under UN traffic, the network load is evenly distributed, so that all nodes have
a similar view of network status and are able to inject packets at a similar rate. How-
ever, under non-uniform loads the degree of utilization of resources (buffers, output
channels) may vary widely from one router to another. Therefore, at high loads, nodes
connected to busy routers1 have lower chances to inject their load than nodes in less
used areas—a difference that causes wide variations in the number of packets injected
by each node. In other words, the differences shown in Table 1 are not caused by an
unfair routing or arbitration method, but by the fact that network resources are used
unevenly by the applied workload, which is the case for all non-uniform loads.

Let us focus again on the TR permutation. In a 32x32 network, and assuming that
all nodes inject at the same rate, the average distance packets traverse is 16.516. In
fact, this is what the simulator reported when network load was below its saturation
point. For those loads the map of packets injected per node is flat (except the nodes in
the diagonal, which do not generate traffic for themselves), as shown in Fig. 3a.

The scenario changes drastically when saturation is reached. The simulator reflects
this in a change in average distance (17.12) and in a very different map of injected
packets (Fig. 3c). Note we have change nothing but the applied load. The problem is
that some nodes can inject packets in their routers at very high rates, while others can
hardly access the network because their routers devote most resources to passing-by
packets. Fig. 3c shows that “lucky” nodes (those that have more opportunities to in-
ject packets) are located close to the diagonal and in a pair of bands parallel to it. It
gives the impression that the network is unfair for TR traffic.

We are interested to know why adding the IPR congestion control mechanism
appears not to be beneficial in this scenario. Network response does not change below

1 “Busy” routers are those that are traversed by numerous in-transit packets.

402 C. Izu, J. Miguel-Alonso, and J.A. Gregorio

1 5 9

13

17 21

25

29

S1

S6

S11

S16

S21

S26

S31

0

500

1000

1500

2000 1500-2000
1000-1500
500-1000
0-500

(a)

1 5 9

13

17 21

25

29

S1

S6

S11

S16

S21

S26

S31

0

500

1000

1500

2000 1500-2000
1000-1500
500-1000
0-500

(b)

1 5 9

13

17 21

25

29

S1

S6

S11

S16

S21

S26

S31

0
1000
2000

3000

4000

5000

6000

5000-6000
4000-5000
3000-4000
2000-3000
1000-2000
0-1000

(c)

1 5 9

13

17 21

25

29

S1

S6

S11

S16

S21

S26

S31

0
1000
2000

3000

4000

5000

6000

5000-6000
4000-5000
3000-4000
2000-3000
1000-2000
0-1000

(d)

Fig. 3. Maps of injected packets for TR traffic. Each surface point (x, y) represents the number
of packets a node with coordinates (x, y) injected in 100.000 cycles. (a) Below saturation, no
IPR. (b) below saturation, IPR. (c) beyond saturation, no IPR. (d) beyond saturation, IPR.

saturation (Fig. 3b) but for loads beyond saturation network unfairness is worst as
shown in Fig. 3d: the “lucky” area close to the diagonal shrinks, and the two parallel
bands are narrower and taller than without IPR2. As nodes in these bands are injecting
packets addressed to distant destinations, the average distance rises up to 23.47. In
other words, IPR magnifies the fairness problem.

For other non-uniform workloads results are similar. As an example, Fig. 4 shows
the maps of injected packets for the SH pattern for loads beyond saturation, without
and with IPR.

In conclusion, simulations report again that the implementation of a congestion-
control mechanism is counterproductive for all traffic patterns under study—except
for UN. Although IPR increases channel utilization, the number of packets delivered
per cycle diminishes. This unexpected result is explained by the fact that network un-
fairness favours packets that travel longer paths.

2 A digression of interest: we have a collection of nodes capable of injecting more than 4000

packets in 100.000 cycles, while some others are unable to inject a single one (they suffer
starvation).. Any router that imposes restrictions to the injection of new packets may suffer
from starvation. Although the adaptive router (without IPR) is starvation-free, it exhibits a
high degree of unfairness under non-uniform traffic.

Evaluation of Interconnection Network Performance Under Heavy Non-uniform Loads 403

1 5 9

13

17 21

25

29

S1

S6

S11

S16

S21

S26

S31

0
1000
2000
3000

4000

5000

6000

5000-6000
4000-5000
3000-4000
2000-3000
1000-2000
0-1000

(a)

1 5 9

13

17 21

25

29

S1

S6

S11

S16

S21

S26

S31

0
1000
2000

3000

4000

5000

6000

5000-6000
4000-5000
3000-4000
2000-3000
1000-2000
0-1000

(b)

Fig. 4. Maps of injected packets for SH traffic beyond saturation. (a) IPR off. (b) IPR on.

3.3 Performance of the Network Under Burst-Synchronized Traffic

The above conclusion could be considered correct as numerous previous works using
this simulation methodology and workload. But luckily in this case we have several
indicators (channel utilization, average distance and unfairness) that something is
wrong. And what we think is wrong is the synthetic workload used.

Application processes are somehow coupled, because they work to perform a given
task in a cooperative way. Most (if not all) applications use synchronization barriers,
perform collective operations or use other mechanisms as described in [5] that make
all the processes advance at a similar rate. It is true that worst-case performance for
data exchanges is important (as shown in [9]) because it may halt progress of compu-
tation nodes, which are not able to perform additional operations, or communicate any
further, until the data exchange has been completed. However, we cannot conceive a
realistic scenario in which, in the same parallel application, a process is sending
packets to its selected destination ad infinitum while other nodes do the same at a
much smaller rate.

We consider burst-synchronized injection as described in section 2.3 to be a better
alternative to model the communication structure of a parallel application at heavy
loads. We have made a complete performance analysis similar to that reflected in Fig.
2, but using burst-synchronized traffic (BTS). Fig. 5 shows the time to complete 5
bursts of 1K packets for the six scenarios under consideration. For comparison pur-
poses, Table 2 shows their throughput computed as the total workload delivered di-
vided by the completion time. For this workload, maps of injected packets are mean-
ingless (all nodes inject exactly the same number of packets), and the reported
average distance traversed by packets is always the expected one3. Under burst-
synchronized workload, the use of restricting injection policies is positive for the
three traffic patterns: the time to deliver the 5 bursts of packets is lower with IPR than
without it. As we expected, IPR is more effective for TR, a pattern that suffers badly
from network congestion.

3 In this context starvation is not an issue: if the network somehow favors some nodes, they

will send their workload faster than others, but will eventually stop, allowing the rest of the
nodes to progress faster, until all of them have sent their packets.

404 C. Izu, J. Miguel-Alonso, and J.A. Gregorio

0

200

400

600

800

1000

1200

1400

1600

UN TR SH

Traffic pattern

K
cy

cl
es

 to
 c

om
pl

et
e

5
bu

rs
ts

IPR_off
IPR_on

Fig. 5. Time to deliver 5 bursts of 1K packets for UN, TR and SH patterns, without/with IPR

Table 2. Network throughput (phits/cycle/node) averaged for 5 bursts under UN, TR and SH
patterns, without/with IPR

IPR off IPR on IPR off IPR on IPR off IPR on
0,192 0,220 0,087 0,123 0,055 0,060

UN TR SH

The performance reported under BTS contradicts the results obtained under ITS.
Which one is correct? As both are based on synthetic workloads, both are just ap-
proximations to the reality. But the behavior of real parallel applications at heavy
loads is clearly closer to the burst-synchronized source model than to the independent
source model. In fact, tests carried out with real applications show that this congestion
control mechanism does improve throughput under heavy loads.

4 Conclusions and Future Work

Performance of interconnection networks is evaluated using a widely accepted set
of synthetic workloads which model uniform, hot spot and traffic permutation pat-
terns. Each node generates packets independently following a Poisson or Bernoulli
distribution.

Evaluation of a congestion control mechanism using these workloads lead us to
identify the vast differences in network throughput observed by each processing node
at heavy non-uniform loads. This network unfairness is not caused by the mechanism
itself but by the uneven nature of the workload. Consequently, we question the valid-
ity of average peak throughput as the figure of merit under non-uniform heavy loads
and independent traffic sources (ITS). In fact, changing the injection model to burst
synchronized sources (BTS), a workload closer to the pattern generated by real paral-
lel applications, leads to different conclusions about the goodness of that congestion
control mechanism under non-uniform loads.

In short, the ITS model fails to reflect the communication behavior of loosely cou-
pled parallel applications. This leads to incorrect conclusions when evaluating any

Evaluation of Interconnection Network Performance Under Heavy Non-uniform Loads 405

router mechanism at loads beyond saturation. BTS is used instead to model the syn-
chronized behavior exhibited by coupled parallel applications at high loads.

We are conscious that further characterization of application workloads is needed
to guide the development of synthetic workloads that reflect the communication struc-
ture (various levels of message coupling) that exist in most parallel applications.

References

[1] M. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa, P. Heidelberger, S. Singh, B.
Steinmacher-Burrow, T. Takken, P. Vranas. “Design and Analysis of the BlueGene/L
Torus Interconnection Network” IBM Research Report RC23025 (W0312-022) Decem-
ber 3, 2003.

[2] T. J. Callahan, S.C. Goldstein. “NIFDY: A Low Overhead, High Throughput Network
Interface”. Proc. of the 22nd Annual International Symposium on Computer Architec-
ture, ISCA '95, Santa Margherita Ligure, Italy. pp. 230-241, June, 1995

[3] The Chaotic Routing Project at the U. of Washington. Chaos Router Simulator. Available
at http://www.cs.washington.edu/research/projects/lis/chaos/www/chaos.html

[4] W.J. Dally & B. Towles. Principles and Practices on Interconnection Networks. Morgan
Kaufmann, 2004.

[5] P. Dinda, B. Garcia, K. Leung, The Measured Network Traffic of Compiler-Parallelized
Programs, Proceedings of the 30th International Conference on Parallel Processing (ICPP
2001) pp 175-184..

[6] J. Duato. “A Necessary and Sufficient Condition for Deadlock-Free Routing in Cut-
Through and Store-and-Forward Networks”. IEEE Trans. on Parallel and Distributed
Systems, vol. 7, no. 8, pp. 841-854, 1996.

[7] C. Izu, J. Miguel-Alonso, J.A. Gregorio. "Packet Injection Mechanisms and their Impact
on Network Throughput". Technical report EHU-KAT-IK-01-05. Department of Com-
puter Architecture and Technology, The University of the Basque Country. Available at
http://www.sc.ehu.es/acwmialj/papers/ehu_kat_ik_01_05.pdf.

[8] S. Mukherjee, P. Bannon, S. Lang, A. Spink and David Webb, “The Alpha 21364 Net-
work Architecture”, IEEE Micro v. 21, n. 1 pp 26-35, 2002.

[9] F. Petrini, D. Kerbyson and S. Pakin. “The Case of the Missing Supercomputer Perform-
ance: Achieving Optimal Performance on the 8,192 Processors of ASCI Q”. In
IEEE/ACM SC2003, Phoenix, AZ, November 2003.

[10] V. Puente, J.A. Gregorio, R. Beivide and C. Izu, “On the Design of a High-Performance
Adaptive Router for CC-NUMA Multiprocessors”, IEEE Trans. on Parallel and Distrib-
uted Systems, Vol. 14, NO. 5, May 2003.

[11] V. Puente, C. Izu, R. Beivide, J.A. Gregorio, F. Vallejo and J.M. Prellezo (2001). “The
Adaptative Bubble Router”. Journal of Parallel and Distributed Computing. Vol 61 - n. 9.

[12] SMART group at the U. of Southern California. FlexSim 1.2. Available at
http://ceng.usc.edu/smart/FlexSim/flexsim.html

Analytical Models of Probability Distributions
for MPI Point-to-Point Communication Times
on Distributed Memory Parallel Computers

D.A. Grove and P.D. Coddington

School of Computer Science, University of Adelaide,
Adelaide, SA 5005, Australia
paulc@cs.adelaide.edu.au

Abstract. Measurement and modelling of distributions of data commu-
nication times is commonly done for telecommunication networks, but
this has not previously been done for message passing communications
on parallel computers. We have used the MPIBench program to measure
distributions of point-to-point MPI communication times for two differ-
ent parallel computers, with a low-end Ethernet network and a high-end
Quadrics network respectively. Here we present and discuss the results
of efforts to fit the measured distributions with standard probability
distribution functions such as exponential, lognormal, Erlang, gamma,
Pearson 5 and Weibull distributions.

1 Introduction

There has been a lot of research on measuring and modelling network traffic
in telephone networks, wide-area networks such as the Internet, and local area
(e.g. Ethernet) networks. However, there has been comparatively little work on
measuring and modelling message passing communications for parallel computer
networks. In particular, we are not aware of any previous work on the measure-
ment and modelling of the distribution of point-to-point communication times
for parallel computers due to the effects of contention in the communication
network. Modelling of message passing times on a parallel computer is typically
focussed on average communication times, and standard programs for bench-
marking the communications performance of message passing routines (such as
Mpptest, MPBench and SKaMPI) provide only average communication times
for point-to-point communications between two processors, which does not give
any indication of the effects of contention in the network.

We developed a new MPI communications benchmark called MPIBench [1,2],
which provides highly accurate and detailed benchmarks of the performance of
MPI message-passing routines. MPIBench can generate histograms that show the
distribution of completion times for individual MPI communication routines, not
just average times. It also takes into account contention effects by running point-
to-point communications on N processors, with processor p communicating with
processor (p+N/2) mod N. This provides greater insight into the performance of

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 406–415, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Analytical Models of Probability Distributions for MPI 407

MPI routines and parallel programs that use MPI, since in some situations the
variance and the tail of the distribution are just as important as the average.

The histograms generated by MPIBench are a measure of the probability
distribution function (PDF) for MPI communication times. These PDFs can
be used to provide more accurate modelling and estimation of the performance
of parallel programs. Standard techniques for performance modelling of parallel
programs use average communication times, thereby ignoring the variation due
to contention. We have developed a system called the Performance Evaluating
Virtual Parallel Machine (PEVPM) [3] that samples from PDFs generated by
MPIBench to more accurately model message passing communications times,
and we have found that this provides more accurate estimates of parallel program
performance than using average communication times.

In this paper, we provide the first examination of the quantitative nature of
the observed PDFs for point-to-point (send/receive) communications on paral-
lel computers, in order to determine if and how they can be characterised by
analytical models. Good analytical models would be very useful, for modelling
the performance of parallel programs using tools such as PEVPM, and also to
provide a deeper general understanding of the performance characteristics of
message passing communication on parallel computers.

2 Analytical Models

Some example PDFs of message passing communication times that have been
measured using MPIBench are presented in Figures 1-4. Figures 1 and 2 show
results from Perseus, a commodity Linux PC cluster with a switched Fast Eth-
ernet network. Figures 3 and 4 show results from the APAC SC, an AlphaServer
SC with a Quadrics QsNet communications network. Note that the measured
distributions are quite noisy. They usually become smoother with increasing
number of measurements, although this takes correspondingly longer to run the
benchmarks. Many more examples of probability distributions of communica-
tion performance for a variety of parallel computers, data sizes and numbers of
processors can be found in Grove’s thesis [2].

Qualitatively, the distributions have a hard lower bound, usually a normal-
shaped middle and taper out with an unbounded tail. The lower bound is deter-
mined by the minimum message latency that is possible under perfect conditions.
The shape of the middle-part of the curve is determined by contention effects.
In reality, the right-hand tail does not actually extend to infinity because of the
discrete nature of the distribution and protocol timeouts, however in the ana-
lytical models, the probabilities associated with the tail become astronomically
small very quickly.

A number of common distribution functions exhibit these broad properties.
These include exponential, Erlang, gamma, Pearson 5, lognormal and Weibull
distributions [4]. Unlike the normal distribution, these distributions are asym-
metric in general and cannot be distinguished by their mean and variance alone.
In addition to mean and variance, which are also known as the first and second

408 D.A. Grove and P.D. Coddington

0.00

1.25

2.50

x10
-2

0.10 0.15 0.20 0.25 0.30 0.35 0.40

Weibull(0.11, 2.4, 0.107)

Time (ms)

N
o

rm
al

is
ed

 P
D

F
/

10
00

Perseus: Fit of Distribution of times for MPI_Isend (32x1, 256B)

MPIBench data

Pears on 5(0.11, 3.62, 0.269)

Fig. 1. Pearson 5- and Weibull-fitted performance profiles for 512 byte MPI Isend mes-
sages with 32x1 processes on Perseus

Weibull(1.53, 2.62, 0.336)

0.00

2.50

5.00

x10
-2

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Time (ms)

N
o

rm
al

is
ed

 P
D

F
/

10
00

Perseus: Fit of Distribution of times for MPI_Isend (32x1, 16KB)

MPIBench data

Pears on 5(1.53, 3.65, 0.867)

Fig. 2. Pearson 5- and Weibull-fitted performance profiles for 16 Kbyte MPI Isend
messages with 32x1 processes on Perseus

Analytical Models of Probability Distributions for MPI 409

Pears on 5(0.00722, 1.03, 0.00126)

x10
-2

0.00

1.50

3.00

x10
-2

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Weibull(0.00722, 2.27, 0.00276)

Time (ms)

N
o

rm
al

is
ed

 P
D

F
/

10
00

APAC SC: Fit of Distribution of times for MPI_Isend (32x1, 256B)

MPIBench data

Fig. 3. Pearson 5- and Weibull-fitted performance profiles for 512 byte MPI Isend mes-
sages with 32x1 processes on APAC SC

Pears on 5(0.0696, 2.3, 0.0111)

0.00

1.25

2.50

x10
-2

0.06 0.07 0.08 0.09 0.10 0.11

Time (ms)

N
o

rm
al

is
ed

 P
D

F
/

10
00

APAC SC: Fit of Distribution of times for MPI_Isend (32x1, 16KB)

MPIBench data
Weibull(0.0696, 1.79, 0.00821)

Fig. 4. Pearson 5- and Weibull-fitted performance profiles for 16 Kbyte MPI Isend
messages with 32x1 processes on APAC SC

410 D.A. Grove and P.D. Coddington

moments of a distribution, these distributions must be differentiated by their
third and fourth order moments, known as skewness and kurtosis respectively.
The skewness statistic describes the degree of symmetry of a distribution. A
positively skewed (right-skewed) distribution rises rapidly, reaches its maximum
and falls slowly with a pronounced right-tail. A negatively skewed (left-skewed)
distribution rises slowly reaches through a pronounced left-tail, reaches its max-
imum and falls rapidly. The kurtosis statistic describes the peakedness/flatness
of a distribution near its mode, relative to the normal distribution.

The distribution functions listed above are defined by at most three parame-
ters, usually known as the scale parameter, the shape parameter and the location
parameter. The scale parameter defines where the bulk of the distribution lies, or
how stretched out the distribution is. In the case of the normal distribution, the
scale parameter is the standard deviation. Unsurprisingly, the shape parameter
defines the shape of a distribution. Some distributions, for example the normal
distribution, do not have a shape parameter because they have a predefined
shape that does not change. Finally, the location parameter shifts the origin of a
distribution either left or right. Without a location parameter (or with a location
parameter of zero) all of the distributions listed above have a domain of (0,∞]
so the location parameter can be used to model the lower bound on message
latency. Determining which scale and shape parameters should be used to model
the PDF of communication performance is less clear.

Rather than blindly trying to fit observed data to known analytical distribu-
tions, it is more useful to first examine how the assumptions of those analytical
expressions mesh with the underlying traffic patterns and contention that are
fundamental to message passing programming on distributed memory parallel
computers. Historically, the most frequently used model for the time instants
at which events are observed has been the Poisson process. In particular, this
model is used in the telecommunications industry to model the interarrival and
service times of telephone calls. From these roots, it has been commonly applied
to modelling data transmission in computer networks. A Poisson process is char-
acterised by a sequence of randomly spaced events, where the arrival time of the
next event is independent of, but probabilistically like, the time of the previous
event. The Poisson distribution gives the probability that a given number of
events will occur within a certain time interval. In relation to a communication
network, when a large number of packet arrival events occur in a short period
of time (due to the inherent randomness of interarrival times) communication
buffers will become very full. Hence the time that a packet can spend waiting for
transmission can be large. With this in mind, a Poisson process provides a model
of network contention that can be used to determine the interarrival time and
service time (i.e. end-to-end latency) of message-passing operations. Interarrival
times and service times of a Poisson process are both exponentially distributed.

The Poisson process provides an attractive modelling formalism because it
has a number of properties that greatly simplify its evaluation. However it fails
as a realistic model for network traffic, and in particular message-passing traffic
for parallel programs, because the assumption of independent communications

Analytical Models of Probability Distributions for MPI 411

events is not true. Data communication is often very bursty and is self-similar
in nature [5,6,7]. Message-passing programs, due to their frequent synchronisa-
tion (either explicit or implicit), are even more so. This means that contention
between seemingly unrelated processes is not truly independent. For this rea-
son, researchers have suggested that Poisson processes are inappropriate for
modelling data communication. A number of recent studies, mostly focussed on
wide-area networks, have found that service times for data traffic are much bet-
ter modelled by heavy-tailed distributions such as Erlang, lognormal or Weibull
distributions [8,9].

The Erlang distribution [4] was initially developed to model the workings of
telephone exchanges. It was specifically designed to model the situation where
the likelihood of immediate process completion increases with the amount of
processing that has already been done. In particular it describes the waiting
time until the mth event of a process that occurs randomly over time. This makes
the Erlang distribution particularly good at modelling transmission times in the
face of contention. Erlang distributions are defined by their location parameter
x, positive integer shape factor m and scale parameter β. The case of m = 1
reduces an Erlang distribution to an exponential.

The Erlang distribution is actually a special case of the gamma distribution,
which is identical, except that the shape factor m may take on non-integer val-
ues. Also related to the gamma distribution is the Pearson 5 distribution, which
is sometimes called the inverse gamma distribution, since there is a reciprocal
relationship between a Pearson 5 random variable and a gamma random vari-
able [4]. The Pearson 5 distribution is particularly useful for modelling time
delays where some minimum delay value is almost assured and the maximum
time is unbounded and variably long [10]. This makes it an attractive candidate
for modelling message-passing time.

The lognormal distribution [4] results from the product of many independent
random variables, where overall distribution values are based on the cumulative
effect of many small perturbations in those variables. This theoretical underpin-
ning also fits well with the idea of contention, where mutually excluded access
to shared resources can increase the chance of further contention, thus causing
increasingly lengthy delays. The lognormal distribution looks like a normal curve
that has been right-skewed, and has a finite lower bound.

Both the gamma family (including Erlang and Pearson 5) and lognormal pro-
cesses provide (different) potential theoretical models for the effects of random
contention on message-passing service times. However, a lack of strict random-
ness in the underlying process being modelled (in this case contention) could
lead to negatively skewed data, which cannot be fit by either gamma family or
lognormal models. The Weibull distribution is a very versatile, general-purpose
distribution that can be used in these cases [4]. Depending on the values of the pa-
rameters, the Weibull distribution can be used to model a variety of behaviours.
For example, setting the scale parameter β = 1, the Weibull distribution reduces
to an exponential distribution; β < 1 produces a exponential-like curve, except
that it begins higher and diminishes faster. Using 1 < β < 3.6 results in a distri-

412 D.A. Grove and P.D. Coddington

bution that looks much like a gamma or lognormal, i.e. monotonically rising until
the mode, and then monotonically decreasing with a pronounced right-tail. For
β = 3.6 the coefficient of skewness approaches zero, and the curve approximates
a normal distribution, but with a finite lower bound. Uniquely, for β > 3.6 the
distribution is negatively skewed, i.e. most data is found in the right-hand side
of the distribution, despite a left-bounded tail.

All of these distributions are special cases of a three-parameter distribution
called the generalised gamma function [4], however this function is not often
used in modelling due to its complexity.

3 Comparison of Different Distribution Functions

The data from a broad selection of distributions generated by MPIBench were
input into a statistics program called Stat::Fit [11] and analysed to determine
which of the analytical distribution(s) listed above could best describe them.
Stat::Fit is very simple to use, in particular via its Auto::Fit function which au-
tomatically fits data to different distributions, provides an absolute measure of
each distribution’s acceptability and ranks the results. Stat::Fit uses Maximum
Likelihood Estimation (MLE) [12] for parameter estimation, which determines
the parameter values that maximise the probability of obtaining the sample
data. MLE is considered the most accurate parameter estimation method for 100
or more samples. Stat::Fit uses χ2, Kolmogorov-Smirnov and Anderson-Darling
tests to provide goodness of fit measures. Notably, the Kolmogorov-Smirnov test
provides the best metric over a wide range of distributions and the Anderson-
Darling test provides the best metric for heavy-tailed distributions [13]. Impor-
tantly, it is known that all of these tests can become too sensitive for a large
number (say more than 1000) data points and thus occasionally reject proposed
distributions that in reality provide useful fits [11].

For each investigated distribution, 500 data points were randomly selected
from the measured results from MPIBench and used for fitting. Auto::Fit MLE
and goodness of fit analyses were performed. Tables 1 and 2 show goodness of fit
results for Perseus and the APAC SC for different distribution functions for three
different message sizes and different numbers of nodes (with 1 process running

Table 1. Results of automated fits to MPIBench communications times from Perseus.
Lower values indicate better fits. F indicates that the automated fit function failed to
make an acceptable fit.

data size 128 bytes 4K bytes 16K bytes
nodes 2 16 32 average 2 16 32 average 2 16 32 average
erlang 0.293 0.160 0.101 0.180 0.78 F F F 2.59 F 141 F
exponential 0.293 0.210 0.183 0.229 68.2 F F F 62.2 F 126 F
gamma 0.262 0.16 0.101 0.174 0.78 F F F 2.45 F 66.6 F
lognormal 0.309 0.176 0.0879 0.191 0.84 54.0 69.8 41.5 2.59 30.1 8.75 13.8
pearson5 0.368 0.282 0.173 0.274 1.73 56.5 108 55.4 2.88 32.5 6.87 14.1
weibull 0.238 0.141 0.118 0.166 0.78 36.2 27.0 21.3 2.09 22.9 38.1 21.0

Analytical Models of Probability Distributions for MPI 413

Table 2. Results of automated fits to MPIBench communications times from the
APAC SC. Lower values indicate better fits. F indicates that the automated fit function
failed to make an acceptable fit.

data size 128 bytes 4K bytes 16K bytes
nodes 2 16 32 average 2 16 32 average 2 16 32 average
erlang F F F F 62.4 F 0.98 F 21.4 1.09 1.51 14.0
exponential F F F F 67.0 66.2 77.1 70.1 42.2 19.0 24.5 28.6
gamma F F F F 50.7 2.37 0.96 18.0 22.0 19.0 1.52 14.2
lognormal 0.334 0.131 0.146 0.204 54.4 2.01 0.93 19.1 24.7 5.94 1.9 10.8
pearson5 0.336 0.171 0.238 0.248 63.0 38.8 1.48 34.4 25.4 3.50 1.95 10.3
weibull 0.331 0.0961 0.095 0.174 55.6 1.66 1.01 19.4 21.2 17.7 1.95 13.6

per node). The Kolmogorov-Smirnov test was used for the smallest message size,
and the Anderson-Darling test for the other message sizes (note that the two tests
have very different fit metrics). An F indicates that the automated fit function
failed to make an acceptable fit. Examples of some fits that were obtained for
small and large message sizes for 32 processes are plotted in Figures 1-4.

Significantly, the results support a common interpretation for the behaviour
of point-to-point message-passing performance on both of the machines that were
examined. The performance distributions observed for the smallest message size
are essentially normal-shaped, although they necessarily have a bounded lower
limit. The best fit in each of these cases was provided by a Weibull distribution
with a shape parameter near 3.6 (i.e. close to normal), although lognormal and
Pearson 5 distributions also provide a reasonable approximation. Importantly,
however, the standard deviation for each of these distributions is comparatively
small, about half of the minimum message latency for a zero byte message on
the same system. These normal-shaped distributions are consistent with random
rather than contention delays, for example caused during context switching,
polling for message arrivals or physical transmission.

For larger messages where contention is more prevalent, the Pearson 5 and
lognnormal distributions provided the best fits. In comparison, Weibull (or other)
distributions could not be used because they were too heavy-tailed and lacked
the peakedness to fit the observed data well.

Most of the cases where some functions failed to give acceptable fits are distri-
butions with slightly negative skew. Weibull fits these quite well, and lognormal
and Pearson 5 are able to give acceptable fits.

4 Conclusions and Further Work

MPIBench allows, for the first time, the measurement of probability distributions
of message passing communication times on parallel computers. This provides
useful insight into the variability of communication times due to contention
effects, and also allows for more accurate modelling of the performance of parallel
programs than is achievable by just using averages of communication times.

414 D.A. Grove and P.D. Coddington

It is interesting to investigate what kinds of analytical functions best de-
scribe the measured distributions. This is commonly done for telecommunica-
tions networks, but to our knowledge has never been done for message passing
communications on parallel computers.

For small message sizes where contention effects should be negligible, com-
munication times follow a Weibull distribution that is close to normal but with a
bounded minimum time, indicating random rather than contention delays. The
lognormal and Pearson 5 distributions also provide reasonable fits where there
is low contention.

Increasing the message size or the number of processes increases the level
of contention and creates a more heavily skewed distribution. The Pearson 5 or
lognormal distributions best fit these results, although from preliminary studies
of additional data, Pearson 5 seems to give better results when the contention
level is high and the distributions are broader. For both the low-end (Fast Ether-
net) and high-end (QsNet) communication networks that we have examined, it
appears that the performance variation in message-passing time under a normal
contention level can be explained based on the roots of the Pearson 5 distribu-
tion; i.e. variation occurs as the result of a transmission process that has a high
chance of succeeding in minimum time, yet has a small chance of being contin-
ually delayed, in this case due to contention in the communications network.

The lognormal and Pearson 5 distributions provide the most accurate fits
over the broadest spectrum of conditions. Even in the few cases where a Weibull
distribution would provide a better fit, Pearson 5 and lognormal are an accept-
able alternative to use for modelling communications time for applications such
as PEVPM that provide performance prediction of parallel programs.

In future work, we will undertake a more detailed statistical analysis of a
wider variety of data, with different message sizes, numbers of processes, num-
bers of processes per node for clusters consisting of multi-processor nodes, and
different networks and parallel architectures, including shared memory machines.

We are working on changing MPIBench so that it can produce distributions
for each process, rather than the current approach of combining the results
from all processes. We have seen situations where distributions appear to differ
between processes, so we expect to get better fits to results from individual
processes, as well as more detailed insight into message passing performance.

We also plan to extend MPIBench so that it can automatically fit mea-
sured data to appropriate distributions (e.g. Pearson 5 and/or lognormal and/or
Weibull). This output would be particularly useful as input to systems such as
PEVPM that could use these distributions to provide more accurate predictions
of the performance of parallel programs.

It would be very useful to be able to develop a model that could estimate
the parameters of a Pearson 5 or lognormal distribution as a function of known
quantities such as the message size, the number of processes, and the latency
and bandwidth of the network. This would enable us to use PEVPM to generate
accurate estimates of the performance of parallel programs on machine configu-
rations for which we cannot run MPIBench to generate measured distributions of

Analytical Models of Probability Distributions for MPI 415

communication times. For example, we could see how a parallel program would
scale to very large numbers of processors, or how reducing the latency or increas-
ing the bandwidth of the communications network would affect the performance
of the program. This is the main goal of our future work on this project.

Acknowledgements

This research was supported in part by the Advanced Computational Systems
and Research Data Networks Cooperative Research Centres, and a Merit Allo-
cation Scheme award of time on the APAC National Facility.

References

1. Grove, D.A.: Precise MPI performance measurement using MPIBench. In: Proc.
of HPC Asia. (2001)

2. Grove, D.A.: Performance Modelling of Message-Passing Parallel Programs. PhD
thesis, University of Adelaide (2003)

3. Grove, D., Coddington, P.: Modeling message-passing programs with a Perfor-
mance Evaluating Virtual Parallel Machine. Performance Evaluation 60 (2005)
165–187

4. Johnson, N., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions.
Wiley, New York (1995)

5. Leland, W., Taqqu, M., Willinger, W., Wilson, D.: On the self-similar nature of
Ethernet traffic (extended version). IEEE/ACM Transactions on Networking 2
(1994) 1–15

6. Park, K. and Willinger, W. (eds): Self-Similar Network Traffic and Performance
Evaluation. Wiley, New York (2000)

7. Willinger, W., Taqqu, M., Sherman, R., Wilson, D.: Self-similarity through high-
variability: Statistical analysis of Ethernet LAN traffic at the source level. IEEE/
ACM Transactions on Networking 5 (1997) 71–85

8. Feldman, A., Whitt, W.: Fitting mixtures of exponentials to long-tail distribu-
tions to analyze network performance models. Performance Evaluation 31 (1998)
963–976

9. Zwart, A.P.: Queueing Systems with Heavy Tails. PhD thesis, Eindhoven Univer-
sity of Technology (2001)

10. Law, A.M., Kelton, W.D.: Simulation Modeling & Analysis. McGraw-Hill, New
York (1991)

11. Greer Mountain Software: (Stat::Fit software, version 1.1) Available from
http://www.geerms.com/.

12. Dodson, B.: Weibull Analysis with Software. ASQ Quality Press, Milwaukee (1995)
13. Anderson, T., Darling, D.: Asymptotic theory of certain goodness-of-fit crite-

ria based on stochastic processes. Annals of Mathematical Statistics 23 (1954)
193–212

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 416 – 421, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Communication Data Multiplexing in Distributed
Simulation*

Jong Sik Lee

School of Computer Science and Engineering,Inha University,
#253, YongHyun-Dong, Nam-Ku,

Incheon 402-751, South Korea
jslee@inha.ac.kr

Abstract. Complex and large-scale distributed systems are characterized by
numerous interactive data communication among distributed components over
network. This paper proposes a communication data multiplexing approach as
an efficient message traffic reduction scheme. This approach encodes joint out-
puts of sender components into a single message and applies to a distributed
system involving components moving and interacting in multi-dimensional
space. For performance evaluation, this paper applies uses a projectile/missile
case study with realistic multi-dimensional dynamics. This paper investigates
variation of system accuracy and network bandwidth requirement, while a ratio
of active components and a time granule are varied. Analytical and empirical
data clearly indicate the advantages of multiplexing in saving communication
resources in a large-scale distributed simulation. In addition, this paper dis-
cusses effectiveness and limitation of the multiplexing approach while consider-
ing the tradeoff between system accuracy and performance.

1 Introduction

Complex and large-scale distributed systems are characterized by numerous interactive
data exchanges among entities distributed between computers networked together. A
method to support the reduction of the interactive messages among entities is called a
“message traffic reduction approach.” [1] It is the goal of a message traffic reduction
scheme that a large-scale distributed system executes within reasonable communication
and computation resources. Current message traffic reduction approaches are Quantiza-
tion [2], Predictive quantization [3], Multiplexing predictive quantization [4], and Inter-
est-based quantization [5]. This paper proposes a dynamic multiplexing approach as an
efficient message traffic reduction approach applicable to simulations involving large
numbers of moving and interacting entities in multi-dimensional space. Using the mul-
tiplexing approach, this paper introduces an effective mean of transmitting messages
that consist of samples from a multi-dimensional space. In order to study the strengths
and limitations of multiplexing, we investigate the dependence of simulation accuracy
and performance on the activity of sending components. An analysis suggests optimal
ratios of active to non-active components and time granule sizes which were confirmed
in a realistic experimental distributed simulation of missile-to-missile interaction. This

* This work was supported by INHA UNIVERSITY Research Grant.

 Communication Data Multiplexing in Distributed Simulation 417

paper is organized as follows. Section 2 presents a dynamic multiplexing approach and
suggests why it is potentially a more efficient mean of message traffic reduction while
discussing its advantages and limitations. Section 3 discusses our experimentation with
a projectile/missile application and evaluates the performance of the dynamic multiplex-
ing approach. Section 4 presents our conclusions.

2 Interest-Based Quantization: Multiplexing and Predictive

The multiplexing predictive interest-based quantization is an extension created by add-
ing a multiplexing approach to the predictive interest-based quantization. In distributed
system with a large number of entities, there will be many entities assigned to each
federate. Sender and receiver federates encapsulate a large number of similar compo-
nent models. In this case, the multiplexing approach is very effective. This approach
requires two components: sender multiplexer and receiver de-multiplexer. The sender
multiplexer gathers the messages outputted from the sender agents within a time granule
into a large message, which is sent to the receiver de-multiplexer in the other receiver
federate over network. The receiver de-multiplexer separates the large multiplexed
message to the small-unmultiplexed messages and distributes the small messages to the
proper receiver agents. As the number of sender and receiver pairs increases, through
this multiplexing approach, tremendous communication bits are saved.

2.1 Dynamic Multiplexing

The multiplexed message size is constant in previous multiplexing which is called fixed
multiplexing. This paper proposes the dynamic multiplexing in which the message size
varies with the number of active senders. Active sender indicates a sender which has an
output in a certain time granule. This section introduces the dynamic approach in multi-
plexing, compares it with the fixed multiplexing and analyzes the performance of dy-
namic approach with network bandwidth requirement. Fig. 1 illustrates the operation of
the dynamic multiplexing using predictive quantization. The dynamic sender multi-
plexer only collects the encoded bits from active senders. At a given event time, the
number of active senders varies and the number of transmitted data bits is not fixed.
Different from fixed multiplexing, additional bits (SL) are needed to represent active
senders. The number of data bits for an active sender is calculated by adding the addi-
tional bits (log2 Npair < SL) and the encoded bits (SQ). Usually, a is less than 1 since
all senders are not active senders at any given event time.

The network loading for any global state transition of a sender federate using dy-
namic multiplexing is:

Network bandwidth requirement using dynamic multiplexing

= SOH + a Npair × (SQ + SL) (bits)
(1)

The multiplexer collects the encoded bits and the active bits from each encoder.
The encoded bits are the bits required to represent the message dimension alterna-
tives. Let SQ be the number of the encoded bits. Then by:

))(,3,2,1(7.13log 2 DimensionsofNumberDDDSQ =×=×= (2)

418 J.S. Lee

Fig. 1. Dynamic multiplexing with the predictive quantization (SOH : the number of overhead
bits for a packet; SQ: the quantized and encoded data bit size; SL: the encoded data bit size for
sender ID; Npair : the number of pair components; a: the ratio of active components)

For example, if a message has three-dimensional values in the predictive quantiza-
tion, five bits (log2 3

3 < 5 = SQ) are required to represent the message dimension
alternatives. The active bit indicates whether a sender is active or inactive. An active
sender is one that has a boundary crossing at a given event time and generates an
output event. A receiver de-multiplexer checks the active bit of each sender and sends
the encoded bits of active senders to the respective decoders. In fixed multiplexing,
for any global state transitions of a sender federate at any given event time, the net-
work loading is fixed and calculated by:

Network bandwidth requirement for fixed multiplexing

= SOH + Npair × (SQ + 1) (bits)
(3)

However, the bits assigned for inactive senders can be wasted in fixed multiplex-
ing. The fixed receiver de-multiplexer knows which sender sends certain encoded bits
since the bit stream order in the multiplexed bits with fixed size follows a fixed order-
ing of the senders. Therefore, the additional bits representing which sender sends are
not needed.

2.2 Performance Analysis

In order to analyze the performance of the dynamic multiplexing with predictive in-
terest-based quantization, we investigate three performance factors: a) Network
bandwidth requirement (e.g. number of bits required) for N component pairs; b) Re-
duction ratio to the number of bits needed for the non-multiplexing, non-predictive
quantization with N component pairs; c) Reduction ratio to the number of bits needed
for the non-multiplexing, non-predictive quantization with actual data bit sizes and
1000 component pairs. The reduction ratio specified by:

Reduction Ratio =
B

A
 (4)

 Communication Data Multiplexing in Distributed Simulation 419

A: # bits needed for the non-multiplexing and non-predictive quantization
B: # bits needed for the dynamic multiplexing with predictive interest-based

quantization

The analysis is given in Table 1 where we consider all six combinations of quanti-
zation (non-predictive and predictive) and multiplexing (fixed and dynamic).

Table 1. Analysis with six combinations of quantization (non-predictive and predictive) and
multiplexing (fixed and dynamic), (SOH : the number of overhead bits for a packet (160 bits);
SD: the non-quantized data bit size (64*3 bits for double precision real numbers for three
dimensions); SQ: the quantized and encoded data bit size (5 bits for three dimensions (log2 3

3 <
5 = SQ)); SL: the encoded data bit size for sender ID (10 bits for 1000 Npair (log2 1000 < 10 =
SQ)); Npair : the number of pair components (1000), a: the ratio of active components), Ratio
with value (Npair =1000, SOH=160 bits, SD=64*3bits, SQ= 5 bits, SL= 10 bits).

Scheme
bits required for

Npair (a<1)
Ratio to Non-predictive quan-

tization for large Npair (a<1)

Ratio with
value

Comb #1 aNpair (SOH + SD) 1 1
Comb #2 aNpair (SOH + SQ) (SOH + SD) / (SOH + SQ) 2.172
Comb #3 (SOH+Npair(SD+1)) a(SOH + SD) /(SD + 1) 1.851 a
Comb #4 (SOH+Npair(SQ+1)) a(SOH+SD) /(SQ+1) 58.823 a
Comb #5 (SOH+aNpair(SD+SL)) (SOH + SD) / (SD + SL) 1.754
Comb #6 (SOH+aNpair(SQ+SL)) (SOH + SD) / (SQ + SL) 29.412

The combinations in Table 1 are defined as following: Comb #1: Non-predictive
quantization; Comb #2: Predictive quantization and Non-multiplexing; Comb #3:
Fixed multiplexing and Non-predictive quantization; Comb #4: Fixed multiplexing
and Predictive quantization; Comb #5: Dynamic multiplexing and Non-predictive
quantization; Comb #6: Dynamic multiplexing and Predictive quantization. The pre-
dictive quantization without multiplexing performs 2.172 times reduction in network
load relative to non-predictive quantization. In the multiplexing non-predictive quan-
tization scheme, the reduction ratio (approx. 1.851 a) is performed by combining the
actual double value outputs into one message. Greater advantage is obtained from the
multiplexing predictive quantization, which combines the encoded data bit size (5 bits
for three dimensional data of message and 10 bits for sender ID) per component into
one message. When the fixed multiplexing predictive quantization scheme is used, in
order to make the reduction ratio higher above 29.412 times, at least 50 (%) active
components are required. For the dynamic multiplexing predictive quantization, the
reduction ratio is 29.412.

3 Experimentation and Performance Evaluation

The projectile/missile application [6] with the geocentric-equatorial coordinate system is
used to evaluate the performance of the dynamic multiplexing approach. The projectile
is a ballistic flight and accounts for gravitational effects, drag, and motion of rotation of

420 J.S. Lee

the earth relative to it. A missile is assigned a projectile, and it follows its projectile until
it hits its projectile. To evaluate the accuracy of the dynamic multiplexing approach, we
use the previously developed basic system which is considered the standard system in
which no error occurs. The system with the dynamic multiplexing approach includes
two federates: projectile and missile. Each federate is assigned to each different com-
puter and the experimental computers are connected in LAN environment. The dynamic
multiplexing system works on the DEVS/GDDM Environment [7].

Fig. 2. (a) Transmitted data bits, (b) System execution time

In order to evaluate actual system execution performance of the dynamic multiplex-
ing interest-based quantization scheme, we compared passed data bits and system
execution time of a non-predictive quantization system, a predictive quantization
system and a dynamic multiplexing predictive quantization system.
Fig. 2 (a) shows the transmitted data bits of those three systems while the numbers of
component pairs are varied. As the number of component pairs increases, the trans-
mitted data bits of the non-predictive and predictive quantization systems increase
significantly, and the dynamic multiplexing predictive quantization system tremen-
dously reduces the transmitted data bits. In two non-multiplexing systems, the predic-
tive quantization system shows the more reduction of transmitted data bits than that of
the non-predictive quantization system. Fig. 2 (b) illustrates the variation of system
execution time of those three systems in varying number of component pairs. In the
dynamic multiplexing system, the system execution time increases slowly and propor-
tionally to the transmitted data bits, as the number of component pairs increases.

4 Conclusion

This paper proposed a dynamic multiplexing approach as an efficient message traffic
reduction scheme. Especially, the approach is applied to the predictive interest-based
quantization and is more applicable to a system involving distributed components
moving and interacting in multi-dimensional space. To evaluate the performance, we
realized the dynamic multiplexing approach with the predictive interest-based quanti-

 Communication Data Multiplexing in Distributed Simulation 421

zation. We compared the dynamic approach to the fixed approach, analyzed the
advantages and limitations, and experimented. Those approaches were applied to the
projectile/missile application with realistic multi-dimensional dynamics and evaluated
with the network bandwidth requirement. The analytical and experimental results
showed that the dynamic multiplexing was very effective in saving the inter-federate
data transmission and actual system execution time in distributed system.

References

1. Bassiouni, M.A., et al.: Performance and Reliability Analysis of Relevance Filtering for
Scalable Distributed Interactive Simulation., ACM Trans. on Model. and Comp. Sim.
(TOMACS) (1997) 293-331

2. Zeigler, B.P., J.S. Lee: Theory of Quantized Systems: Formal Basis for DEVS/HLA Dis-
tributed Simulation Environment. Enabling Technology for Simulation Science (II), SPIE
AeoroSense 98. Orlando, FL (1998)

3. Bernard. P. Zeigler, H. J. Cho, J. S. Lee, Y. K. Cho, Hessam Sarjoughian, et al.: Predictive
Contract Methodology and Federation Performance. in SIW. Orlando, FL (1999)

4. Bernard P. Zeigler, Hyup J. Cho, Jeong G. Kim, Hessam Sarjoughian, Jong S. Lee: Quanti-
zation-based filtering in distributed discrete event simulation. Journal of Parallel and Dis-
tributed Computing, 62 (2002) 1629-1647

5. Jong S. Lee and Bernard. P. Zeigler: Space-based Communication Data Management in
Scalable Distributed simulation. Journal of Parallel and Distributed Computing, 62 (2002)
336-365

6. Erwin Kreyszig.: Advanced Engineering Mathematics, 7th Edition, John Wiley& Sons Inc,
New York (1993)

7. Jong Sik Lee, Bernard. P. Zeigler: Design and Development of Data distribution Manage-
ment Environment. Journal of Society Computer Simulation, (77)1-2. Simulation (2002)
39-52

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 422 – 428, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Novel Adaptive Subcarrier Power and Bit Allocation
Using Wavelet Packet Parallel Architecture*

Ren Ren1,2 and Shihua Zhu1

1 Sch. of Electronic & Information Eng., Xian Jiaotong University,
Xi’an, 710049,P.R. China

2 Dept. of Phy., Xian Jiaotong University, Xi’an, 710049,P.R. China
renren@mail.xjtu.edu.cn

Abstract. To realize the requirement of next mobile communication, the
adaptive allocation schema of power and bit is presented by using discrete
wavelet packet transform (DWPT). The subcarrier modulation and rate
allocation method is used for OFDM-DS/CDMA system. According to the
downlink channel feedback bit error rate (BER) acquired from uplink channel,
an optimal wavelet packet multicarrier modulation allocation is established. For
the given BER and QoS, the transmitting power is minimum. The system
realizes the high frequency spectrum efficiency. The result shows that the
adaptive wavelet packet algorithm not only has the fast convergence rate, but
also achieves minimum complexity. The allocation proposed has better
performance compared with traditional OFDM system. It is valuable that the
system can adaptively adjust the power and bit rate to achieve minimum total
transmission power in high rate and efficiency.

1 Introduction

Along with the development of the next generation mobile communications,
multimedia and broadband, the wireless communication system requires advanced
rate transmission, fast processing ability so as to improve communication reliability
and efficiency. Because of frequency selection Rayleigh fading produced by
multipath [1], slow fading of obstruct, and space fading. The wireless channel have
time-variable properties [2]-[4]. Now, there are different kinds of multi-carrier
orthogonal transform to be proposed to get over this defect, such as DCT multi-carrier
modulation based on discrete cosine transform, DFT discrete Fourier transform, and
DWT discrete wavelet transform multi-carrier. The paper proposed a kind of discrete
orthogonal wavelet multi-carrier modulation. Because of orthogonal parallel
multiplexing communication mode, orthogonal wavelet will not lead to the noise
increasing as well as obtain parallel processing efficient. The wavelet packet
transform could supply a group wavelet packet multi-carrier schema. This idea can
divide the channel into series orthogonal subband by using super resolution wavelet
packet. Each subband is flat fading. Adaptive DWPT is able to adjust the transmission
schema to receiver SNR and channel properties. Different user adopts their own bit

* Supported by National Natural Science Foundation of China 60372055, and Xian Jiaotong

university Foundation xjj2004013.

 Novel Adaptive Subcarrier Power and Bit Allocation 423

rates, modulation grade and communication qualities. The subcarrier bandwidth is
less than channel correlative bandwidth. Finally, the multipath effect is reduced for
each subcarrier. Each subband has flat faded and ICI is down.

The wavelet packet modulation (WPM) stresses the fact that wavelet packet bit and
power allocation has two advantages over others. The frequency selection MIMO
fade channel becomes group of flat fading sub-channel by WPM. The signal spectrum
enables overlapping, and higher spectrum efficiency is obtained. Moreover, we can
adaptively adjust the bit and power allocation in each subcarrier according to SNR
and subchannel state. WPM has super resolution property in time-frequency domain.
The processes of modulation, filter and demodulation are the signal decomposition
and reconstruction process of wavelet packet. The subchannel with better SNR
employs higher modulation grade transferring more bits/symbol. The subchannel with
high interference uses lower modulation grade transferring little bits/symbol. The
paper adopts indefinite searching way to realize less calculation amount and achieve
better spectrum efficient and robust based on optimum algorithm [5]-[10]. IWPT and
WPT implementations are used as specific modulation and de-modulation.

2 Signal Model

2.1 Subcarriers Modulation Model Based on Orthogonal Wavelet Packet

Wavelet packet modulation process has ability to process time variant signal. The
window function size can be adjusted. By IWPT, input bit can be transformed into
time frequency domain symbol as well as it can be reconstructed in time-domain by
WPT. we can obtain clear resolution wherever the signals are high or low time
frequency domain. The transmitter data can ideally be decomposed by wavelet packet.

Multicarrier modulation system and subband bit and power allocation are shown in
detail as Fig.1. In the transmitter, the signal of user is through serial/parallel transform
and modulated by QAM. Data is decomposed into different subchannel by wavelet
packet. Then the signal is sampled, filtered and reconstructed to run p/s transform. In
addition, the signal time sequence is spread by frequency synthesizer using wavelet
PN pseudorandom code. Finally, it is transmitted by D/A shaped smooth filter.

 The subcarrier bit allocation system chart is shown as Fig.1. Suppose that system
has k users, each user data rate is Rk bit/symbol. In the transmitter, the data streams
are assigned to different subcarrier by each user. If the subcarrier bandwidth is
smaller than the correlation bandwidth of channel, the channel is mutually
independent. We can use the subcarrier bit algorithm to determinate transmitter
modulation system. According to the allocated bit in each subcarrier, the modulation
constellation size is decided. The power of each channel is determined by
communication SNR and modulated mode. The M dimensions receiver vector

nHUR += , T
Mnnnn],...,,[21= , the n-th user

nU is distributed to different subcarrier

with bit scheme. H is the channel response and n is noise. It is assumed that)(kPn
is

power in m-th transmitter antenna
)k(P)k(U)k(UP

N

1n
n

T

=

== . The transmitter signal

)()(2 RLUtf ∈= can be decomposed by the wavelet modulation degree.

424 R. Ren and S. Zhu

The)(xΦ and)(xψ are wavelet scale and wavelet function respectively. Signal space

)(2 RL is orthogonally divided into subspaces
jW ,)(21012

2 ⊕⊕⊕⊕⊕⊕=⊕= −−
∈

WWWWWWRL j
Zj

.

For the signal)()(2 RLUtf ∈= , the)(tf can be decomposed in wavelet packet base

in unique way. Considered that base)()(0 tt φψ = ,)()(1 tt ψψ = .

Fig. 1. The adaptive wavelet packet modulation system of bit and power allocation

The orthogonal wavelet packet is defined

−=
k

lkl ktpt)2()(2 ψψ −=+
k

lkl ktqt)2()(12 ψψ
(1)

where
kk qp , is decomposed sequence.)()()(1 tgtftf lll +=+ is expressed as

)2()(ktctf j

k

j
kj −= φ)2()(ktdtg j

k

j
kj −= ψ j=0,1,2,…

(2)

 Orthogonal scale function is)(tφ and)(tψ is wavelet function. The data streams

Utf =)(can be expressed in the base of)(2 tlψ and)(12 tl+ψ , where }{ nψ is the wavelet

function. For Zn∈ ,
)(2 RL

clos is signal space.

):)2(2(2/
)(2 ZkktclosS j

n
j

RL
n
j ∈−= ψ ZnZj ∈∈ , (3)

The decomposition and modulation algorithm is shown as Fig.2.

)2(][)(12,
2

2,
21 ltdqdptf j

n
k

nj
kkl

nj
kklk −+= +

−−+ ψ
(4)

 The reconstruction and de modulation algorithm is

 Novel Adaptive Subcarrier Power and Bit Allocation 425

)(22,,1
2 tfdda n

k
k

nj
l

nj
klk ==+

−
,)(1212,,1

2 tfddb n
k

k

nj
l

nj
klk

+++
− ==

(5)

where nj
ld 2, and 12, +nj

ld are the decomposition coefficient.

(a) (b) (c)

Fig. 2. The modulated and demodulated
processing of wavelet packet

(a) mode 1(WPM) (b) mode 2(OFDM)

Fig. 3. WPM and OFDM packet structure

The sub-carrier bit and power allocation algorithm object is what the total power
of the all sub-carriers of every user are minimum in definite QoS and data rate. The
input data stream is modulated by QAM and decomposed by orthogonal wavelet
packet. The adaptive WPM allocation has better time frequency domain
performance compared with traditional OFDM system shown as Fig. 2 (a)(b)(c) and
Fig. 3(a)(b).

2.2 Adaptive Algorithm of Wavelet Packet with Bit and Power Allocation

Multi bit rates and adaptive power allocation are realized by Lagrangian optimal
algorithm. The constraint condition is total power and transmitter bits/symbol rate.
The wavelet packet decomposition and reconstruction are changed with channel QoS
and receiver SNR.

Each subcarrier }:)2(2{
2

2 Zlltkj
m

kj

k ∈−−
+

−

ψ has their own allocation of power and bit

rate. With the increase of the subcarrier number, the bandwidth is smaller than
channel correlation bandwidth. The Rayleigh fading is reduced and can be thought to
be a flat fading channel with smaller ICI.

We adopts water-filling algorithm and adaptive power and bit rate allocation. it can
achieve minimum transmission power and the maximum channel capacity of Shannon
theory. Ordinary, the suboptimum non-precision searching algorithm is accepted.

426 R. Ren and S. Zhu

Considering that per symbol emit total bit B, the whole bit is allocated for each
subcarrier by wavelet packet modulated. Subcarrier bit allocation is optimized to
make transmitter power to be minimum. The object function is total bit of all
subcarriers

= =

=
N

1n

K

1k
2

n,k

n,kk

c h

)b(p
mimp

m,k

 , }k,...,1{k∈ , ck,n is bits/symbol, bk,n is gain.

The adaptive algorithm flow is shown as following.

)t(r)1t(w)t(y 1
T
ii −=

)t(y)1t(w)t(r ii

^

i −=

)t(y)1t(w)t(r)t(e i
T
iii −−=

)t(y)t(e)t(r)t(r iii11i μ−=+

i=i+1

Loop

where wi is weigh coefficient, iμ is step. r (t) is receiver’s data, power or bit rate.

Supposing object function is
=

M

1m
mm)b(PMin , and convergence condition Bb

M

m
m =

−1

,

Zbm ∈ , m=1,2,…,M. Pm is the lowest transmitter power in each subcarrier, where bm

is m-th subcarrier bits/symbol. The bit and power in sub-carrier is adaptively decided

by downlink feedback SNR and BER of receiver. Let))SNR(1(logb m2

^

m ν+= , where

ν is regulative coefficient, (SNR)m is m-th subchannel SNR. The allocation bit and
power can be derived by ν , bm bits/symbol is modulated by MQAM and MPSK.

In addition, the cost function J is solved by optimum non-precision algorithm.

)}rb(
h

p
{Min)p(J

M

1m
m,n

n
i

M

1m
2
m

m

BER,SNR
m

==

−λ+= (6)

The iterative computing
n,k

n,kn,1k b

L
bb

∂
∂μ−=+

and
))rb((

N

1n
kn,kk1k

=
+ −μ+λ=λ

(1) Initialization user bit

allocation ck,n=0, 0k =λ ;(2) Calculation bk,n, choice modulation grade with bk,n. (3)

Calculation kλ and summation bk,n, if it doesn’t reach the user set rate, recirculation.

3 The Simulation and Result

In mobile downlink environment, the simulation parameters of WPM is 4QAM,
16QAM, 64QAM constellation, subband number 16, and Rayleigh channel adopting
binary Haar wavelet. It is assumed that the wavelet packet sizes are 32 samples per
packet, and system has randomly interference on the base-band system. Under four
interferences source, two paths, same noise in each packet signal, the OFDM channel
fading is become flat in each subband, whereas, the WPM subband are not affected in
WPM packet. Using 16QAM, it is shown as in Fig.4 that the BER of adaptive WPM
packet is close to 16QAM curve. The adaptive WPM BER is 4.5 dB is better than
WPM. The WPM BER reduces further than OFDM. The performance of simulation
illuminates adaptive WPM have advantage of others such as WPM, and OFDM.

 Novel Adaptive Subcarrier Power and Bit Allocation 427

Based on definite QoS and BER, adaptive WPM with bit and power algorithm has
merits over equal bit method, optimum OFDM-TDMA and OFDM-CDMA. The
result of bit error order is described as follows. Under same BER, WPM adaptive bit
and power allocation is 3 dB better than OFDM-CDMA. The bit SNR WPM-CDMA
is 10 dB better than WPM-TDMA, and 25 dB than equal bit OFDM-TDMA. Above
all, the WPM-CDMA method significantly out performs the traditional OFDM and
equal power allocation.

Table 1. Simulation specifications

Frequency 5GHz

Wavelet species Haar and
Daubechies
wavelet

Number of subcarriers 16

Constellation 4QAM,16QAM,
64QAM

Channel bandwidth 20MHz

Sample per packet 32

Mobile speed 100Km/hour

Channel distribution Rayleigh

Interferences source 4

Path number 2

Fig. 4. BER performance in interference environment
based on adaptive WPM, WPM, and OFDM

4 Conclusion

The paper proposed an adaptive WPM bit and power allocation model for downlink
channel wireless mobile system to solve the ICI and ISI. The parallel algorithm has
inferior iterative times, minor calculation and better global convergence. The results
have shown that the schema obtains major SNR gain per bit. Furthermore, the
adaptive wavelet packet achieves bandwidth utilizing effectively in high and low
frequency. According to the channel SNR, BER and QoS, the bit rate, power
allocation and wavelet packet coefficient weigh are adaptive to be adjusted to channel
quality. The simulation indicates that WPM parallel algorithm is validated and has
fast speed compared with OFDM. The WPM schema is feasible plan in
communication system.

References

[1] W.C. Takes Jr.: Microwave mobile communications, Wiley. New York .(1974)
[2] S. Hara:Overview of multicarrier CDMA, IEEE Commun. Mag., DEC, (1997).126-144
[3] M. Helard: Multicarrier CDMA techniques for future broadband wireless networks, Ann.

Telecommun.. Vol.56, (2001)260-274
[4] S. Hara:Design and performance of multicarrier CDMA system in frequency-selective

Rayleigh fading channels, IEEE Trans. Veh. Technol., Vol.48.Sept .(1999)1584-1595

428 R. Ren and S. Zhu

[5] E. Kerherve: OFDM bandwidth estimation using Morlet's wavelet decomposition,
EUROCOMM 2000.Information Sys. for Enhanced Public Safety and Security.
IEEE/AFCEA. May.(2000) 62-66

[6] Y. zhang: Performance of Wavelet Packet Based Multicarrier Modulation DS-CDMA
System In Frequency Selective Rayleigh Fading Channel, Inter. Rept. OHIO uni.. Oct..
(1998) 82-89.

[7] R.M.Nasir: Adaptive wavelet packet basis selection for zerotree image coding,
IEEE.Trans.on image proceeding. Vol 12(12). Dec. (2003) 1462-1472

[8] S.Hara : Overview of Muiticarrier CDMA, IEEE.Comm. Magazine. Dec, (1997) 126-133
[9] H.Nikolaj: Wavelets and time-frequency analysis, Proc.of IEEE. Vol.84(4), (1996)

523-540
[10] S.D.Sandberg: Overlapped Discrete Multitone Modulation for High Speed Copper Wire

Communications, IEEE J.Select. Areas Comm.. Vol.13. Dec., (1995) 1571-1585

A Low–Level Communication Library
for Java HPC

Sang Boem Lim1, Bryan Carpenter2,
Geoffrey Fox3, and Han-Ku Lee4,�

1 Korea Institute of Science and Technology Information,
(KISTI),Daejeon, Korea

slim@kisti.re.kr
2 OMII, University of Southampton, Southampton SO17 1BJ, UK

dbc@ecs.soton.ac.uk
3 Pervasive Technology Labs at Indiana University,

Bloomington, IN 47404-3730
gcf@indiana.edu

4 School of Internet and Multimedia Engineering,
Konkuk University, Seoul, Korea

hlee@konkuk.ac.kr

Abstract. Designing a simple but powerful low-level communication li-
brary for Java HPC environments is an important task. We introduce
new low-level communication library for Java HPC, called mpjdev. The
mpjdev API is designed with the goal that it can be implemented portably
on network platforms and efficiently on parallel hardware. Unlike MPI
which is intended for the application developer, mpjdev is meant for li-
brary developers. Application level communication may be implemented
on top of mpjdev. The mpjdev API itself might be implemented on
top of Java sockets in a portable network implementation, or-on HPC
platforms-through a JNI (Java Native Interface) to a subset of MPI.

1 Introduction

HPJava [1] is an environment for scientific and parallel programming using Java.
It is based on an extended version of the Java language. HPJava incorporates
all of the Java language as a subset. This means any ordinary Java class can be
invoked from an HPJava program without recompilation. Moreover, a translated
and compiled HPJava program is a standard Java class file that can be executed
by a distributed collection of Java Virtual Machines.

Locally held elements of multiarrays and distributed arrays can be accessed
using some special syntax provided by HPJava. HPJava does not provide any
special syntax for accessing non-local elements. Non-local elements can only be
accessed by making explicit library calls. This policy in the HPJava language,
attempts to leverage successful library-based approaches to SPMD parallel com-
puting. This idea is in very much in the spirit of MPI, with its explicit point-
to-point and collective communications. HPJava raises the level of abstraction a
� Correspondence author.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 429–434, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

430 S.B. Lim et al.

notch, and adds excellent support for development of libraries that manipulate
distributed arrays. But it still exposes a multi-threaded, non-shared-memory,
execution model to programmer. Advantages of this approach include flexibility
for the programmer, and ease of compilation, because the compiler does not have
to analyze and optimize communication patterns.

Java version of Adlib APIs
Other application−level

mpjdev

Pure Java

MPJ and

(e.g. IBM SP3, Sun HPC)
Parallel Hardware

Native MPI

Networks of PCs
SMPs or

Fig. 1. An HPJava communication stack

The mpjdev [2] [3] API is designed with the goal that it can be implemented
portably on network platforms and efficiently on parallel hardware. Unlike MPI
which is intended for the application developer, mpjdev is meant for library
developers. Application level communication libraries like the Java version of
Adlib (or MPJ [1]) may be implemented on top of mpjdev. The mpjdev API
itself might be implemented on top of Java sockets in a portable network imple-
mentation, or-on HPC platforms-through JNI (Java Native Interface) to a subset
of MPI. The positioning of the mpjdev API is illustrated in Figure 1. Currently
not all the communication stack in this figure is implemented. The Java version
of Adlib, the pure Java implementation on SMPs, and native the MPI implemen-
tation are developed and included in the current HPJava or mpiJava releases.
The rest of the stack may be filled in the future.

2 Communications API

In MPI there is a rich set of communication modes. Point-to-point commu-
nication and collective communication are two main communication modes of
MPI. Point-to-point communication support blocking and non-blocking com-
munication modes. Blocking communication mode includes one blocking mode
receive, MPI RECV, and four different send communication modes. Block-
ing send communication modes include standard mode, MPI SEND, syn-
chronous mode, MPI SSEND, ready mode, MPI RSEND, and buffered
mode, MPI BSEND. Non-blocking communication mode also uses one
receives, MPI IRECV and the same four modes as blocking send: stan-
dard, MPI ISEND, synchronous, MPI ISSEND, ready, MPI IRSEND,
and buffered, MPI IBSEND. Collective communication also includes vari-
ous communication modes. It has characteristic collective modes like broad-

A Low–Level Communication Library for Java HPC 431

public class Comm {

public void size() { ... }
public void id() { ... }
public void dup() { ... }
public void create(int [] ids) { ... }
public void free() { ... }

public void send(Buffer buf, int dest, int tag) { ... }
public Status recv(Buffer buf, int src, int tag) { ... }
public Request isend(Buffer buf, int dest, int tag) { ... }
public Request irecv(Buffer buf, int dest, int tag) { ... }

public static String [] init(String[] args) { ... }
public static void finish() { ... }

. . .
}

Fig. 2. The public interface of mpjdev Comm class

cast, MPI BCAST, gather, MPI GATHER, and scatter, MPI SCATER.
Global reduction operations are also included in collective communication.

The mpjdev API is much simpler. It only includes point-to-point commu-
nications. Currently the only messaging modes for mpjdev are standard block-
ing mode (like MPI SEND, MPI RECV) and standard non-blocking mode
(like MPI ISEND, MPI IRECV), together with a couple of ”wait”
primitives.

The communicator class, Comm, is very similar to the one in MPI but it
has a reduced number of functionalities. It has communication methods like
send(), recv(), isend(), and irecv(), and defines constants ANY SOURCE,
and ANY TAG as static variables. Figure 2 shows the public interface of
Comm class.

We can get the number of processes that are spanned by this communicator
by calling size() (similar to MPI COMM SIZE). Current id of process relative
to this communicator is returned by id() (similar to MPI COMM RANK).

The two methods send() and recv() are blocking communication modes.
These two methods block until the communication finishes. The method send()
sends a message containing the contents of buf to the destination described by
dest and message tag value tag.

The method recv() receives a message from matching source described by
src with matching tag value tag and copies contents of message to the receive
buffer, buf. The receiver may use wildcard value ANY SOURCE for src and
ANY TAG for tag instead specifying src and tag values. These indicate that
a receiver accepts any source and/or tag of send. The Comm class also has
the initial communicator, WORLD, like MPI COMM WORLD in MPI and
other utility methods. The capacity of receive buffer must be large enough to

432 S.B. Lim et al.

public class Request {
public Status iwait() { ... }

public Status iwaitany(Request [] reqs) { ... }
. . .

}

Fig. 3. The public interface of Request class

accept these contents. It initializes the source and tag fields of the returned
Status class which describes a completed communication.

The functionalities of send() and recv() methods are same as standard
mode point–to–point communication of MPI (MPI SEND and MPI RECV).
A recv() will be blocked until the send if posted. A send() will be blocked until
the message have been safely stored away. Internal buffering is not guaranteed
in send(), and the message may be copied directly into the matching receive
buffer. If no recv() is posted, send() is allowed to block indefinitely, depending
on the availability of internal buffering in the implementation. The programmer
must allow for this–this is a low-level API for experts.

The other two communication methods isend() and irecv() are non-blocking
versions of send() and recv(). These are equivalent to MPI ISEND and
MPI IRECV in MPI. Unlike blocking send, a non-blocking send returns imme-
diately after its call and does not wait for completion. To complete the communi-
cation a separate send complete call (like iwait() and iwaitany() methods in the
Request class) is needed. A non-blocking receive also work similarly. The wait()
operations block exactly as for the blocking versions of send() and recv() (e.g.
the wait() operation for an isend() is allowed to block indefinitely if no match-
ing receive is posted). The method dup() creates a new communicator the span-
ning the same set of processes, but with a distinct communication context. We can
also create a new communicator spanning a selected set of processes selected us-
ing the create() method. The ids of array ids contain a list of ids relative to this
communicator. Processes that are outside of the group will get a null result. The
new communicator has a distinct communication context. By calling the free()
method, we can destroy this communicator (likeMPI COMM FREEinMPI).
This method is called usually when this communicator is no longer in use. It frees
any resources that used by this communicator.

We should call static init() method once before calling any other methods
in communicator. This static method initializes mpjdev and makes it ready to
use. The static method finish() (which is equivalent of MPI FINALIZE) is
the last method should be called in mpjdev.

The other important class is Request (Figure 3). This class is used for non-
blocking communications to ensure completion of non-blocking send and receive.
We wait for a single non-blocking communication to complete by calling iwait()
method. This method returns when the operation identified by the current class
is complete. The other method iwaitany() waits for one non-blocking commu-
nication from a set of requests reqs to complete. This method returns when one
of the operations associated with the active requests in the array reqs has com-

A Low–Level Communication Library for Java HPC 433

pleted. After completion of iwait() or iwaitany() call, the source and tag fields
of the returned status object are initialized. One more field, index, is initialized
for iwaitway() method. This field indicates the index of the selected request in
the reqs array.

3 Message Format

This section describes the message format used by mpjdev. The specification
here doesn’t define how a message vector which contained in the Buffer object
is stored internally-for example it may be as a Java byte [] array or it may
be as a C char [] array, accessed through native methods. But this section
does define the organization of data in the buffer. It is the responsibility of the
user to ensure that sufficient space is available in the buffer to hold the desired
message. Trying to write too much data to a buffer causes an exception to be
thrown. Likewise, trying to receive a message into a buffer that is too small will
cause an exception to be thrown. These features are (arguably) in the spirit
of MPI.

A message is divided into two main parts. The primary payload is used to
store message elements of primitive type. The secondary payload is intended to
hold the data from object elements in the message (although other uses for the
secondary payload are conceivable). The size of the primary payload is limited
by the fixed capacity of the buffer, as discussed above. The size of the secondary
payload, if it is non-empty, is likely to be determined ”dynamically”-for example
as objects are written to the buffer.

The message starts with a short primary header, defining an encoding scheme
used in headers and primary payload, and the total number of data bytes in the
primary payload. Only one byte is allocated in the message to describe the
encoding scheme: currently the only encoding schemes supported or envisaged
are big-endian and little-endian. This is to allow for native implementations of
the buffer operations, which (unlike standard Java read/write operations) may
use either byte order. A message is divided into zero or more sections. Each
section contains a fixed number of elements of homogeneous type. The elements
in a section will all have identical primitive Java type, or they will all have
Object type (in the latter case the exact classes of the objects need not be
homogeneous within the section).

Each section has a short header in the primary payload, specifying the type
of the elements, and the number of elements in the section. For sections with
primitive type, the header is followed by the actual data. For sections with object
type, the header is the only representation of the section appearing in the primary
payload–the actual data will go in the secondary payload. After the primary
payload there is a secondary header. The secondary header defines the number
of bytes of data in the secondary payload. The secondary header is followed in
the logical message by the secondary payload. The mpjdev specification says
nothing about the layout of the secondary payload. In practice this layout will
be determined by the Java Object Serialization specification.

434 S.B. Lim et al.

4 Discussion

We have explored enabling parallel, high-performance computation–in particular
development of scientific software in the network-aware programming language,
Java. Traditionally, this kind of computing was done in Fortran. Arguably, For-
tran is becoming a marginalized language, with limited economic incentive for
vendors to produce modern development environments, optimizing compilers for
new hardware, or other kinds of associated software expected by today’s pro-
grammers. Java looks like a promising alternative for the future.

Java introduces implementation issues for message-passing APIs that do not
occur in conventional programming languages. One important issue is how to
transfer data between the Java program and the network while reducing over-
heads of the Java Native Interface. As contribution toward new low-level APIs,
we developed a low-level Java API for HPC message passing, called mpjdev. The
mpjdev API is a device level communication library. This library is developed
with HPJava in mind, but it is a standalone library and could be used by other
systems. We discussed message buffer and communication APIs of mpjdev and
also format of a message. To evaluate current communication libraries, we did
various performance tests. We developed small kernel level applications and a full
application for performance test. We got reasonable performance on simple ap-
plications without any serious optimization. We also evaluated a communication
performance of the high- and low-level libraries for future optimization.

References

1. HPJava project home page. www.hpjava.org.
2. Sang Boem Lim. Platforms for HPJava: Runtime Support for Scalable Programming

in Java. PhD thesis, Florida State University, June 2003.
3. Sang Boem Lim, Bryan Carpenter, Geoffrey Fox, and Han-Ku Lee. A device level

communication library for the hpjava programming language. In the IASTED In-
ternational Conference on Parallel and Distributed Computing and Systems (PDCS
2003), November 2003.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 435 – 441, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Object-Oriented Design and Implementations of
3G-324M Protocol Stack*

Weijia Jia Haohuan Fu and Ji Shen

Department of Computer Science, City University of Hong Kong
83 Tat Chee Avenue, Kowloon, Hong Kong, SAR China

itjia@cityu.edu.hk

Abstract. This paper describes an object-oriented design and efficient imple-
mentation of 3G-324M protocol stack for real-time multimedia transmission. In
particular, we discuss the implementations of 324M class hierarchical structure
that includes classes H.245 (control) and H.223 (multiplexing) protocols. Our
implementation is efficient and has been tested in a realistic 3G infrastructures
in Hong Kong as well as in some China industries for optimizations of process-
ing and transmission of real-time video, audio and data.

1 Introduction

The mobile communication market has grown with an explosive rate recent years.
The number of mobile subscribers worldwide increased from 300 million in 1997 to
800 million in 2001 [1]. With wider bandwidth of third-generation (3G) and increas-
ing number of multimedia service categories, it can be seen that the number of sub-
scribers is and will be having a high-speed increase, especially, when 3G is launched
in China in the near future.

3G wireless multimedia communications are particularly referred to as Interna-
tional Mobile Telecommunications 2000 (IMT-2000) that has been deployed and de-
veloped substantially. ITU-T H.324 [2] is an umbrella protocol defined by Interna-
tional Telecommunications Union (ITU) to enable multimedia communication over
low-bit rate terminals (in the following, we will drop “ITU-T” from the prefix of
standard names for simplicity). H.324 and several mobile specific annexes are usually
referred to as H.324M (M stands for mobility). The 3rd Generation Partnership Pro-
ject (3GPP) is a body that comprises wireless infrastructure, handset and service pro-
viders throughout the world. 3GPP has adopted the H.324M with some modifications
in codecs and error handling requirements to create the 3G-324M standard for circuit-
switched 3G networks. In order to support the enhanced and delay sensitive video
services among heterogeneous terminals, 3G video phones or terminals are required
to support 3G-324M protocol stack. 3G-324M currently operates with WCDMA air
interface, but can also operate on other 3G technologies because the 3G-324M call

* This effort is partially sponsored by City University of Hong Kong strategic grants 7001587,

7001709 and 7001777 and the National Basic Research Program (973) MOST of China under
Grant No. 2003CB317003..

436 W.J.H. Fu and J. Shen

setup is able to reuse the underlined air interface protocol that the hand-held device
uses. We have developed and implemented an efficient mobile multimedia transmis-
sion protocol stack based on 3G-324M standards using C++. This paper discusses
some efficient techniques and experiences of implementations for 3G-324M protocol
stack, especially about object-oriented approaches. Our implementations have been
tested in a realistic heterogeneous 3G communication environment in Hong Kong in-
frastructure and some China industries for transmission of real-time video, audio and
data and its performance is satisfactory.

The paper is structured into 5 sections. Sec. 2 introduces the 3G-324M protocol
stack. Object-oriented design, implementations and optimizations of control protocol
H.245 and data transmission multiplexing protocol H.223 in 3G-324M are discussed in
Sec. 3. Sec. 4 gives the performance analysis of the implementations. We summarize
our major results and experience and point out the future directions in Sec. 5.

2 H.324 and 3G-324M

The whole protocol stack of 3G-324M is shown in Fig. 1. ITU-T H.324 is a standard
made by ITU-T for low bit rate multimedia communications, while H.245 and H.223
are two main parts under H.324 and have given specific descriptions about the proce-
dures of message transformation and data transmission multiplexing. However, H.324
is originally defined for multimedia communication operated in Public Switched Te-
lephony Networks (PSTN), some of the specifications of this standard are not quite
appropriate for the mobile terminals with low processing capability and power-
constraints.

Video I/O
Equipment

User Data
Applications

Audio I/O
Equipment

Video Codec
H.263, [MPEG-4, H.261 ...]

Data Protocols
[V.14, LAPM, ...]

Audio Codec
3G-AMR, [G.723.1] Receive

Path Delay

H.245 CCSRL NSRP[LA
PM/V.42]

System
Control

Call Set-up

Fig. 1. 3G-324M Protocol Stack

H.324 and its annex C are referred to as H.324M for mobile terminals. Thus
H.324M is also an “umbrella standard” in respect with other standards which specify
mandatory and optional video and audio codecs, the messages to be used for call set-
up, control and tear-down (H.245 [3]) and the way that audio, video, control and other
data are multiplexed and demultiplexed (H.223 [4]). H.324M terminals offering audio

 Object-Oriented Design and Implementations of 3G-324M Protocol Stack 437

communication will support G.731.1 audio codec [10]. Video communication offered
in H.324M terminals will support H.263 [8] and H.261 [9] video codecs. H.324M
terminals offering multimedia data conferencing should also support T.120 protocol
[7]. In addition, other video and audio codecs and data protocols can optionally be
used via negotiation through exchange of the H.245 control messages. Note that the
differences between 3G-324M and H.324M mainly lie in codecs (voice by AMR-
Adaptive Multi Rate Speech Codec, and video by H.263 or MPEG-4) and error han-
dling requirements (H.223 Annex A and Annex B as mandatory) [14]. Therefore, 3G-
324M inherits H.324M basically but must use AMR for speech codec. The AMR
speech coder consists of the multi-rate speech coder, a source controlled rate scheme
including a voice activity detector and a comfort noise generation system, and an er-
ror concealment mechanisms to combat the effects of transmission errors and lost
packets [13].

3 OO Designs and Implementations of 3G-324M Protocol Stack

3.1 Object Class Structure of 3G-324 Protocol

In the 3G-324M protocol stack, the most upper-level interface is the H.324 class. The
system structure is illustrated in the following skeleton codes. The functions illus-
trated here will be detailed in the subsequent sections.

class H324
{ private:
 H245* h245; //pointer to H245 entity
 H223* h223; //pointer to H223 entity
public:
 void Start(); //This function starts the execution of H324.
 BOOL StartH245(); //This function starts the execution of H245.
 BOOL HandleVideo(BYTE* data, int size); //Interface for video and audio

handling.
 BOOL HandleAudio(BYTE* data, int size);
 H324(); //construction and destruction functions
 H324(CDialog* dlg);
 virtual ~H324();
}

Class H.324 holds a pointer to a H245 object and also a pointer to a H223 object.
Therefore, H223 and H245 objects can be regarded as the composition classes within
class H324. Similar to the design of class H324, classes H223 and H245 should pro-
vide the interface of method invocations for other classes as the H245 object has to
send the H.245 control messages through H223 object whereas H223 object must also
forward the receive the control messages in responding to the H245 object. Thus
H223 object maintains a pointer to the H245 objects in the instance variable m_pH245
and class H245 also maintains an interface to H223 using a pointer. For efficiency of
implementation, the interface inherits class H245_SE rather than H245 as an instance
(data) member within H245.

438 W.J.H. Fu and J. Shen

3.2 Hierarchy Class H.245

H.245 standard has been defined to be independent of the underlying transport
mechanism, but is intended to be used with a reliable transport layer, which provides
guaranteed delivery of correct data. H.245 specifies syntax and semantics of terminal
control messages as well as the procedures for in-band negotiation at the start or dur-
ing communication. The messages cover receiving and transmitting capabilities as
well as mode preference, logical channel signaling and control. The message syntax is
defined using ASN.1 formatted data [12] and is transformed into bit-stream based on
an ASN.1 encoding standard of Packed Encoding Rules (PER) [11].

H.245 defines a general message type MultimediaSystemControlMessage
(MSCM). Four major types of special messages are defined in MSCM as request, re-
sponse, command and indication. A request message results in a specific action and
requires an immediate response. A response message responds to a request message.
A command message requires an action but no explicit response. An indication mes-
sage contains information that does not require action or response. Messages with
various types are transformed into MSCM for uniform processing.

Fig. 3. Hierarchical class structure of H.245

In H.245, object Signaling Entity (SE) is referred to as a procedure that is responsi-
ble for special functions. It is designed as a state machine and changes its current state
upon reaction to an event occurrence. With the SE objects, H.245 class hierarchy is il-
lustrated in Fig. 3 in which all H245 procedures are packaged in H245 class. It has a
member variable of H245_MESSAGE which provides message definitions and opera-
tions. A member variable of X691 is used for PER encoding/decoding and 9 member
variables derived from H245_SE, each of which stands for one signaling entity object
in H.245. There is also a pointer referring to upper layer protocol H.324. The class hi-
erarchy can be further illustrated below:

H245_MESSAGE Class defines all the H245 messages and corresponding encod-
ing/decoding functions.

H245_SE and H245_*SE: H245_SE is an abstract class and specifies the basic fea-
tures and functions of a signaling entity object. H245_*SE implements H245_SE, real-
izing the procedures of individual signaling entities. Therefore, all subclasses
H245_*SE inherit H245_SE class. In summary, SE object maps to the following
SE objects:

 Object-Oriented Design and Implementations of 3G-324M Protocol Stack 439

H245_MSDSE MasterSlaveDetermination
H245_CESE CapabilityExchange
H245_LCSE LogicalChannel

In addition, Class H245_SE includes some functions used in each signaling entity
and inherited by the SE classes as shown below:

class H245_SE public H245
{ …
public:
void h245_receive_primitive(); // check primitive event
BOOL h245_send_message(void *msg,int len); // send message to the peer
H245_SE(); // constructor
virtual ~H245_SE(); // destructor
};

In each individual SE class, there are some structures, defining SE primitives and
status used in this SE. For example, in a CESE, the structure below stands for
TRANSFER.indications and records the primitive parameters as defined in H245
standard.

typedef struct H245_PRIMITIVE_DATA_TRANSFER_INDICATION

{
 ObjectID protocolIdentifier;
 MultiplexCapability multiplexCapability;
 _setof13 *capabilityTable;
 _setof14 *capabilityDescriptors;
} H245_PRIMITIVE_DATA_TRANSFER_INDICATION;

With the hierarchical design of the message processing, the implementation of the
protocol stack is very clear and efficient.

3.3 Class H.223

H.223 class provides low delay and overhead by using segmentation, reassembly and
combination of information from different logical channels into a single packet. It
performs the multiplexing of multimedia data into bit-streams before transmission to
an air-interface. H.223 consists of Multiplex (MUX) Layer and Adaptation Layer
(AL). AL is actually an interface for upper-layer applications and deals with different
sources separately. The MUX layer performs the actual multiplexing. In this layer,
data traffic from different sources can be multiplexed into one packet according to
some rules which are exchanged by two terminals during the initialization of commu-
nication. H223 class is designed to hold the following functions: (1) Provide sending
and receiving interface for video transmission, such as send/receive closing flags to
accomplish the level-setup procedure of H324 class and control messages for H245
class etc. (2) An interface to the multimedia devices or functions for handling the cap-
tured video/audio data, performing multiplexing, send them to the peer terminal, and
demultiplexing the video/audio data from the received data stream and forward them
to the upper-layer multimedia devices. The following figure shows the general struc-
ture of class H223.

440 W.J.H. Fu and J. Shen

Fig. 5. Class H223 and major instance variables

The pointer m_pH245 points to H245 object with the interface to notify H245 ob-
ject of incoming H.245 control messages. The pointer m_vCap, ponting to the Video-
Capturer class, indicates the interface to manage the operations (such as initialization,
start/stop of capturing, etc.) of the video capturing device. Pointers m_aRec and
m_aPly separately point to classes AudioRecorder and AudioPlayer to provide the in-
terface for managing the audio devices.

4 Conclusions

In our implementation, object oriented approach is used for efficient control and
modularization of overall protocol stack. Therefore, the complex structure of the im-
plementation is reduced. We have discussed the point-to-point multimedia transmis-
sion implementation for the 3G terminals. With the key technologies used mentioned
above, our implementation has gained a satisfactory performance. Currently we are
implementing the multipoint multimedia transmission using in the applications of
video conferencing or group meeting. The implementations of video-conferencing in
3G terminals can be a major challenge as multipoint communications require more re-
sources, facing the 64kbps for a single streaming in current 3G setting in Hong Kong.

References

[1] ITU-R Rec. PDNR WP8F, “Vision, Framework and Overall Objectives of the Future De-
velopment of IMT-2000 and Systems beyond IMT-2000”, 2002.

[2] ITU-T Rec. H.324, “Terminal for low bit rate multimedia communication”, March 2002.
[3] ITU-T Rec. H.245, “Control protocol for multimedia communication”, July 2003.
[4] ITU-T Rec. H.223, “Multiplexing protocol for low bit rate mobile multimedia communi-

cation”, July 2001.
[5] B. Han, H. Fu, J. Shen, P. O. Au and W. Jia, “Design and Implementation of 3G-324M -

An Event-Driven Approach”, IEEE VTC’04 Fall.
[6] H. Fu, B. Han, P. Au and W. Jia, “Efficient Data Transmission Multiplexing in 3G Mobile

Systems”, Globe Mobile Congress 2004.
[7] ITU-T Rec. T.120, “Data protocols for multimedia data conferencing”, 1996.
[8] ITU-T Rec. H.263, “Video coding for low bit-rate communication”, 1998.
[9] ITU-T Rec. H.261, “Video codec for audiovisual services at p×64kbit/s”, 1993.

 Object-Oriented Design and Implementations of 3G-324M Protocol Stack 441

[10] ITU-T Rec. G.723.1, “Speech coders: Dual rate speech coder for multimedia communica-
tions transmitting at 5.3 and 6.3 kbit/s”, 1996.

[11] ITU-T Rec. X.691, “Information technology–ASN.1 encoding rules–Specification of
Packed Encoding Rules (PER)”, 1997.

[12] ITU-T Rec. X.680, “Information Technology – Abstract Syntax Notation One (ASN.1) –
Specification of basic notation”, 1994.

[13] 3GPP TS 26.071 V4.0.0, “AMR Speech Codec; General Description”, 2001.
[14] 3GPP TS 26.111 V5.1.0, “Codec for circuit switched multimedia telephony service:

Modifications to H.324”, June, 2003.
[15] Ly Q., Huang B., Wang F., “The mechanism of ASN.1 encoding & decoding implementa-

tion in network protocols”, Proceeding of International Conference on Information Tech-
nology: Coding and Computing, pp 622-626, Apr. 2003.

Efficient Techniques and Hardware Analysis for
Mesh-Connected Processors

Wu Jigang1, Thambipillai Srikanthan1, and Schröder Heiko2

1 Centre for High Performance Embedded Systems,
Nanyang Technological University, Singapore, 639798

2 School of Computer Science and Information Technology,
RMIT, Melbourne, Australia

Abstract. This paper proposes efficient techniques to reconfigure a
multi-processor array, which embedded in a 6-port switch lattice in
the form of a rectangular grid. It has been shown that the proposed
architecture with 6-port switches eliminate gate delays and notably
increase the harvest when compared with one using 4-port switches. A
new rerouting algorithm combines the latest techniques to maximize
harvest without increase in reconfiguration time. Experimental results
show that the new reconfiguration algorithm consistently outperforms
the most efficient algorithm proposed in literature.

Keywords: Mesh, parallel processing, reconfiguration, fault-tolerance,
algorithm.

1 Introduction

The mesh-connected processor array has a regular and modular structure and
allows fast parallel implementation of most signal and image processing algo-
rithms. In this paper, the original array after manufacturing is called a host
array which may contain faulty elements. A degradable sub-array of the host
array, which contains no faulty element, is called a target array or logical array.
The rows (columns) in the host array and target array are called physical rows
(columns) and logical rows (columns), respectively. we consider the following
reconfiguration problem:

Given an m×n mesh-connected host array H , integers r and c, find a m′×n′

fault-free subarray T under the row and column rerouting scheme[4] such that
m′ ≥ r and n′ ≥ c.

In this paper, we focus on the design and analysis of efficient heuristic algo-
rithms for the problem since it is NP-complete[2]. Many related research results
have been presented. Recently, [2] studied the problems under different routing
constraints. [3] and [4] proposed the greedy algorithms and [5] improved the run-
ning time of the reconfigurationalgorithms in [4], without loss of performance. The
algorithms in [2-5] are based on the array connected by 4-port switches, and each
processor has two internal bypass links. In order to increase the harvest and to
minimize gate delays, we combine one 4-port switch and one bypass link to form

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 442–446, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient Techniques and Hardware Analysis for Mesh-Connected Processors 443

one 6-port switch. Unlike the old architecture, the new one supports rerouting two
neighboring elements lying in same physical row into same logical column to obtain
higher harvest. At the same time, there are no extra gate delay in bypass function
due to the introduction of a bypass link within the 6-port switch. In reconfigura-
tion algorithm, we present a new rerouting algorithm based on the architecture.
The time complexity of the new algorithm is controlled in the same order as that
of the algorithm in [4], and the performance improves significantly.

2 Architecture and Hardware Overhead

In old architecture (Fig.1, left), there is an extra two-gate delay when row (
column) bypass needed, and two neighboring elements lying in same physical
row cannot be rerouted into same logical column. If the element is faulty, it is
highly probable that the internal bypass links are also faulty.

column rerouting channelrow rerouting channel

column rerouting switchrow rerouting switch

bypass

switch

Fig. 1. 4 × 4 arrays linked by 4-port switches and by 6-port switches, respectively

We propose a new switch model to replace the 4-port switch model. The new
model combines one 4-port switch and one bypass link to form one 6-port switch,
which consists of pass gates to establish all possible connection pair among the
six input rails. In other words, any pair combination of the six ports can be used
to establish a pair wise connection. The only restriction is that no port can be
connected to more than 1 port. Internal bypass links through elements are not
involved as an element can be bypassed through tracks that run externally. This
ensures that gate delays are avoided when a faulty element is bypassed. Unlike
old architectures, the proposed architecture (Fig.1 right) is capable of allocating
two neighboring fault-free elements on the same physical row into same logical
column. The new architecture overcomes the drawbacks of previous approaches,
be it at the expense of a small increase in hardware.

In order to fully address the likely increase in the chip area, we deduce a
reasonable estimate on the likely penalty when the 4-port switches are replaced

444 W. Jigang, T. Srikanthan, and S. Heiko

with 6-port switches. Our analysis is based on the area complexity of about 1700
gates for a 4-port switch with an 8-bit bus [6]. In [6], the entire hardware cost
(in gates) of the m × m mesh array can be given as

G(m, p) = 1700m(m − 1) + (2160 + p)m2 + 3480m
= (3860 + p)m2 + 1780m.

The ratio of the switching circuits to the mesh array is formulated by

Oswitch(m, p) = G(m, 0)/G(m, p),

where p is the number of the gates for one processor. For an m × m mesh array
connected by 4-port switches,

Oswitch(m, p) = (3860m + 1780)/((3860 + p)m + 1780).

Assuming that the area of a 6-port switch is about 50% more than that for the
4-port switch, the ratio for the case of 6-port switch is given as 1.5(3860m +
1780)/((3860+ p)m + 1780). Now, assuming the gate count for a processor (i.e.,
p) to be 50000 gates, the chip area increases by a mere 3.59% for a 256 × 256
array with 6-port switches. Hence, following the traditional approach cited in the
literature [1-5], it is reasonable to ignore the additional area incurred by switches,
especially, for the case of that one processor is several orders of magnitude larger
than the switch.

3 Algorithms

The most efficient algorithm under the constraints of row and column rerouting
is the algorithm in [4], denoted as RCRT in this paper. The greedy algorithm
is based on the old architecture. The crucial procedure, called GCR, is used for
finding a target array that contains a set of selected logical rows. We improve
GCR in this section.

Suppose v is not available as it is faulty. Its upper (lower) neighbor is defined
as the element er(i, j), where i = row(v) − 1 (row(v) + 1), and j = col(v).
Let Adj(u) = {v : v ∈ Ri+1 and |col(u) − col(v)| ≤ 1}, where the elements in
Adj(u) are ordered in increasing column numbers for each u ∈ Ri. Our algorithm,
denoted as New GCR, attempts to connect the element u to the leftmost element
v of Adj(u) that has not been previously examined. In GCR[4], if this step fails
in doing so, a logical column containing the current element u cannot be formed
and backtracking occurs. But in New GCR, the upper (lower) neighbor of v
will be examined to compensate v whenever possible. The upper neighbor of v is
examined first. If the upper neighbor of v is not available, then the lower neighbor
is examined. New GCR backtracks to the previous element p, connected to u,
only if the local compensation fails. It then attempts to connect p to the leftmost
element of Adj(p) − {u} that has not been previously examined.

Fig.2 outlines New GCR and shows an running example for comparison be-
tween GCR and New GCR. Following the analysis for GCR, it can be deduced
that the running time of New GCR is linear.

Efficient Techniques and Hardware Analysis for Mesh-Connected Processors 445

Input: the host arrary H and the logical rows R0, R1, …, Rk-1

Output: the target array with n columns.
Procedure New_GCR(H, R0, R1, …, Rk-1, n)
begin
 Unmark each u in R0, R1, …, Rk-1; pred(u):=nil; n:=0;
 while there are unmarked elements in R0 do
 begin
 cur0 := the leftmost unmarked element in R0 ,
 find the initial cur in R0; mark cur;
 repeat
 if there are unmarked elements in Adj(cur)
 then begin
 v:= leftmost unmarked element in Adj(cur);
 compensate v with its neighbor;
 if (v is fault-free) and (
 row(cur)<row(v) or (
 row(cur)=row(v) and
 col(pred(cur)) ≠ col(v)))
 then begin pred(v):=cur; cur:=v; mark v end
 else Restore the changed elements
 into their original state;

 end /* of if */
 else if cur ∉ R1 then cur:=pred(cur); /* backtrack to p */
 until (cur∈ Rk-1) or (cur∈ R0);
 if (cur∈ Rk-1) then n:=n+1; /* new logical column obtained */
 end; /* of while*/
end.

12 13

11 22 23 24

31 33 34

43 44

41 51 52

62 53 63

14

3221

42

6461

54

Running result of New_GCR

11 12

21 22

31 32

42

51

62

41

61

52

Running result of GCR

Fig. 2. The formal description of New GCR and running example, in which GCR
produces a 6 × 2 target array while New GCR can produces one of 6 × 4

We can obtain New RCRT by replacing GCR in RCRT[4] with New GCR.
The time complexity of New RCRT is the same as that of RCRT as the time
complexity of New GCR is the same as that of GCR. The further improvement
for New RCRT is to employ the techniques in [5]. Assume that New GCR termi-
nates at the logical row Rβ in the previous iteration. Unlike RCRT, New RCRT
can directly uses Rβ as the row to be excluded in the current iteration. In fact,
the row Rβ should be excluded with higher priority than Rγ in the current it-
eration. If γ �= β, it is the row Rβ , not Rγ , that stops RCRT from constructing
a larger size submesh. Moreover, the implementation of this method of selecting
Rβ can be embedded into New GCR.

4 Experimental Results and Conclusions

We implemented New RCRT and RCRT in C on a personal computer—Intel
Pentium-III 500 MHz. The average performance comparisons of both algorithms
are shown in Fig.3, where harvest and degradation[4] for a range of faults are
highlighted. It can be see that the average harvest of New RCRT is greater
than 95% and the average degradation is less than 14% for each type of random
instances. In conclusion,the proposed architecture overcomes the drawback of
previously reported ones to provide better harvest through improved connectiv-
ity. Rerouting via internal bypass links is avoided to eliminate gate delays. New
techniques to enhance the performance of the new algorithm have been pro-

446 W. Jigang, T. Srikanthan, and S. Heiko

New_RCRT degrad. for max.

New_RCRT harvest for max.New_RCRT harvest for squa.

New_RCRT degrad. for squa.

RCRT harvest for max.RCRT harvest for squa.

RCRT degrad. for squa. RCRT degrad. for max.

 64 x 64 arrays

0%

20%

40%

60%

80%

100%

0.10% 1% 10%

128 x 128 arrays

0%

20%

40%

60%

80%

100%

0.10% 1% 10%

256 x 256 arrays

0%

20%

40%

60%

80%

100%

0.10% 1% 10%

512 x 512 arrays

0%

20%

40%

60%

80%

100%

0.10% 1% 10%

Fig. 3. Average harvest and degradation comparisons, 20 random instances with fault
size 0.1%, 1% and 10% (shown in x axis) for different sized arrays

posed to benefit from the new architecture. Experimental results show that the
proposed approach is superior to other alternatives reported in the literature.

References

1. T. Horita and I. Takanami, “Fault-tolerant processor arrays based on the 1.5-track
switches with flexible spare distributions”, IEEE Trans. on Computers, vol. 49, no,
6, pp. 542-552, June 2000.

2. S. Y. Kuo and I. Y. Chen, “Efficient reconfiguration algorithms for degradable
VLSI/WSI arrays,” IEEE Trans. Computer-Aided Design, vol. 11, no, 10, pp. 1289-
1300, Oct. 1992.

3. C. P. Low and H. W. Leong, “On the reconfiguration of degradable VLSI/WSI
arrays,” IEEE Trans. Computer-Aided Design of integrated circuits and systems,
vol. 16, no. 10, pp. 1213-1221, Oct. 1997.

4. C. P. Low, “An efficient reconfiguration algorithm for degradable VLSI/WSI ar-
rays,” IEEE Trans. on Computers, vol. 49, no. 6, pp.553-559, June 2000.

5. Wu Jigang and T. Srikanthan, “An Improved Reconfiguration Algorithm for Degrad-
able VLSI arrays,” Journal of Systems Architecture, vol.49, pp. 23-31, 2003.

6. M. Fukushi, S. Horiguchi, “Self-Reconfigurable Mesh Array System on FPGA”, in
Proc. of IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems, 2000, pp.240-248.

Author Index

Abawajy, J.H. 165, 184
Arul, Joseph M. 257
Aung, Khin Mi Mi 73

Badia, Rosa M. 214
Basri, Erhan 11
Buyya, Rajkumar 60

Cao, Jiannong 246
Carpenter, Bryan 429
Casey, John 50
Cela, José M. 214
Cérin, Christophe 132
Chang, Chia-Fu 315
Cheng, Hsiang-Yao 315
Chen, Wenguang 293
Chuang, Wang 159
Coddington, P.D. 406

Dines, Eric 125

Farivar, R. 287
Fazeli, M. 287
Feng, Dan 240
Ferreto, Tiago 232
Fox, Geoffrey 93, 429
Frenz, Stefan 23
Fu, Haohuan 435

Goeckelmann, Ralph 23
Goscinski, Andrzej 118, 125, 149, 204
Gregorio, J.A. 396
Grove, D.A. 406
Guan, Zhanpeng 370

Heiko, Schröder 442
Hsu, Chia-Wen 315
Hsu, Ching-Hsien 40, 83, 315
Huang, Jiumei 34
Hung, Chung-Yun 257
Hung, Sheng-Shiang 315
Hwang, Grace J. 257

Ilavarasan, E. 193
Ilushechkina, Ljudmila 11
Izu, C. 396

Jia, Weijia 435
Jigang, Wu 442
Jin, Hai 103

Kaplan, Ali 93
Koh, Melvin 351
Koskas, Michel 132
Kostin, Alexander 11

Labarta, Jesús 214
Lanham, E.J. 34
Lee, DongWoo 225
Lee, Han-Ku 429
Lee, Jong Sik 416
Levy, David 326, 336
Li, Kuan-Ching 40, 83, 315
Lim, Sang Boem 93, 429
Lin, Eric 257
Lin, Guan-Hao 83
Liu, Chun-Chieh 315
Liu, Fengjung 1
Liu, Hengzhu 267
Li, Yin 112
Long, Dongyang 370
Lottiaux, Renaud 23

Ma, Fanyuan 112
Mahilmannan, R. 193
Maloney, Andrew 118
Messig, Michael 149
Miguel-Alonso, J. 396
Morin, Christine 23
Mo, Ze-Yao 174

Otero, Beatriz 214

Pallickara, Shrideep 93
Pan, Yu-Hwa 315
Park, Jong Sou 73
Park, Kiejin 73
Peng, Liang 351
Pierce, Marlon 93

Qinxue, Jin 159

448 Author Index

Ramakrishna, R.S. 225
Ren, Ren 422
Rose, César De 232

Sarbazi-Azad, H. 287
Schikuta, Erich 277
Schoettner, Michael 23
Schulthess, Peter 23
See, Simon 351
Seneviratne, Sena 326, 336
Shen, Ji 435
Shi, Wei 357
Song, Jie 351
Srikanthan, Thambipillai 442
Sun, Jiachang 301

Tang, Yu 267
Tan, QingPing 139
Tao, Zhan 345
Thambidurai, P. 193

Valuev, Ilya 309
Venugopal, Srikumar 60

Wang, Changji 370
Wang, Hsiao-Hsi 315
Wang, Tao 293
Wong, Adam K.L. 204
Wu, Dan 370
Wu, Song 103
Wu, Weigang 246

Xiang, Yang 357
Xiao, Yong 139
Xingshe, Zhou 345
Xiong, Muzhou 103
Xu, Cheng-Zhong 246
Xu, Shiming 293

Yan, Chen 345
Yang, Chao-Tung 40, 83, 315
Yang, Chu-sing 1
Yang, Guang-Wen 174
Yang, I-Hsien 40
Yang, Jin 246
Yang, Xuejun 267
Yang, YanPing 139
Yanping, Chen 159
Yu, Shui 376

Zeng, Lingfang 240
Zengzhi, Li 159
Zhang, Bao-Yin 174
Zhang, Liang 112
Zhang, Yimin 293
Zhang, Yingying 34
Zhao, Ying 34
Zheng, Wei-Min 174
Zheng, Weimin 293
Zhigang, Liao 345
Zhongwen, Li 363
Zhou, Haifang 267
Zhou, Wanlei 34, 50, 357, 376
Zhu, Shihua 422
Zhu, Weiping 386

	Frontmatter
	Improving Concurrent Write Scheme in File Server Group
	A Comparative Performance Study of Distributed Mutual Exclusion Algorithms with a Class of Extended Petri Nets
	A Practical Comparison of Cluster Operating Systems Implementing Sequential and Transactional Consistency
	Clock Synchronization State Graphs Based on Clock Precision Difference
	A Recursive-Adjustment Co-allocation Scheme in Data Grid Environments
	Reducing the Bandwidth Requirements of P2P Keyword Indexing
	A Deadline and Budget Constrained Scheduling Algorithm for eScience Applications on Data Grids
	A Survivability Model for Cluster System
	Localization Techniques for Cluster-Based Data Grid
	GridFTP and Parallel TCP Support in NaradaBrokering
	2-Layered Metadata Service Model in Grid Environment
	pKSS: An Efficient Keyword Search System in DHT Peer-to-Peer Network
	A Comparative Study at the Logical Level of Centralised and Distributed Recovery in Clusters
	Toward Self Discovery for an Autonomic Cluster
	Mining Traces of Large Scale Systems
	Setup Algorithm of Web Service Composition
	Self Healing and Self Configuration in a WSRF Grid Environment
	Study on Life Cycle Model of Dynamic Composed Web Services
	Fault-Tolerant Dynamic Job Scheduling Policy
	An Efficient Dynamic Load-Balancing Algorithm in a Large-Scale Cluster
	Job Scheduling Policy for High Throughput Grid Computing
	High Performance Task Scheduling Algorithm for Heterogeneous Computing System
	Execution Environments and Benchmarks for the Study of Applications' Scheduling on Clusters
	Data Distribution Strategies for Domain Decomposition Applications in Grid Environments
	Inter-round Scheduling for Divisible Workload Applications
	Scheduling Divisible Workloads Using the Adaptive Time Factoring Algorithm
	Adaptive Policy Triggering for Load Balancing
	Parallel Algorithms for Fault-Tolerant Mobile Agent Execution
	Design and Multithreading Implementation of the Wave-Front Algorithm for Constructing Voronoi Diagrams
	A Proposal of Parallel Strategy for Global Wavelet-Based Registration of Remote-Sensing Images
	Performance Analysis of a Parallel Sort Merge Join on Cluster Architectures
	Parallel Clustering on the Star Graph
	Hierarchical Parallel Simulated Annealing and Its Applications
	Multi-color Difference Schemes of Helmholtz Equation and Its Parallel Fast Solver over 3-D Dodecahedron Partitions
	GridMD: Program Architecture for Distributed Molecular Simulation
	Visuel: A Novel Performance Monitoring and Analysis Toolkit for Cluster and Grid Environments
	Introduction to a New Tariff Mechanism for Charging for Computer Power in the Grid
	Host Load Prediction for Grid Computing Using Free Load Profiles
	Active Link: Status Detection Mechanism for Distributed Service Based on Active Networks
	Performance Monitoring for Distributed Service Oriented Grid Architecture
	Distributed Defense Against Distributed Denial-of-Service Attacks
	Security and Safety Assurance Architecture: Model and Implementation (Supporting Multiple Levels of Criticality)
	Modeling and Analysis of Worm and Killer-Worm Propagation Using the Divide-and-Conquer Strategy
	An Efficient Reliable Architecture for Application Layer Anycast Service
	A Distributed Approach to Estimate Link-Level Loss Rates
	Evaluation of Interconnection Network Performance Under Heavy Non-uniform Loads
	Analytical Models of Probability Distributions for MPI Point-to-Point Communication Times on Distributed Memory Parallel Computers
	Communication Data Multiplexing in Distributed Simulation
	Novel Adaptive Subcarrier Power and Bit Allocation Using Wavelet Packet Parallel Architecture
	A Low--Level Communication Library for Java HPC
	Object-Oriented Design and Implementations of 3G-324M Protocol Stack
	Efficient Techniques and Hardware Analysis for Mesh-Connected Processors
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

