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Preface 

There are many applications that require parallel and distributed processing to allow 
complicated engineering, business and research problems to be solved in a reasonable 
time. Parallel and distributed processing is able to improve company profit, lower 
costs of design, production, and deployment of new technologies, and create better 
business environments. The major lesson learned by car and aircraft engineers, drug 
manufacturers, genome researchers and other specialist is that a computer system is a 
very powerful tool that is able to help them solving even more complicated problems. 
That has led computing specialists to new computer system architecture and 
exploiting parallel computers, clusters of clusters, and distributed systems in the form 
of grids. There are also institutions that do not have so complicated problems but 
would like to improve profit, lower costs of design and production by using parallel 
and distributed processing on clusters.  

In general to achieve these goals, parallel and distributed processing must become 
the computing mainstream. This implies a need for new architectures of parallel and 
distributed systems, new system management facilities, and new application 
algorithms. This also implies a need for better understanding of grids and clusters, 
and in particular their operating systems, scheduling algorithms, load balancing, 
heterogeneity, transparency, application deployment, which is of the most critical 
importance for their development and taking them by industry and business. 

ICA3PP has been a premier conference that has brought together researchers and 
practitioners from academia, industry and governments around the world to advance 
the theories and technologies of parallel and distributed computing. Previously, 
ICA3PP conferences have been held successfully in Brisbane, Singapore, Melbourne, 
Hong Kong and Beijing.  

ICA3PP 2005 returned to Melbourne with the main focus on the most critical areas 
of parallel and distributed computing: operating systems and middleware, fault-
tolerant systems, scheduling and load balancing, algorithms, tools and environments, 
and communication and networks. 

In total, the conference received 98 papers from researchers and practitioners from 
15 countries. Each paper was reviewed by at least three internationally renowned 
referees and selected based on their originality, significance, correctness, relevance, 
and clarity of presentation. Among the high quality submissions, 27 long papers and 
25 short papers were accepted. All of the selected papers are included in the 
proceedings. After the conference, the proceedings editors will recommend some 
high quality papers from the conference to be published in a special issue of an 
international journal. 

We are delighted to be able to host two well-known international scholars, 
Professor Ian Foster and Professor Zhiwei Xu, who delivered the keynote speeches.  



Preface VI 

We would like to take this opportunity to thank all the authors for their 
submissions to the conference. Many of them have traveled some distance to 
participate in the conference. We also thank the Program Committee members and 
additional reviewers for their efforts in reviewing the large number of papers. Thanks 
also go to the local conference organizers for their great support. 

Last but not least, we would like to express our gratitude to all of the organizations 
who have supported our efforts to bring the conference to fruition. We are grateful to 
the IEEE Technical Committee on Scalable Computing for the cooperation; and to 
Deakin University, NICTA and Alexander Technology for their sponsorships and 
assistance. 

October 2005 Michael Hobbs, Andrzej Goscinski and Wanlei Zhou 
 Melbourne,  
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Abstract. The explosive growth of the Web contents has led to increasing at-
tention on scalability and availability of file system. Hence, the ways to im-
prove the reliability and availability of system, to achieve the expected reduc-
tion in operational expenses and to reduce the operations of management of sys-
tem have become essential issues. A basic technique for improving reliability of 
a file system is to mask the effects of failures through replication. Consistency 
control protocols are implemented to ensure the consistency among replicas. In 
this paper, we leveraged the concept of intermediate file handle to cover the 
heterogeneity of file system and proposed an efficient data consistency control 
scheme supporting dependence checking among writes and management of out-
of-ordered requests for file server group. Finally, the results of experiments 
proved the efficiency of the proposed consistency control mechanism. Above 
all, easy to implement is our main design consideration. 

1   Introduction 

The explosive growth of the Web contents has led to increasing attention on scalabil-
ity and availability of file system. A basic technique for improving reliability of file 
system is to mask the effects of failures by replication. There are two major ap-
proaches of building a highly reliable file system: hardware replication approach and 
software replication approach. In a distributed environment, it is not always necessary 
to use special hardware for improved reliability. The computers connected by the 
high-speed network are a natural resource of duplicates. The software replication 
approach replicates file systems on workstations in the network. Consistency control 
protocols are designed to ensure the consistency among replicas. 

2   Related Works 

Many Distributed File systems, such as intermezzo[1], Coda[2], Deceit[3], Ficus [4], 
RNFS[5] and Pangaea[6], implemented reliable file system services through software 
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replication approach. In particular, FSG[7,9,10], RNFS and Deceit are NFS-based 
systems. JetFile[8] and Coda are the instances of multicast-based file systems.   

2.1   Overviews of Network File System  

The Network File System, NFS, is the most popular distributed file system developed 
by SUN Microsystems. Each server computer can serve an arbitrary number of the 
sub-tree in its local file system. Clients are able to mount the exported sub-trees, link-
ing then to its own file system, using the same semantics valid while mounting physi-
cal local devices. Its main features are  

I. It is a "stateless" protocol. A server does not need to maintain any proto-
col state information about any of its clients to function correctly.  

II. The NFS protocol is idempotent. Because of this and the statelessness 
property of NFS, what a client has to do for recovery from the crashed 
server is simply trying the failed RPC until the server reappears. 

III. A client accesses a file using a handle, called fHandle, obtained from the 
server as a result of a LOOKUP operation. 

IV. Updates are synchronous with respect to failures. If a write RPC com-
pletes, the client is assumed that data has been written. Again, this is a 
property not met by all NFS implementations. 

Because of the stateless property of NFS, it could reduce the overhead of recovery 
after system crashing and make our implementation easier.  

2.2   Multicast  

In IP multicast [11] there are 228 (2112 in IPv6) distinct multicast channels. Channels 
are named with IP addresses from a subnet of the IP address space. IP packets are 
only delivered with best effort. To multicast a packet, the sender uses the name of the 
multicast channel as the IP destination address.  

Scalable Reliable Multicast, SRM, [12] is designed to meet only the minimal defi-
nition of reliable multicast, i.e., eventual delivery of all data to all group members. As 
opposed to ISIS [13], SRM does not enforce any particular delivery order. Delivery 
order is to some extent orthogonal to reliable delivery and can instead be enforced on 
top of SRM. SRM is logically layered above IP multicast and also relies on the same 
lightweight delivery model. To be scalable, it does not make use of any negative or 
positive packet acknowledgements, nor does it keep any knowledge of receiver group 
membership. Applications will often be able to recover after a period pf packet loss 
by only requesting to current data. Thus, it is not always necessary to catch up on 
every missed application data packets.  

3   System Design 

In system design, we assumed the fail-stop property be approximated by the kernel 
and the hardware. Additionally, we also assumed that the servers are connected by a 
Local Area Network and the network is not subject to partitions. 



 Improving Concurrent Write Scheme in File Server Group 3 

3.1   Overview of File Server Group, FSG  

In designing system, the collection of replicated servers is treated as a group, assigned 
a group IP address. The IP address will be used by the underlying multicast protocol 
to deliver messages to all servers in this group. The system model is shown in Fig. 1. 
The nodes in this model are not limited to be homogeneous processors.  

Web Server 
(w3)

NFS Client

File server group 1 File server group 2

Web Server 
(w2)

NFS Client

Web Server 
(w1)

NFS Client

 

Fig. 1. System Model 

In FSG system, a user on the client machines uses the "mount" command to con-
nect to the sever group. The main difference from the traditional UNIX mount com-
mand is that the "server:pathname" parameter is replaced by "multicast IP ad-
dress:pathname". An example is made below, which [aa.bb.cc.dd] is broadcast IP 
address, /usr1 is an exported directory in server group and /mnt is the mount  
directory. 

Syntax :  
#mount [ -F nfs ] [-mrO] [ -o suboptions ] server:pathname mount_point 
Example :  
 #mount aa.bb.cc.dd:/usr1 /mnt 

After the client is connected the server group, the user can read/write files in the 
replicated servers just like normal UNIX local files. In UNIX system, users perform 
read/write operations through file handles, fhandle. Each opened file is assigned a 
fHandle which is a unique file index assigned by the server to identify an opened file. 
Since files are replicated in the FSG system, each replicated server will generate its 
own fHandle for that opened file. However, each client can only recognize one. To 
solve this problem, we leveraged the concept of intermediate file handle, I_fHandle, 
proposed previously in papers [7,9]. The illustration of the scenario of the new mount 
procedure is not repeated here for the space limitation. 

3.2   The Structure of Mapping Table  

The traditional content of a file handle is composed of device number, the inode num-
ber, and a generation number for the inode. Obviously, it is machine-dependent. So, 
we proposed the intermediate file handles to mask the heterogeneity of file systems. 
An I_fHandle consists of 4 items, client's IP address, a mount number, a sequence 
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number and an incremental number. The Client_IP_addr is used to distinguish differ-
ent clients. The Seq_number and the Mount_number respectively represent different 
files in the mount directory and the order of different mount. The Inc_number item is 
to represent different components in the multi-component LOOKUP request 
[14,20,21].  

Each replicated server maintains a mapping table to map I_fHandle into corre-
sponding fHandle. While a client tries to mount a remote directory, it has to issue 
firstly a mount command to the server group. As receiving the mount request from a 
client, the server creates an Entry Table for the client as shown at the most left hand 
side of Fig. 2. Within the Entry Table, the LOOKUP column is used to keep the 
latest token for LOOKUP requests. To ensure that the unique and consistent 
I_fHandle be generated in each server, the LOOKUP operations must be performed 
sequentially.  

In the mapping table for each client, it contains two items, I_fhandle and fhandle. 
In general, a file server uses the fhandle to locate the corresponding information in the 
target table. A file server used the Out_Token field in the target table to keep the latest 
updated tokens of each files and the name field to represent the file/directory name. 
The Done_Token field is deployed to record the maximum token of completed re-
quests for the implementation of consistency control scheme. 
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16
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Fig. 2. The structure of a Mapping Table 

3.3   The Process of a GETTOKEN Request   

In this section, we illustrated how the sequencer constructs the tokens for 
GETTOKEN requests. Since NFS is an UDP-based protocol, timeout and retransmis-
sions are used to take care of lost messages and transient network failure. However, 
retransmissions can cause the same request to be executed twice on the server and this 
is unacceptable for non-idempotent requests. A skill to detect duplicate requests is to 
package token numbers into all request messages.  
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Table 1. RPC request list of a File Server Group 

RPC request Action Nature Idempotent 
GETATTR To get file attributes Unicast Yes 
SETATTR To set file attributes Multicast Yes 
LOOKUP To look up file name Multicast No 
READLINK To read from symbolic link Unicast Yes 
READ To read from file Unicast Yes 
WRITE To write to file Multicast Yes 
CREATE To create file Multicast Yes 
REMOVE To remove file Multicast No 
RENAME To rename file Multicast No 
LINK To create link to file Multicast No 
SYMLINK To create symbolic link Multicast Yes 
MKDIR To create directory Multicast No 
RMDIR To remove directory Multicast No 
READDIR To read from directory Unicast Yes 
STATFS To get file system attributes Unicast Yes 
GETTOKEN To get a token for write Multicast No 
SYNC To sync. Server group.  Multicast Yes 

Rq∈CRITICAL

Rq==LOOKUP

Last_Token>
Last_critical_T

Cur_T.Maj_seq=O_counter++;
Cur_T.Dep=Last_critical_T;
Last_critical_T=Cur_T.Maj_seq;

Cur_T.Maj_seq=O_counter++;

Last_Token=Entry[Client].Lookup;
Cur_T.Min_seq=0;

Entry[Client].Lookup++;

Cur_T.Min_seq=upper(S/Block);
Last_Token=SeekDep(I_fh);

Cur_T.Dep=Last_Token;Cur_T.Dep=Last_critical_T;

Update_Dep(I_fh,O_counter);

GETTOKEN(Proc_type Rq, I_fhandle I_fh,int S)

Received by Sequencer

Yes

Yes

Yes

No

No

No

Return Cur_T;

 

Fig. 3. Flow Chart of a GETTOKEN procedure of Mode 2 in the Sequencer 

In Table 1, these RPC calls are classified into 2 types, idempotent and non-
idempotent. Before all of update requests including LOOKUP request are performed, 
they must issue a GETTOKEN request to ensure these requests be executed in the 
same order. For simplicity, these are restricted to be executed sequentially. However, 
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such a simple scheme causes the poor performance. Therefore, based on the token-
based mechanism, we proposed an efficient consistency control scheme. We classi-
fied these update requests in Table 1, into two sets, CRITICAL and DEPENDENCY. 
The servers cannot decide efficiently the dependency of requests in the CRITICAL 
set with merely message header. But, the target files of requests in the 
DEPENDENCY set are determinate. These sets are listed below. 

Set CRITICAL ={REMOVE, RENAME, LINK, MKDIR, RMDIR, GETTOKEN} 
Set DEPENDENCY ={SETATTR, LOOKUP, WRITE, CREATE, SYMLINK} 

typedef struct Token { 
 int Gen_Number; 

 int Maj_Seq; 
 int Min_Seq; 

} Token; 

typedef struct Out_Token { 
 Token Out; 
 Token Dep; 

} Out_Token; 

int Block;    //file system ‘s Block Size or MTU considered 
int SeekDep(I_fhandle I_fh); //To return the out_token in Target Table with 

I_fh. 
Update_Dep(I_fhandle I_fh, Token T); //Update the Out_token in Target Table  
Out_Token GETTOKEN(Proc_type Rq,I_fhandle I_fh, int S); 
 // Proc_type R : NFS operation type; 
 //I_fhandle I_fh : which file a client want to access.  
 // int S: Data Size 
Token Last_critical_T; // The last token assigned to CRITICAL requests. 
Out_Token Cur_T;  // GETTOKEN() procedure return to caller 
Token Last_Token;   
Entry[clients]; // Entry table for the client’s state as shown in Fig. 3 

The processing of a GETTOKEN procedure in the sequencer is shown in Fig. 3. 
When receiving a GETTOKEN request, the sequencer will firstly check if Proc_type 
parameter, Rq, is a CRITICAL request. If true, the O_counter increases one, the 
Cur_T.Out. Maj_Seq is assigned with the O_counter, the Cur_T.Dep is set to the 
Last_critical_T, assigned to last CRITICAL request and the Last_critical_T is set to 
the O_counter. At last, the Cur_T is returned. Otherwise, if Proc_type parameter, Rq, 
is a LOOKUP request, the Cur_T.Dep is set to the last token, which the sequencer 
ever dispatched for LOOKUP request, and update the lookup field of the client’s entry 
table in Fig. 3 with the new token, Cur_T.Out. Else, the Out_Token counter, the last 
token ever assigned for accessing the I_fh, will be found out in the target table and the 
Cur_T.Dep is assigned with the maximum of the Out_Token and Last_critical_T. 
Then, if the required data size is greater than 0, the sequencer will set the minor se-
quence number, Cur_T.Min_seq, to upper(Required Size/Block). Finally, the Cur_T  
is returned to the caller. 

3.4   Consistency Control Mechanism   

Concurrent write sharing is achieved in some variants of NFS [15,16,17,18]. The 
monolithic server system [7] suffered from the poor system utilization due to the lack 
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of dependence checking among writes and management of out-of-ordered requests. 
Based on the deployment of control window [10], there are 3 modes designed to keep 
the data consistency among replicas and illustrated below: 

Mode 1: Strictly global sequential write scheme 
In this mode, proposed previously in [7], the Sequencer generates tokens for 
each GETTOKEN requests without considering which file or directory is ac-
cessed. And, each server executes sequentially each WRITE requests. Such a 
scheme is simple and easy to implement but gets poor performance.  

Mode 2: Sequential write scheme 
 In Mode 2, proposed in [10], the Sequencer considers which file or directory to 
be accessed to generate one Out_token for each GETTOKEN requests. In Fig. 
4, it describes the executions of multiple writes with Mode 2. Client 1 acquires 
an Out_Token (5,4) which means the request with Token (5) is executed only 
when I_Counter is greater than Token(4). Thus, the Out_Token(6,2) can be exe-
cuted before Out_Token(5,4).   

Server 1 Server 2
Sequencer

Client 1

At least 
One reply

GETTOKEN()

Client 2

GETTOKEN()

Reply TOKEN(5,4)

At least 
One reply

I_Counter=4
O_Counter=4

I_Counter=4
O_Counter=5

Reply TOKEN(6,2)

Write with Token(5,4) Write with Token(6,2)

I_Counter=4

I_Counter=4

I_Counter=4
O_Counter=6

Execute& Reply
I_Counter=6

Execute&Reply
I_Counter=4

 

Fig. 4. The executions of multiple WRITE requests. (Mode 2) 

Mode 3: Concurrent write scheme 
The new consistency control scheme in Fig. 5 is designed to support “concur-
rent write” on the server side. It mainly utilized the idempotent property of NFS 
write operations. While an idempotent write request comes, the server will 
check if the Dep token is completed or not. If done, the server will execute this 
request ahead and check if any executed ahead requests with the greater tokens 
exist, which updated the same blocks as the current request did. If exists, the 
status of these requests are set to Dirty. That is, if the Done_token field in Tar-
get Table is greater than the current token, it means the current update request 
may be conflict with the executed ahead update requests. The executed ahead 
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Updates are set to Dirty. In this mode, its main difference of the GETTOKEN 
processing from Mode 2 is the Dep token is set to the latest token, ever assigned 
to last CRITICAL requests, not the token acquired for the same file. 

I_counter= 0

Idempotent Request

Executed

Dirty

Exe Token: (Dep token, Seq token)
$file handle
#block_number

I_counter= 1

(0,8)$1#2(0,1)$1#1

I_counter= 1

(5,8)$1#2(0,8)$1#2(0,5)$1#2(0,1)$1#1

(0,1)$1#1 (0,5)$1#2 (0,8)$1#2

(a)

(b)

(c)

 

(a). Two WRITEs with (0,1) and (0,8) tokens arrive and attempt to write different blocks at same file. 

They are independent, so they can be executed individually 

(b). One WRITE with (0,5) token arrives and attempts to write block 2 in a file whose handle is 1.  

(c). The server will look forward to check if the assess area is same and set the status of request to dirty.  

Fig. 5. Examples of concurrent write  

4   Experimental Results for Consistency Control Schemes 

Due to the synchronization property of RPC calls, each client needs to send-and-wait 
for each requests processing. On our experimental programs, the average time for 
writing a 200K-byte file and the averaged RPS, a client contributing to a server, are 
shown in Table 2. 

Table 2. The averaged time and RPS for a client contributing to a server on writing a 200K-
byte file. (Timeout=200ms) 

File Size (byte) Avg. RPS Time (sec)
200K 66.7 3.0 

In this experiment, there are five Pentium-4 computers which are all homogenous, 
running on Win2K server OS and connected with Fast Ethernet Switch. Within them, 
two act as the clients, two as servers and one as the sequencer respectively. Each 
client host is assigned separately with 2 and 4 processes as NFS Clients. Each client 
writes sequentially 5 files, chosen randomly from 4 files. Additionally, the data size is 
set to 1K bytes and the timeout value is 200 ms.  
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Table 3. The average time to write 5 200K and 400K bytes files using different consistency 
control Modes. (Timeout=200ms) 

Size (byte) No of Clients Mode 1(sec) Mode 2 (sec) Mode 3 (sec) 
1 3.0 3.0 3.0 
2 5.1 3.8 3.8 

4 12.0 7.8 7.1 
200k 

8 68.7 12.8 10.6 

1 6.0 6.0 5.9 

2 9.1 8.2 7.3 

4 25.1 15.4 14.1 
400k 

8 181.2 24.0 22.9 

The average time to write 5 200K/400K bytes files using different consistency con-
trol modes are shown in Table 3. The 5 files are randomly selected from previously 
installed 10 files in client hosts. It explains that the more the number of clients in-
crease, the worse the access time using strictly global sequential write scheme, Mode 
1, gets. But, the Mode 2 and Mode 3, which support dependence checking, have much 
better performance than Mode 1. 

5   Conclusion 

In this paper, we had leveraged the concept of intermediate file handle to cover the 
heterogeneity of replicated file system. Based on this concept, a decentralized consis-
tency control scheme is designed to achieve concurrent writing and improvement of 
utilization in File Server Group. The results of experiment revealed that the new con-
sistency control schemes, Mode 2 and Mode 3, are able to improve the system effi-
ciency. As illustrated in the paper [19], most instances of write sharing can be pre-
dicted easily, and they demand consistency only within a window of minutes. Thus, in 
FSG system, the SYNC request is deployed to keep the consistency among duplica-
tion when an out-of-ordered request comes. Above all, easy to implement is our main 
design consideration. 
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Abstract: A few algorithms of distributed mutual exclusion are discussed, their 
unified model in terms of a finite-population queuing system is proposed, and 
their simulation performance study is presented with the assumption that they 
use multicast communication if possible. To formally represent the algorithms 
for simulation, a class of extended Petri nets is used. The simulation was done 
in the simulation system Winsim based on this class of  Petri nets. 

1   Introduction 

Distributed mutual exclusion serializes the access of a group of processes, running in 
different nodes of a distributed system, to a shared resource (SR), with the exclusive 
use of SR by no more than one process at a time. The part of the process program 
which deals with SR is usually called a critical section. 

During more than past 20 years, a number of approaches and solutions to the 
problem have been proposed.   One of the first solutions is due to Lamport [1]. In 
subsequent works of Ricart and Agrawala [2], Maekawa [3], Suzuki and Kasami [4], 
Sanders [5], Trehel and Naimi [6], Raymond [17], Agrawal and Abbadi [7], and 
Singhal [8], new schemes and algorithms for distributed mutual exclusion were 
described, and the theoretical foundations of the problem were laid down. Different 
classification frameworks and comparative analysis of distributed mutual exclusion 
algorithms proposed up to the beginning of 1990’s can be found in [9], [10] and [11]. 

Since the middle of 1990’s,  more distributed mutual exclusion algorithms have 
been developed. Some of them are extensions or modifications of the previously 
designed algorithms [12], [13], while others represent new proposals and schemes 
[14], [15]. 

Since the theoretical analysis of distributed mutual exclusion algorithms often does 
not yield exact comparative information, much attention of researchers was paid to 
simulation studies [11], [16]. As a rule, in analytical and simulation models of 
distributed mutual exclusion algorithms, the unicast (point-to-point) mode of 
communication between processes was assumed. The use of this mode was dictated 
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by  the state of the network communication technology of the past. The progress in 
this area opens new possibilities for construction of distributed mutual exclusion 
algorithms. In particular, the use of  multicast communication  [19], [20] gives the 
possibility to make many previously developed mutual exclusion algorithms much 
more efficient with respect to communication traffic. 

In this paper, four often cited distributed mutual exclusion algorithms are analyzed 
and simulated with the assumption that they use multicast communication between 
involved processes where possible, instead of unicast communication as was assumed 
by the authors. For the study, the algorithms of Ricart and Agrawala [2], Suzuki and 
Kasami [4], Singhal [8], and Naimi, Trehel and Arnold [12] were chosen. In addition, 
a novel distributed mutual algorithm is described and compared with the above listed 
algorithms. All the algorithms are considered in terms of a finite-population queuing 
system. For the description of simulation models, a class of extended Petri nets was 
used, and simulation was carried out in a simulation system based on this class of 
Petri nets. 

The rest of the paper is structured in the following way. Section 2 presents a system 
model and assumptions used in the analysis and simulation of  algorithms of 
distributed mutual exclusion. Section 3 outlines four published algorithms of 
distributed mutual exclusion. In Section 4, a novel distributed mutual exclusion 
algorithm is described in some detail.  Finally, Section 5 contains the results of 
simulation study of all the algorithms and the discussion of these results. 

2   System Model and Assumptions 

When a group of N processes competes for the mutually exclusive use of some shared 
resource (SR), the whole system can be logically modeled as a finite-population 
queuing system with N clients and one non-preempted SR server. According to this 
model, each client process performs some application-specific task as a sequence of 
steps (steps of main work or thinking). At the end of each step of main work, the 
process generates a request for SR, sends it to the SR server for subsequent handling, 
and goes to sleep. Handling of the request by the SR server can be viewed as the use 
of SR by the process. The SR server extracts requests from its input queue for 
servicing according to the FIFO order or based on some priority scheme that depends 
on the concrete algorithm. After the servicing of the request has been completed, the 
SR server sends its response back to the client to awake it and to force it to proceed 
with the next step of main work. It should be noted that, in the distributed mutual 
exclusion system, there is actually no explicit SR server. The functionality of the 
server is carried out by a client process every time its request for SR is granted. 

The model of distributed mutual exclusion in terms of a finite-population queuing 
system simplifies analysis and comparison of different algorithms, because well 
known performance measures of a queuing system can be used to characterize them. 
However, having the same general model in terms of a queuing system, distributed 
mutual exclusion algorithms differ in the way the clients’ requests are actually 
communicated to the SR server in the underlying network and how the server informs 
the clients about the completion of the service. Therefore, a queuing system can be 
considered as an idealized model of distributed mutual exclusion algorithms. Since, in 
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theory, queuing systems are considered as centralized objects, they do not take into 
account communication overheads. This means, that distributed mutual exclusion 
algorithms will always have longer response time than the corresponding centralized 
queuing system. 

In this study, it is assumed that processes in a distributed system are identical in that 
the probability distributions for a step of main work (or thinking step) and for a step 
of using SR are the same for all processes. Without loss of generality, we assume also 
that these probability distributions are exponential, with mean values chosen to get the 
desired load of the SR server. With these assumptions, the idealized model of 
distributed mutual exclusion is an M/M/1/N/N  queuing  system [18]. The assumption 
of exponential probability distributions is necessary only to validate the simulation 
models. The mutual exclusion algorithms under study do not rely on this assumption 
in their work. 

Finally, it is implicitly assumed in all algorithms under study that processes use 
reliable multicast for communication [19], [20]. Semantics of reliable multicast is 
defined in [21].  

3   Distributed Mutual Exclusion Algorithms Chosen for the Study 

This section outlines distributed mutual exclusion algorithms of Ricart and Agrawala, 
Suzuki and Kasami, Singhal, and Naimi, Trehel and Arnold chosen for the study in this 
paper. These algorithms were chosen, first of all, because they are frequently cited in 
literature and often used for comparative purposes. The second reason is that they have 
been described by their authors in full detail which is essential for the development of 
their correct simulation models. One more reason is that these algorithms have been 
carefully simulated in [11] with the use of unicast communication, so that it would be 
interesting to see the difference in the performance of these algorithms when they use 
multicast communication where possible. 

The permission-based algorithm of Ricart and Agrawala [2] is probably the most 
often cited distributed mutual exclusion algorithm. It assumes that each involved 
process knows the number N of all processes in the group. When a process i wants to  
access an SR, it sends a REQUEST message to other N – 1 processes.  The message 
contains the identifier of the sending process and a sequence number constructed 
according to the Lamport’s timestamp [1] that is used, together with the process 
identifier, in a priority resolution scheme. Every other process j  i, after receiving a 
REQUEST message, immediately sends a REPLY message to process i or stores the 
received message in its queue for the deferred reply. Process i may access SR only 
after it  has received N – 1 replies from other processes. If the REQUEST message 
can be sent in the multicast mode, then the algorithm will need exactly N messages 
per use of SR: one multicast REQUEST message and N – 1 unicast REPLY messages. 

The algorithm of Suzuki and Kasami [4] belongs to the class of token-based 
algorithms. A token is represented by a PRIVILEGE message. A message of type 
REQUEST is used to inform all processes in the group about the desire of this process 
to access SR. In addition to these two types of messages, the algorithm uses, in each 
involved process, two one-dimensional integer arrays RN and LN of size N each. 
These two arrays are necessary to order requests from different processes and to keep 
the ordered requests in a system-wide queue passed in each PRIVILEGE message.  If 
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it happens that the process, wanting to access SR, keeps the PRIVILEGE token 
already, then no request message is sent in the network, and  the process can 
immediately start using SR. With the use of unicast communication, the algorithm 
requires approximately N messages per use of SR. But when the REQUEST message 
is sent in the multicast mode (as was done in our simulation experiments), the 
algorithm will require less than two messages per use of SR. 

The permission-based algorithm of Singhal [8] uses, in each involved process, a 
dynamic information structure that evolves with time as processes learn about the 
state of the whole system. The information structure in each process i is actually a 
particular implementation of a general information structure proposed in [5]. It 
consists of the request set Ri and the inform set Ii, with the first set of identifiers of the 
processes from whom process i must get permission before accessing SR, and with 
the second set of identifiers to which process i must send its permission to access SR. 
The algorithm works with two types of messages – a request for SR and a reply. The  
number of messages sent in the network depends on the load of SR and varies from N 
– 1 for low load to 3(N – 1)/2 for high load, with N processes. Since request and reply 
messages are sent selectively according to the request set and inform set, the 
algorithm cannot benefit from multicast mode of communication. 

Finally, the token-based algorithm of Naimi, Trehel and Arnold [12] uses a 
dynamic rooted tree to pass a token between processes. Its first version was published 
in [6]. Initially, all involved processes are structured in a simple tree, with process 1 
as father in the root and all other processes as children, with a pointer to the root. 
During the work of the algorithm, the configuration of the  tree of processes will vary, 
but every time each process  knows its new father process. The algorithm keeps the 
distributed queue of requests and uses two types of messages – the REQUEST for SR 
and TOKEN. Every time a process finishes the use of SR, it will send the TOKEN 
message to its next process in the distributed queue. It is claimed that the algorithm 
requires O(log N) messages per use of SR. However, it cannot exploit multicast  
communication to decrease the network traffic. 

4   A Novel Algorithm of Distributed Mutual Exclusion 

As all the algorithms outlined in the previous section, the proposed algorithm assumes 
a reliable communication between involved processes. All its messages are 
transmitted in the multicast mode. This means that communication between processes 
is anonymous, so that each process needs to know only the group address. In contrast 
with the above described algorithms, the proposed algorithm does not need to know 
the number of processes in the group, although the knowledge of an approximate size 
of the group can be used by the algorithm to improve its performance. It is assumed 
also that each process in the group knows the approximate duration of its intended use 
of SR and includes this information in its request. Further, each process uses a few 
time-outs and delays and is capable to measure the passage of its time-outs and delays 
with some accuracy. 

The proposed algorithm uses three types of messages: a request for the SR 
(message of type R), the SR is free (message of type F), and the SR is being used 
(message of type E). Each process is either performing a step of main work, or 
accessing the SR, or waiting for the SR to become free. 
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Consider the behavior of some process P informally. After finishing a step of main 
work, process P tests the current state of SR by the use of its local state variable 
RSTA. If, from the point of view of process P,  SR is not free or is being already 
negotiated for the access by some other processes, process P will enter its waiting 
state until SR becomes free. 

If SR is free then the process multicasts, with some probability, a message R to 
inform all other processes in the group about its desire to access SR and starts its time-
out T1. Probability of multicasting a message R is not fixed, it depends on the 
approximate size of the group of processes and on the load of the SR server. Message R 
includes the estimated duration of the intended use of SR. If, according to the calculated 
probability, the process makes decision not to request SR, then it delays for some time 
(slot time) and, after elapsing this time, can make a new attempt if SR is free.  The 
probabilistic decision helps reduce the competition for SR between processes and makes 
the algorithm more scalable with respect to the number of processes in the group. 

If, after transmission of the request message, process P did not receive any 
conflicting message R from any other process during time-out T1, it deduces that no 
other  process intends to access SR and starts using SR. In this case, due to reliable 
multicast, all other processes in the group  receive the message R from P, learn  the 
estimated duration of the use of SR by P from this message, and set the corresponding 
state of SR in their local variable RSTA  accordingly. The duration of the use of SR 
will be used by all other processes to calculate the upper limit of a crash-recovery 
time-out T2. Process P, after finishing the use of SR,  multicasts a message of type F 
which forces all other processes in the group to set the free state of SR.  

On the other hand, if process P receives at least one message R from some other 
process during time-out T1, it understands that there is a conflict with another process, 
and starts a random back-off delay T3. The same action will be done by each 
conflicting process. After elapsing of T3, the behavior of process P and of all other 
processes involved in the conflict, is determined by the state of SR as seen by each 
conflicting process.   

The detailed specification of the algorithm is presented in the form of a state 
diagram in Fig. 1. States of the diagram have the following meaning: 0 – process is 
performing a step of its main work (or thinking step); 1 – process is running time-out 
T2; 2 – process is delaying during a slot time; 3 – process is delaying during time-out 
T1; 4 – process is using SR (is in its critical section); 5 – process is delaying during a 
random back-off interval T3.  

In the diagram, expressions over transition arcs are predicates in terms of events, 
logical statements, and logical variables. Expressions under transition arcs represent 
actions performed by the algorithm  if the corresponding logical expression over this 
transition arc is true. There are three self-loops in states 0, 2 and 5 which are not 
shown to save  space for the figure. The first self-loop takes place when message of 
type R or E is received, in this case the reaction is RSTA  2 and calc(T2). The 
second self-loop corresponds to receiving of message F in the situation RSTA = 2, 
with the reaction RSTA  0. Finally, the third self-loop is receiving message F in the 
situation RSTA = 0, with the reaction warn(SR). 

The events, predicates and logical variables have the following meaning: X – a 
message of type X is received from some other process; elapsed (T) – delay  or time-
out T elapsed; finished(main) – the process completed a step of its main work and 
estimated the duration of the intended use of SR; finished (SR) – the process completed 
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the use of SR; SR – the process probabilistically decided to request SR; ~SR – the 
process decided not to request SR; RSTA = s – state variable RSTA has value s.  

 

Fig. 1. State diagram of the proposed distributed mutual exclusion algorithm 
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The algorithm can perform the following actions when it transits from one state to 
another: X – sending a message of type X (in messages of types R and E, the 
protocol includes the estimated duration of use of SR and the remaining time of use of 
SR, respectively); start (T) – starting a delay or time-out T; start (main) – calculating 
the duration of a step of main work and starting the step; start (SR) – starting the use 
of SR; interrupt (T) – interrupting time-out T; calc (T) – calculating the value of delay 
or time-out T; remtime (SR) – calculating the remaining time of use of SR; count (X) 
– counting  received messages of type X; warn (SR) – outputting a warning message 
“SR is free already”; error () – outputting an error message “Protocol error” and 
exiting. Actions warn(SR) and error() are included for completeness. In the correct 
behavior of the algorithm, these actions should never appear. 

The state variable RSTA represents the process’s knowledge of the state of SR. 
The variable can have the following values: 0 – SR is free ; 1 – SR is being used by 
this process; 2 – SR is being negotiated by some other processes or it is being used by 
some other process.  

The algorithm uses two time-outs and two random delays: T1 – conflict-detection 
time-out, T2 – deadlock-resolution and crash-handling time-out, T3 – back-off delay, 
and T4 – so called p-persistence delay.  

The choice of the values for these time-outs and delays is important for the correct 
operation of the algorithm. The use of these time-outs and delays could be understood 
from the informal description of the algorithm and from its state diagram. Due to 
space limitation, a more detailed  discussion of the time-outs and delays  of the 
proposed algorithm is omitted.   

5   Performance Study 

The performance study of the described algorithms was carried out with the use of 
simulation in the system Winsim, based on a class of extended Petri nets [22], [23], 
[25]. Being a universal algorithmic system, these nets support attributed tokens, 
timing, control functions and data transformation. With these Petri nets, the model is 
structured as a collection of interconnected elementary nets, each of which is 
represented by a single transition with incident places. There are five different types 
of elementary nets T, X, Y, G, and I, each type having strictly defined properties and 
a graphical form of the involved transition. In particular, the elementary net of the 
type T performs data transformation and delaying functions when its transition fires. 
The elementary net of the type X is  used to route a token from some input place to a 
selected output place. The net of the type Y performs multiplexing of input tokens to 
output places. The net of the type G combines the properties of nets of types X and Y. 
Finally, the net of the type I implements the interruption of the fired transition. The 
detailed description of this class of Petri nets is given in [23].  

For simulation, each distributed mutual exclusion algorithm was represented in 
Winsim as a collection of segments, with each segment expressing activity of one 
process.  All these segments were connected to a model of network of Ethernet type. 
For all the algorithms under study, the simulation model of the network was the same. 
According to this model, the time to transmit a message in the network was assumed 
to be random, with the uniform probability distribution in the range (2, 4) ms. This is 
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in agreement with actual delivery time of frames of size about 500 bytes in a LAN of 
Ethernet type [24]. 

As an example, the user manual of Winsim [23] contains the complete description 
of a Petri-net-based simulation model of the Ricart and Agrawala algorithm. This 
description includes the Petri net schemes of a process segment and  a network 
segment,  their texts in the Model Description Language of Winsim, for three 
involved processes, and a file of simulation parameters. Section 8 of the manual [23] 
explains all the steps in the preparation of the model and presents the numerical 
results of its running. 

In the models of all algorithms, mean time of using SR 1/μ was fixed at 500 ms, 
while  mean time of a step of main work (or mean thinking time of a process)  1/  was 
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Fig. 2. Average number of messages per use of SR for low (a) and high (b) load 
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varied to get three different loads of SR server – low (0.1), medium (0.5) and high 
(0.9). To get the desired load of SR server, the value of 1/  was set using the known 
expressions for a finite-population queuing system M/M/1/N/N  [18]. For example, 
with N = 3 processes and high load of 0.9, 1/  = 635 ms.   

The following values of time-outs and random delays were fixed in simulation 
experiments with the proposed novel algorithm: T1 = 20 ms, T2 is uniformly 
distributed between  2T1 and 100 ms, T3 is uniformly distributed between T1/2 and 
100 ms, and T4 is uniformly  distributed between T1/2 and T1. 

As performance measures of each algorithm, the average number of messages per 
use of SR  and the relative unfairness in the access of SR were used. The first 
performance measure reflects the communication complexity of the protocol. 

The second performance measure is intended to evaluate how the algorithm is 
unfair to processes.  Let r1, r2, .., rN be the numbers of the use of SR by N processes in 
a simulation run of an algorithm. As a measure of relative unfairness of the algorithm, 
the expression u = (rmax – rmin)/r* was used, where rmax and rmin are maximal and 
minimal values among ri, and r* is the total average over all ri, i = 1, 2, …, N.  

For each load, the number of involved processes N was varied as 3, 6, 9, …, 21. 
The  value Nmax = 21 was chosen to compare our simulation results with the published 
results of  simulation [11] where the algorithms outlined in Section 3 used only 
unicast communication. 

Since, from a simulation point of view, each algorithm under study can be considered 
as a non-terminating system, only steady-state performance measures are of interest. To 
neutralize the effect of the transient state, each simulation run was done long enough to 
ensure that each process accesses SR about 5000 times. This corresponds to quite 
narrow 95% confidence intervals (not shown in the presented results).  

Graphs in Fig. 2  show, for each algorithm under study,  the average number of 
messages per use of SR versus the number of processes, for low and high loads. 
Table 1 summarizes the average number of messages per use of SR, for N = 21 
processes and three different loads – low, medium, and high. Table 2 contains 
information on the relative unfairness of the algorithms, for the high load of an SR 
server, with varying number of processes.  

From the results of simulation, the following observations and conclusions can be 
drawn: 

1. Among the algorithms, outlined in Section 3, those of Ricart & Agrawala and 
Suzuki & Kasami benefited most of all from the use of multicast communication. 
With unicast communication, the number of messages per use of SR in the Ricart & 
Agrawala algorithm is 2 (N – 1) [2], while with multicast communication this number 
reduces to N.  

2. Among the investigated algorithms, the algorithm of Suzuki & Kasami has the 
lowest multicast communication traffic that is less than two messages per use of SR, 
instead of N with unicast communication.   

3. The algorithms of Singhal and Naimi et al. actually cannot exploit multicast 
communication. With high load, the Singhal’s algorithm has higher communication 
complexity than the algorithm of Ricart & Agrawala (see Fig. 2, b). 

4. Although the algorithm of Naimi et al. does not benefit from multicast 
communication, its average number of messages per use of SR grows very slowly 
with the number of processes. 
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Table 1. Average number of messages per use of SR, for 21 processe 

Load Algorithm 
0.1 0.5 0.9 

Ricart & Agrawala 21 21 21 
Singhal 20.14 21.30 26.48 
Naimi, Trehel & Arnold 3.62 3.72 3.96 
Suzuki & Kasami 1.92 1.95 1.99 
Novel algorithm 2.01 2.05 2.12 

Table 2. Relative unfairness in the use of SR by processes, for high load (0.9) 

Number of processes Algorithm 
3 6 9 12 15 18 21 

Ricart & Agrawala 0.007 0.015 0.017 0.046 0.043 0.079 0.068 
Singhal 0.026 0.056 0.054 0.040 0.046 0.046 0.042 
Naimi et al. 0.013 0.026 0.012 0.037 0.031 0.047 0.060 
Suzuki & Kasami 0.100 0.128 0.114 0.084 0.081 0.085 0.089 
Novel algorithm 0.018 0.012 0.013 0.032 0.023 0.033 0.034 

5. With respect to communication complexity, the proposed novel algorithm is the 
second best after the algorithm of Suzuki & Kasami. However, as Table 2 shows, the 
relative unfairness of the use of SR is much higher in the Suzuki & Kasami’s 
algorithm than in the proposed one since, in the former algorithm, processes with low 
identifiers have a priority over processes with high identifiers. One more drawback of 
the Suzuki & Kasami’s algorithm is that each its PRIVILEGE message carries varied-
size queue and array depending on the number of processes, so that this algorithm 
does not scale well. In addition, the crash of a process that holds a PRIVILEGE  will 
result in the complete failure of this algorithm.   

6. According to Table 2, relative unfairness depends on the number of processes, 
but this dependence has no clear tendency. It was found that the algorithms, which 
use process identifiers to resolve conflicting requests, give a preference to processes 
with low identifiers. This is especially true for the algorithm of Suzuki and Kasami.  

6   Conclusion 

A few algorithms of distributed mutual exclusion were represented in terms of a 
finite-population queuing system and their performance study was carried out with the 
assumption that they use the multicast communication where possible. The algorithms 
in the study are those of Ricart and Agrawala, Singhal, Naimi et al.,  Suzuki and 
Kasami and a novel algorithm proposed in this paper. The models of these algorithms, 
in the exact correspondence with their original description,  were presented in terms 
of  a class of extended Petri nets. The models were run in the simulation system 
Winsim based on these nets. The results of simulation provide detailed information 
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for evaluation of performance of these algorithms and for their comparison when they 
use multicast communication, instead of unicast communication. 
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Abstract. Shared Memory is an interesting communication paradigm for SMP 
machines and clusters. Weak consistency models have been proposed to 
improve efficiency of shared memory applications. In a programming 
environment offering weak consistency it is a necessity to  worry about 
individual load and store operations and about proper synchronization. In 
contrast to this explicit style of distributed programming hared memory systems 
implementing strong consistency models are easy to program and consistency is 
implicit. In this paper we compare two representatives: Kerrighed and Plurix 
implementing sequential and transactional consistency respectively. Kerrighed 
is a single system image operating system (OS) based on Linux whereas Plurix 
is a native OS for PC clusters designed for shared memory operation. The 
measurements presented in this paper show that strong consistency models 
implemented at the OS level are competitive. 

1   Introduction 

Many projects in the distributed systems area have aimed at simplifying the 
development of applications. The proposed systems typically fall into two main 
categories: message passing and shared memory approaches. Message passing 
systems typically use explicit data distribution, exchange and synchronization, e.g. 
MPI, RMI, .NET. 

Shared memory libraries implement implicit communication and can automatically 
guarantee consistency for all objects stored within the distributed shared memory 
(DSM). For the latter numerous weak memory consistency models have been 
proposed to minimize synchronization and improve efficiency [3]. Unfortunately, 
these consistency models put an additional burden on the programmer. Explicit 
synchronization primitives, like acquire and release, must be used very carefully and 
the programmer has to reason about single load and store operations.  

In this paper we describe and compare two Operating Systems (OS) implementing 
a page-based DSM at the kernel level [1], [2], [5], [7]. Kerrighed is a single system 
image OS based on Linux whereas Plurix is a native OS for PC clusters designed for 
shared memory operation. Both OSs implement a strong consistency model. 



24 S. Frenz et al. 

Kerrighed implements sequential and Plurix transactional consistency. The 
measurements discussed in this paper show that strong shared memory consistency 
models can be efficient and convenient when implemented at the kernel level. 

2   The Kerrighed DSM 

Kerrighed is a single system image (SSI) operating system based on Linux for high 
performance computing on clusters. For the users and programmers it creates the 
illusion that a cluster is a single shared memory multiprocessor machine. The 
Kerrighed DSM is based on a global memory management service implementing the 
concept of containers.  

The key idea is that a container creates the illusion to system services that the 
cluster physical memory is shared as in an SMP machine. In a cluster, each node 
executes its own operating system (OS) kernel, which can be coarsely divided into 
two parts: (1) system services and (2) device managers. We propose a generic service 
inserted between the system services and the device manager layers called container 
[7]. Containers are integrated in the core kernel thanks to linkers, which are software 
pieces inserted between existing device managers and system services and containers.  

Several services, such as the virtual memory service, in a core kernel rely on the 
handling of physical pages. Linkers divert some functions of these services to ensure 
data sharing through containers. To each container is associated one or several high 
level linkers called interface linkers and a low level linker called input/output linker. 
The role of interface linkers is to divert device accesses of system services to 
containers while an I/O linker allows a container to access a device manager. 

A container is a software object storing and sharing data between stations. A 
container is a kernel level mechanism and it is completely transparent to user level 
software. Data is stored in a container at the request of the host OS of one node and 
can be shared and accessed by the host OS of other cluster nodes. Pages handled by a 
container are stored in page frames and can be used by the host kernel as any other 
page frame. Container pages can for instance be mapped in a process address space. 

By integrating this generic sharing mechanism into each host system, it is possible 
to give the illusion to the kernel that it is managing and using physically shared 
memory. On top of this virtual physically shared memory the traditional services 
offered by a standard operating system can be extended to the cluster scale. The 
existing OS interface is preserved while taking advantage of the low level local 
resource management mechanisms implemented by the standard node OS. 

The containers implement a sequentially consistent memory model using a write 
invalidation protocol. The memory I/O linker ensures input and output of physical 
memory pages in and out of containers. 

When a container is linked to a memory I/O linker, it becomes a memory container. 
The memory I/O linker is very simple since it consists in allocating and releasing page 
frames like the host kernel does for the management of memory segments. 

Everything together provides the sight of a single SMP machine, even though the 
processors are distributed on several nodes in a cluster. The nodes are connected by 
standard hardware, which is Fast Ethernet for the measurements presented in this paper. 

More details on Kerrighed DSM can be found in [8]. 
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3   The Plurix DSM 

The Plurix project implements a native distributed OS for PC clusters customized for 
DSM operation. Instead of using special functions for allocating data in DSM 
memory the Plurix DSM is managed as a heap and accessed like local memory. The 
benefits of a heap organization have also been identified in other systems but Plurix 
goes one step beyond by also storing code and runtime structures in the DSM. Thus 
we extend the SSI concept by storing OS, kernel, and all drivers in the DSM.  

Distributed garbage collection relieves programmers from explicit memory 
management. Unreferenced objects can be collected very easily using the compiler-
supported bookkeeping of references [4].  

Because weaker consistency models are hard to program and because weak 
consistency might jeopardize OS integrity we have introduced a strong model called 
transactional consistency. Memory pages are distributed and read-only copies are 
replicated in the cluster. When writing to a memory page all read-only copies are 
invalidated and the writing node becomes the new owner of that page. Inconsistencies 
are avoided by synchronizing memory accesses from different nodes using our 
transactional consistency model [5].  

In contrast to existing memory consistency models we do not synchronize memory 
after each write access but bundle several operations within a transaction (TA). In 
case of a conflict between two transactions we rely on the ability to reset changes 
made by a TA. This conflict resolution scheme is known in the database world as 
optimistic concurrency control. Optimistic concurrency control occurs in three steps: 
the first step is to monitor the memory access pattern of a TA. For this purpose we use 
the built-in facilities of the memory management unit (MMU) of the processor. 

The next step is to preserve the old state of memory pages before modifications. 
Shadow images are created, saving the original page state before the first write 
operation within a TA. These shadow pages are used to restore the memory in case of 
a collision, as described in the next step.  

During the validation phase of a terminating TA the access patterns of all 
concurrent TAs in the cluster are compared. In case of a conflict at least one TA is 
rolled back using the shadow pages otherwise the latter are discarded.  

Currently, we have implemented “first-wins” collision resolution using on a 
circulating token. Only the current owner of the token is allowed to commit. During a 
commit the write-set of the TA is broadcast to all nodes in the Fast-Ethernet LAN. All 
nodes in the cluster compare the write set with their running TA to detect conflicts 
and to abort voluntarily. In future we plan to integrate other conflict resolution 
strategies to improve fairness.  

Instead of having traditional processes and threads the scheduler in Plurix works 
with transactions. We have adopted the cooperative multitasking model from the 
Oberon system, [6]. In each station there is a central loop (the scheduler) executing a 
number of registered transactions with different priorities. Any TA can register 
further transactions. System TAs, e.g. the garbage collector, are automatically 
registered by the OS. Furthermore, the OS automatically encapsulates all user 
commands within a transaction. 
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Transactions should be short to minimize collision probability. For long running 
transactions like the tested calculations, the programmer has to split the calculation in 
multiple steps appropriate to transactions. 

4   Comparison of Sequential and Transactional Consistency 

In this section, we present a performance evaluation of Kerrighed and Plurix. To 
evaluate performance of both systems, we used two parallel applications: SOR and 
ray tracer, programmed using a shared memory paradigm. 

4.1   Experimental Platform 

The measurements for both systems have been carried out using 12 nodes: 

- Single AthlonXP 2500+ 1833 MHz 
- Asus A7V8X-X mainboard with KT400A chipset 
- 512 MB DDR-333-RAM 
- 3Com 905 B and C Fast Ethernet network cards 
- Allied Telesyn AT-8024 switch 

The Plurix cluster doesn't require any cluster-outside connection, but Kerrighed 
needs an additional NFS-server for the shared file system, which is connected in the 
same manner. In both settings there was no additional traffic on the cluster-network 
during measurements. 

4.2   Succesive-Over Relaxation (SOR) 

A single n,n-matrix with randomized shared data is transmitted at the start of 
calculation and then changed during iterated calculation, where border elements are 
not changed. The matrix is red-white-coloured, and the calculation of the next 
iteration is done in two phases, where first all white and then all red elements are 
iterated. The calculation of an element (see figure 1) requires the four bordering 
neighbours, so all source-values are derived from the same iteration-step: 
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Fig. 1. Calculation of an Element Accessing Its Four Element-Neighbors 
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Distribution is achieved by splitting up calculation in bands of lines. There is no 
intrinsic write-conflict on elements, but there is the need of synchronization after each 
phase of iteration because of the small overlapping read-area of one line at top and 
bottom frontier, where reading across the borders needs the other values to correspond 
to the reader's phase. Figure 2 shows the calculation of line r, which requires read-
access of lines r-1 and r+1. Synchronization is achieved with barriers both in 
Kerrighed and Plurix. 
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Fig. 2. Calculating a Line Accessing Neighbor-Lines 

If r resides at the top border of a node's band, line r-1 is inside the band of the 
previous node, and if r resides at the bottom border of a node's band, line r+1 is 
inside the band of the next node. These nodes will calculate their elements in parallel, 
so on page-based distribution such as with Kerrighed and Plurix, there is read access 
to elements that reside on pages, which are written by another station in the same 
phase. But as all nodes start calculating with their first line of their band, this is not an 
indispensable bottle neck: calculation takes long enough to disperse accesses to first 
line of node t+1 and to last line of node t, so nodes running Kerrighed with a MESI-
like protocol for pages do not get in the way of nodes. Within Plurix reads and writes 
occur atomically during the commit of a TA, so each phase is split up in two sub-
phases for bisection of calculated bands. Thereby the borders are not crossed mutual, 
so the nodes do not read and write concurrently to the same line in the same phase. 

Because of synchronization after each phase and because all nodes calculate the 
same amount of phases, all nodes finish after nearly the same time. The 
synchronization is not very data intensive and therefore mainly depending on network 
latency. In contrast the network bandwidth is important for data exchange after 
synchronization, because for each node two rows of the matrix (for the measurements 
one row is between 8 and 28 kilobytes) have to be transmitted. 

SOR is implemented from scratch both for Plurix (java compiled with the Plurix 
Java Compiler) and Kerrighed (C compiled with gcc) based upon the Splash-II-Suite. 

4.3   Ray Tracer 

The calculation of the ray tracer starts with an empty shared result-matrix as container 
for the image. Each node calculates each element independently from other nodes or 



28 S. Frenz et al. 

elements based upon a shared scene definition supporting spheres and triangles with 
colored and reflective surfaces as well as multiple and different light sources. For this 
measurements, the scene-definition (see picture RAY) contains 99 spheres and 8 
triangles illuminated by three light sources. Each result pixel can be calculated 
without information about other pixels and as a consequence there is no need of 
synchronization and the result-matrix is write-only during calculation. Apart from the 
transfer of the scene definition and of the accesses to the result-matrix there is no 
intrinsic communication and therefore the ray-tracer demonstrates the limits of system 
distribution and system dependent scaling. The ray tracer is implemented from scratch 
both for Plurix (using the Plurix Java Compiler) and Kerrighed (C compiled with gcc) 
based upon project 5 of class 6.837 at MIT [14]. 

 

Fig. 3. Calculated Scene 

4.4   Experimental Results with SOR 

The SOR-algorithm has been tested on both systems using 1, 2, 4, 8 and 12 nodes and 
with the following matrix sizes: 2048x2048, 3584x3584, 4096x4096, 5068x5068, 
6144x6144, 7168x7168. Measurement results are presented in tables SSK and SSP. 
Figure 4 presents the speed-up of the SOR algorithm on Kerrighed. Figure 5 presents 
the speed-up on Plurix. 

We can observe on fig. 4 and fig. 5 that the matrix size has little impact on speed-
up for Kerrighed but more so for Plurix, which will be explained later. The best 
speed-up achieved is 5.8 (Kerrighed) respectively 6.7 (Plurix) on 12 nodes, which is 
far from ideal.  

The main reason for less than ideal performance on both systems is the large gap 
between processor speed and network bandwidth. While the processors are very 
powerful, the network is comparatively slow. The SOR algorithm exchanges border 
rows between each phase of the computation inducing communications. On the 
available hardware platform, the network-bandwidth/processor-speed ratio is not good 
enough to reach high speed-ups. Some experiments using a faster network such as 
gigabit Ethernet or Myrinet would be of interest. 
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Fig. 4. Speed-up with SOR on Kerrighed 
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Fig. 5. Speed-up with SOR on Plurix 

The main difference between the systems is not the difference in speed-up for a 
large matrix but the different behavior for a small matrix: even with the smallest 
matrix Kerrighed has a speed-up on 12 nodes similar to the largest matrix, whilst 
Plurix has a point of reversal on 8 nodes. This is because of the synchronization 
mechanisms used on Plurix, that are expensive compared to the few calculations that 
have to be done for small matrices. The barrier implementation on Plurix is in a not 
fully developed state and still subject of research. 
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4.5   Experimental Results with Ray Tracer 

The ray tracer has been tested on both systems using 1, 2, 3, 4, 6, 8, 10 and 12 nodes 
and with the following image sizes: 2048x1536, 4096x3072 and 5792x4344. 
Measurement results are presented in tables RSK and RSP. Figure 6 presents the 
speed-up of the ray tracer on Kerrighed. Figure 7 presents the speed-up on Plurix. 
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Fig. 6. Speed-up with ray tracer on Kerrighed 
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Fig. 7. Speed-up with ray tracer on Plurix 

We can observe in figure 6 and in figure 7 that the image size has little impact on 
speed-up. The best speed-up achieved is 11.77 (Kerrighed) respectively 11.88 (Plurix) 
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on 12 nodes, which is fairly good result. The network is not the bottleneck for the ray 
tracer application because there is much more calculation than communication.  

Furthermore, as there is no need for barrier-synchronization between steps of 
calculation, Plurix can fully utilize its optimistic synchronization model within the 
transactional consistency, because even the first write access to a page does not 
require the affirmation of all other nodes. 

4.6   Comparison of Kerrighed and Plurix 

Kerrighed and Plurix are completely different systems: Kerrighed uses Linux and 
NFS to share files, whilst Plurix is a operating system from scratch without the need 
for any file system. Both Kerrighed and Plurix use page-based distributed shared 
memory, but Kerrighed uses an extended MESI protocol to exchange pages, whereas 
Plurix always transfers the most recently committed version of a page and uses the 
semantic group of a transaction to invalidate multiple pages. 

Nevertheless, both systems perform almost linear with the ray tracer up to 12 nodes 
and show mature communication models, which are hidden from the application 
programmer completely, even though system knowledge will of course help in 
writing well performing applications as in any.  

The SOR-algorithm uses high-volume communication in comparison to the time 
needed for calculation, as a consequence Fast Ethernet becomes the bottleneck.  

5   Related Work 

Numerous DSM projects have implemented a global memory management service on 
top of an existing OS, e.g. Solaris, Linux, and Windows NT. IVY was the first page-
based DSM implementation (sequential consistency) followed by others 
implementations with weaker consistency models, e.g. TreadMarks (lazy release 
consistency), [9], [11]. To the researcher and to the students from these user-level 
systems provide important insight, especially about the relative merits of different 
consistency models [3]. But this approach introduces many programming constraints 
and limits performance. Specific run-time functions might be called by the 
programmer to data in the DSM or special storage classes might be defined. 

The Single System Image idea has also been addressed by several projects in the 
past. The Sprite OS for example is written from scratch and provides a distributed file 
system and a process migration facility [12]. But Sprite does not allow to migrate 
threads and does not implement a global memory management mechanism.  

The Mosix project extends Linux with a kernel-level process-migration facility. 
However, it does not provide any data sharing mechanism. Thus, processes can n ot 
share memory and threads can not be migrated in Mosix [13]. 

Plurix is the first OS tailored to a transactional DSM. Furthermore, there is no 
other system utilizing the DSM heap to distribute both data and code. Transactional 
consistency in the context of distributed computing is also proposed in [11]. The ideas 
discussed are similar to the transactiopnal consistency in Plurix but the authors 
simulate a new CPU design for SMP machines rather than a cluster implementation. 
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6   Conclusions 

The comparison of sequential and transactional consistency in Kerrighed and Plurix 
respectively shows that both perform adequately in spite of their strong consistency 
models. Efficiency is ensured in both systems by implementing the DSM at the kernel 
level and by avoiding the overhead of expensive context switches. Furthermore, 
Plurix benefits from the fact that several write operations are bundled into one 
transaction.  

The SOR measurements revealed noticeable costs for the barrier synchronization in 
Plurix caused by a currently not optimal barrier implementation. Nevertheless, it is 
encouraging that a DSM organized as a heap storing code and data (Plurix) can 
compete with a traditional DSM approach (Kerrighed) allocating only dedicated data 
in DSM. Experiments with faster networks like Gigabit Ethernet, Myrinet, and 
Infiniband are planed in future work. 
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Abstract. Consistent and stable global states of clock synchronization are very 
important in distributed and parallel systems. This paper presents an innovative 
strategy and method to obtain stable global clock synchronization state graphs 
in asynchronous Internet environments. Our model will introduce the concept of 
clock precision difference as a means to evaluate running states of all clocks in 
this system and make this system self-adaptive well. Finally, we introduce the 
concept of clock precision difference into global states analysis of clock syn-
chronization and construct clock synchronization state graphs in order to evalu-
ate distributed clock synchronization states. We also present detailed simula-
tions of the strategy and mathematical analysis used on real Internet  
environments. 

Keywords: Clock Synchronization, Precision Difference, Self-Adaptive, State 
graphics. 

1   Introduction 

Computing technologies and network technologies have developed at an explosive, 
but steady rate in the last decade, and many applications have been built on distrib-
uted network environments. Nevertheless, distributed and parallel systems without a 
global clock are common nowadays.  PC clusters, the GRID, industrial process con-
trol systems, and mobile communications are all examples of this, as without an iden-
tical clock system, these applications cannot perform their tasks well. Consistent 
Global States (CGS) proved to be useful in this field [1]. Since Lamport published a 
paper [2] to introduce logical clocks and the ordering of events in 1978, logical clocks 
have been playing a dominant role in distributed clock synchronization systems. In 
the process of the implementation, we will use a software logical clock concept in 
order to separate physical clocks, and easily adjust the logical clock. Sometimes we 
refer to the logical clock as a virtual clock. 

How to describe and evaluate a clock synchronization system in distributed envi-
ronments has been a very difficult problem. In order to solve this classical problem, 
we introduce the concept of synchronization state graphs based on clock precision 
differences. We have also shown that it not only describes a clock synchronization 
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system clearly, but also provides in a uniform manner with both uncertainty of trans-
mission times and the uncertainty due to the clock drifts. Based on this type of graph, 
each node in this system will have a global view of this clock synchronization system 
and can easily be observe the node failure.  

The paper is organized as follows: Section 2 introduces the related work about 
clock synchronization. A linear mathematical trend analysis for clock precision differ-
ences is proposed and an important theorem and a conclusion about clock synchroni-
zation are presented in section 3. Section 4 proposes the important concept of clock 
synchronization state graphs and gives a detailed definition. A real simulation of clock 
synchronization state graph is discussed in section 5. Finally, Section 6 describes 
some extensions of this model and conclusions. 

2   Related Works 

In the research area of Clock Synchronization, algorithms and models should satisfy 
some synchronization conditions, such as: bounded skew and bounded rate of commu-
nication. However, due to the communication uncertainty it is not reasonable to assume 
that in practical applications, the skew and rate of communication are bounded. 

As there are different clock precisions for nodes, the issue of clock synchroniza-
tion occurs. If an instantaneous time is applied to a synchronization process, the mes-
sage delay must be considered seriously. However, questions such as: how to calcu-
late this delay, and how to predict every delay in the system, are very complicated and 
difficult to solve.  Some papers use round trip delay to estimate the transmission de-
lay, but the irregular feature of networks frustrates this solution[3],[4]. In this paper, 
we first use one way timed transmission to estimate the precision difference, and then 
use a mathematical analysis method to estimate clock precision difference in order to 
tune the clock in a local node.  

With a distributed clock, synchronizing, monitoring, and describing its state is an 
important task. Normally, clock synchronization graphs can be viewed as an extension 
of the graphs used by Lamport to describe the execution of completely asynchronous 
system [3]. But Lamport’s graphs are unweighted, and the main property of interest 
regarding a pair of points is whether one is reachable from the other. The dissertation [5] 
considered systems with clocks, and define graphs which are weighted. The main prop-
erty of interest regarding two points is the distancebetween them.  

Because of the imperfect manufacturing process of oscillators, each clock has a 
slightly different drift rate and therefore each clock will have a slightly precision 
difference. This precision difference is relatively stable and can be used in clock syn-
chronization state graphs as a weighted value. The global state graphs of clock syn-
chronization can not only provide consistent views of clocks running in this system, 
but can also evaluate a clock’s faults easily. 

3   Clock Precision Difference Evaluation 

On the surface, the occurrence of this transmission delay is random; therefore it is diffi-
cult to measure. In fact, if the previous timestamp arrives at destination late, then the 
next timestamp will have a tendency to come early. We can use the coming timestamps 
to get its trend.  
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From the perspective of the slave, they have their own clocks, and know the send-
ing interval of Tperiod. If a slave clock has the same precision as the master clock, then 
the arrival interval calculated by the slave node will waver near the interval of Tperiod. 
Hence, if there is a long interval this time, a short interval shall be expected next time. 
Even though, in some cases, this next interval may in fact be longer than previous 
one. This also means that the next or future interval shall be expected shorter time 
period than the interval we are currently expecting. In the long run, its trend line 
should be a horizontal line.  

Based on above analysis, we can create the following theorem. 

Theorem 1. We assume that a master node sends a timestamp per Tperiod interval, and 
the drift rate of the slave clock meets assumption 2. Based on the samples of the slave 
nodes collected, we can achieve a linear trend formula, which is shown as follows: 

xbby 10 +=        (1) 

Here, b1, as a slope, denotes the drift speed of the slave clock, and has a close rela-
tionship with drift rate i of this clock. As the number of samples  increases, the 
following formula holds:  

)/(lim 1 periodi Tb
∞→

=
η

τ        (2) 

Based on above theorem and analysis, a conclusion is given as follows: 

Conclusion 1.  If we have calculated the slope b1 of linear equation from the sampling 
data, then the following statements prove correct:  

If b1<0, the ith slave clock runs slower than the reference clock. 
If b1=0, the ith slave clock runs same speed as the reference clock. 
If b1>0, the ith slave clock runs faster than the reference clock. 

4   Clock Synchronization State Graphs 

The introduction of clock synchronization state graphs based on clock precision dif-
ference is an important contribution to the research of distributed clock synchroniza-
tion system. Abstract graph-theoretic methods allow us to analyze clock synchroniza-
tion problems more practically. The network is modeled as a collection of links which 
facilitates communication amongst computers. From the general point of view, the 
traditional clock synchronization graphs usually use transmission delays as weight 
values of edges. Even if the clock nodes run correctly, the state graphs for clock syn-
chronization are still difficult to reach a stable state, due to communication uncer-
tainty and jittering of networks. In this paper, we extend the concept of clock syn-
chronization graphs, and present an innovative concept of clock state graphs. This 
means that each node in the clock synchronization system has a consistent view of all 
clocks running states in the system. The definition of this concept is described  
as following: 
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Definition 1. The clock synchronization state graph is a pair (G, local_time), where 
G=(V,E) is a weighted bidirectional directed graph with arc<p,q> E if and only if 
arc<p,q> E , and local time includes logical time (LT) and physical time (PT) with 
each point p E . For any two points p,q we define arc as relative clock 
precision difference pq of node compared to node   

Each node has a clock synchronization state graph which shows the global view of 
states in the clock synchronization system. It not only includes a graph G, but also is 
labeled by the logical time and physical time. The following is an example of the 
clock synchronization state graph with two nodes p and q. 

Logical Time=LTp 

Physical Time=PTp 

 

qp 

Logical Time=LTq 

Physical Time=PTq 

qp

pq

 

Fig. 1. The clock synchronization state graph with two nodes p and q 

Where the weight value of arc <q,p> is pq;  the weight value of arc <p,q> is qp. 
The value  can be computed by Theorem 1. 

Property 1. Let p,q,r be any three points of the state graph. If the clock 
synchronization state graph steps in a stable state, then the draft rate on the edge 
meets the tranmissive rule: 

qp = qr + rp                                                                                                      (3) 

In order to prove this reasoning, we have designed a simulation environment. The 
simulation environment is presented in the next section. 

5   Simulation 

Our simulation is based on the Internet environment in our campus. There are 4 nodes 
communicating with each other through the Internet. The system uses logical time to 
exchange messages. In order to get results quickly, we use a program in each node to 
slow down or speed up the running of the clock. The running state of each clock is 
described as follows: 

Node 1:  We think this node is a standard clock and runs normally. Its logical 
clock is equal to physical clock. 

Node 2:  This node slows down 1 ms per 30 seconds. 
Node 3:  This node speeds up 1 ms per 30 seconds. 
Node 4:  This node speeds up 2 ms per 30 seconds. 
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For the interval of 30 seconds in logical time, every node broadcasts a timestamp 
to other nodes. After we collect 2000 samples, each node should know its running 
precision differences relating to other nodes. For example node1, it has three trend 
equations. 

Node2:  Y=1.000x-1.8109     21=1/30000; 
Node3:  Y=-1.000x+2.3304     31=-1/30000; 
Node4:  Y=-2.000x+1.4963  41=-2/30000; 

As node1, it thinks that other nodes should be standard clock and send out a time 
stamp every 30 seconds. 

After the system runs near 13 hours, a detailed clock synchronization state graph 
for this simulation is described as follows: 

Node 1 Node 2 

Node 4 Node 3 

PT=563208 

LT=563208 

PT=605068 

LT=603565 

1/30000 

-1/30000

-2/30000 
2/30000

1/30000 

1/30000 

-3/30000 

2/30000 

-2/30000 

3/30000 

PT=534732 

LT=536234 

PT=554806 

LT=557808 

-1/30000 

-1/30000

 

Fig. 2. The clock synchronization state graph 

If this system meets assumption 2 and all clocks have a linear drift rate, then we 
can achieve a stable state graph of clock synchronization quickly and easily.  

In order to validate property 1, we consider a relative draft rate of node 2 com-
pared to node 4. We have: 

42= 43+ 32=(-1/30000)+(-2/30000)= -3/30000 

6   Conclusions 

This paper presents an innovative concept of clock synchronization state graph to 
describe and analyze clock synchronization systems. All edges are directed and la-
beled by the relative clock precision differences, rather than transmission delays or 
instantaneous values. In order to improve and stabilize the differences of clock preci-
sion, a continuous communication model and the method of trend analysis are 
adopted in this paper. The application of clock precision difference not only reduces 
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the effect of network delay, but also provides important information for local clocks. 
Based on this information, a local clock cannot only predict the active-
synchronization time, but can also apply a self-adaptive state when its connection 
crashes.  

From a long-term viewpoint, more information of precision differences means 
more accurate clock synchronization and state graphs.   
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Abstract. The co-allocation architecture was developed in order to enable par-
allel downloads of datasets from multiple servers. Several co-allocation strate-
gies have been coupled and used to exploit rate differences among various cli-
ent-server links and to address dynamic rate fluctuations by dividing files into 
multiple blocks of equal sizes. However, a major obstacle, the idle time of 
faster servers having to wait for the slowest server to deliver the final block, 
makes it important to reduce differences in finish time among replica servers. In 
this paper, we propose a dynamic co-allocation scheme, namely Recursive-
Adjustment Co-Allocation scheme, to improve the performance of data transfer 
in Data Grids. Our approach reduces the idle time spent waiting for the slowest 
server and decreases data transfer completion time. 

Keywords: Data Grid, Globus, GridFTP, Co-allocation, Recursive-adjustment, 
Data transfer. 

1   Introduction 

Data Grids aggregate distributed resources for solving large-size dataset management 
problems [1, 2, 4, 7, 9]. Most Data Grid applications execute simultaneously and 
access large numbers of data files in the Grid environment. Certain data-intensive 
scientific applications, such as high-energy physics, bioinformatics applications and 
virtual astrophysical observatories, entail huge amounts of data that require data file 
management systems to replicate files and manage transfers and distributed data ac-
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cess. The data grid infrastructure integrates data storage devices and data management 
services into the grid environment, which consists of scattered computing and storage 
resources, perhaps located in different countries/regions yet accessible to users [2, 9]. 

Replicating popular content in distributing servers is widely used in practice [11, 13, 
15]. Recently, large-scale, data-sharing scientific communities such as those described 
in [1, 4] used this technology to replicate their large datasets over several sites. 
Downloading large datasets from several replica locations may result in varied perform-
ance rates, because the replica sites may have different architectures, system loadings, 
and network connectivity. Bandwidth quality is the most important factor affecting 
transfers between clients and servers since download speeds are limited by the band-
width traffic congestion in the links connecting the servers to the clients[17, 18]. 

One way to improve download speeds is to determine the best replica locations us-
ing replica selection techniques [15]. This method selects the best servers to provide 
optimum transfer rates because bandwidth quality can vary unpredictably due to the 
shared nature of the internet. Another way is to use co-allocation technology [13] to 
download data. Co-allocation of data transfers enables the clients to download data 
from multiple locations by establishing multiple connections in parallel. This can 
improve the performance compared to the single-server cases and alleviate the inter-
net congestion problem [13]. Several co-allocation strategies were provided in the 
previous work [13]. An idle-time drawback remains since faster servers must wait for 
the slowest server to deliver its final block. Therefore, it is important to reduce the 
differences in finish time among replica servers. 

In this paper, we propose a dynamic co-allocation scheme based on co-allocation 
Grid data transfer architecture called Recursive-Adjustment Co-Allocation that re-
duces the idle time spent waiting for the slowest server and improves data transfer 
performance. Experimental results show that our approach is superior to previous 
methods and achieved the best overall performance. 

The remainder of this paper is organized as follows. Related studies are presented 
in Section 2 and the co-allocation architecture is introduced in Section 3. Our research 
approaches are outlined in Section 4, and experimental results and a performance 
evaluation of our scheme are presented in Section 5. Section 6 concludes this  
research paper. 

2   Related Work 

Data grids consist of scattered computing and storage resources located in different 
countries/regions yet accessible to users [7]. In this study we used the grid middleware 
Globus Toolkit [8, 10, 12] as the data grid infrastructure. The Globus Toolkit provides 
solutions for such considerations as security, resource management, data management, 
and information services. One of its primary components is MDS [5, 8, 10, 12, 20], 
which is designed to provide a standard mechanism for discovering and publishing 
resource status and configuration information. It provides a uniform and flexible inter-
face for data collected by lower-level information providers in two modes: static (e.g., 
OS, CPU types, system architectures) and dynamic data (e.g., disk availability, memory 
availability, and loading). And it uses GridFTP [1, 8, 12], a reliable, secure, and efficient 
data transport protocol to provide efficient management and transfer of terabytes or 
petabytes of data in a wide-area, distributed-resource environment. 
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As datasets are replicated within Grid environments for reliability and perform-
ance, clients require the abilities to discover existing data replicas, and create and 
register new replicas. A Replica Location Service (RLS) [3, 15] provides a mecha-
nism for discovering and registering existing replicas. Several prediction metrics have 
been developed to help replica selection. For instance, Vazhkudai and Schopf [14, 16, 
17] used past data transfer histories to estimate current data transfer throughputs. 

In our previous work [19], we proposed a replica selection cost model and a replica 
selection service to perform replica selection. In [13], the author proposes a co-
allocation architecture for co-allocating Grid data transfers across multiple connec-
tions by exploiting the partial copy feature of GridFTP. It also provides Brute-Force, 
History-Base, and Dynamic Load Balancing for allocating data block. Brute-Force 
Co-Allocation works by dividing file sizes equally across available flows without 
addressing bandwidth differences among the various client-server links. The History-
based Co-Allocation scheme keeps block sizes per flow proportional to predicted 
transfer rates. 

The Conservative Load Balancing dynamic co-allocation strategy divides re-
quested datasets into “k” disjoint blocks of equal size. Available servers are assigned 
single blocks to deliver in parallel. When a server finishes delivering a block, another 
is requested, and so on, till the entire file is downloaded. The loadings on the co-
allocated flows are automatically adjusted because the faster servers will deliver more 
quickly providing larger portions of the file. The Aggressive Load Balancing dynamic 
co-allocation strategy presented in [13] adds functions that change block size de-
liveries by: (1) progressively increasing the amounts of data requested from faster 
servers, and (2) reducing the amounts of data requested from slower servers or ceas-
ing to request data from them altogether. 

The co-allocation strategies described above do not handle the shortcoming of 
faster servers having to wait for the slowest server to deliver its final block. In most 
cases, this wastes much time and decreases overall performance. Thus, we propose an 
efficient approach called Recursive-Adjustment Co-Allocation and based on a co-
allocation architecture. It improves dynamic co-allocation and reduces waiting time, 
thus improving overall transfer performance. 

3   Co-allocation Architecture 

Figure 1 shows the co-allocation of Grid Data transfers, which is an extension of the 
basic template for resource management [6] provided by Globus Toolkit. The archi-
tecture consists of three main components: an information service, broker/co-
allocator, and local storage systems. Applications specify the characteristics of de-
sired data and pass the attribute description to a broker. The broker queries available 
resources and gets replica locations from information services [5] and replica man-
agement services [15], and then gets a list of physical locations for the desired files. 

The candidate replica locations are passed to a replica selection service [15], which 
was presented in a previous work [19]. This replica selection service provides esti-
mates of candidate transfer performance based on a cost model and chooses appropri-
ate amounts to request from the better locations. The co-allocation agent then 
downloads  the  data  in  parallel  from  the  selected  servers.  In  this research, we use  
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Server 1

Server 2

Server 3

Round1 Round2
E(t1) E(t2)t1

File A Section 1 Section 2 ... ...

...

 

Fig. 1. Data Grid co-allocation architecture      Fig. 2. The adjustment process. 

GridFTP [1, 8, 12] to enable parallel data transfers. GridFTP is a high-performance, 
secure, reliable data transfer protocol optimized for high-bandwidth wide-area net-
works. Among its many features are security, parallel streams, partial file transfers, 
third-party transfers, and reusable data channels. Its partial file transfer ability allows 
files to be retrieved from data servers by specifying the start and end offsets of  
file sections. 

4   Dynamic Co-allocation Strategy 

Dynamic co-allocation, described above, is the most efficient approach to reducing 
the influence of network variations between clients and servers. However, the idle 
time of faster servers awaiting the slowest server to deliver the last block is still a 
major factor affecting overall efficiency, which Conservative Load Balancing and 
Aggressive Load Balancing [13] cannot effectively avoid. The approach proposed in 
the present paper, a dynamic allocation mechanism called “Recursive-Adjustment Co-
Allocation” can overcome this, and thus, improve data transfer performance. 

4.1   Recursive-Adjustment Co-allocation 

Recursive-Adjustment Co-Allocation works by continuously adjusting each replica 
server’s workload to correspond to its real-time bandwidth during file transfers. The 
goal is to make the expected finish time of all servers the same. As Figure 2 shows, 
when an appropriate file section is first selected, it is divided into proper block sizes 
according to the respective server bandwidths. The co-allocator then assigns the 
blocks to servers for transfer. At this moment, it is expected that the transfer finish 
time will be consistent at E(T1). However, since server bandwidths may fluctuate 
during segment deliveries, actual completion time may be dissimilar (solid line, in 
Figure 2). Once the quickest server finishes its work at time T1, the next section is 
assigned to the servers again. This allows each server to finish its assigned work-load 
by the expected time at E(T2). These adjustments are repeated until the entire file 
transfer is finished. 

The Recursive-Adjustment Co-Allocation process is illustrated in Figure 3. When a 
user requests file A, the replica selection service responds with the subset of all avail-
able servers defined by the maximum performance matrix. The co-allocation service 
gets this list of selected replica servers. Assuming n replica servers are selected, Si 
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denotes server “i” such that 1 i n. A connection for file downloading is then built 
to each server. 

 

Fig. 3. The Recursive-Adjustment Co-Allocation process 

The Recursive-Adjustment Co-Allocation process is as follows. A new section of a file 
to be allocated is first defined. The section size, “SEj”, is: 

SEj = UnassignedFileSize× , (0 <  < 1), (1) 

where SEj denotes the section j such that 1 j k, assuming we allocate k times for 
the download process, and thus, there are k sections, while Tj denotes the time section 
j allocated. UnassignedFileSize is the portion of file A not yet distributed for 
downloading; initially, UnassignedFileSize is equal to the total size of file A.  is the 
rate that determines how much of the section remains to be assigned. 

In the next step, SEj is divided into several blocks and assigned to “n” servers. 
Each server has a real-time transfer rate to the client of Bi, which is measured by the 
Network Weather Service (NWS) [18]. The block size per flow from SEj for each 
server “i” at time Tj is: 

i

n
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n

i
iji zeUnFinishSiBBzeUnFinishSiSES -  )(  

11 ==

×+=  (2) 

where UnFinishSizei denotes the size of unfinished transfer blocks that is assigned in 
previous rounds at server “i”. UnFinishSizei is equal to zero in first round. Ideally, 



 A Recursive-Adjustment Co-allocation Scheme in Data Grid Environments 45 

depending to the real time bandwidth at time Tj, every flow is expected to finish its 
workload in future. 

This fulfills our requirement to minimize the time faster servers must wait for the 
slowest server to finish. If, in some cases, network variations greatly degrade transfer 

rates, UnFinishSizei may exceed   *)(
11 ==

+
n

i
ii

n

i
ij BBzeUnFinishSiSE , which is the 

total block size expected to be transferred after Tj. In such cases, the co-allocator 
eliminates the servers in advance and assigns SEj to other servers.  

After allocation, all channels continue transferring data blocks. When a faster 
channel finishes its assigned data blocks, the co-allocator begins allocating an unas-
signed section of file A again. The process of allocating data blocks to adjust expected 
flow finish time continues until the entire file has been allocated. 

4.2   Determining When to Stop Continuous Adjustment 

Our approach gets new sections from whole files by dividing unassigned file ranges in 
each round of allocation. These unassigned portions of the file ranges become smaller 
after each allocation. Since adjustment is continuous, it would run as an endless loop 
if not limited by a stop condition. 

However, when is it appropriate to stop continuous adjustment? We provide two 
monitoring criteria, LeastSize and ExpectFinishedTime, to enable users to define stop 
thresholds. When a threshold is reached, the co-allocation server stops dividing the 
remainder of the file and assigns that remainder as the final section. The LeastSize 
criterion specifies the smallest file we want to process, and when the unassigned por-
tion of UnassignedFileSize drops below the LeastSize specification, division stops. 
ExpectFinishedTime criterion specifies the remaining time transfer is expected to 
take. When the expected transfer time of the unassigned portion of a file drops below 
the time specified by ExpectFinishedTime, file division stops. The expected rest time 
value is determined by: 

  
1=

n

i
iBFileSizeUnAssigned  (3) 

These two criteria determine the final section size allocated. Higher threshold val-
ues will induce fewer divisions and yield lower co-allocation costs, which include 
establishing connections, negotiation, reassembly, etc. However, although the total 
co-allocation adjustment time may be lower, bandwidth variations may also exert 
more influence. By contrast, lower threshold values will induce more frequent dy-
namic server workload adjustments and, in the case of greater network fluctuations, 
result in fewer differences in server transfer finish time. However, lower values will 
also increase co-allocation times, and hence, increase co-allocation costs. Therefore, 
the internet environment, transferred file sizes, and co-allocation costs should all be 
considered in determining optimum thresholds. 

5   Experimental Results and Analyses 

In this section, we discuss the performance of our Recursive-Adjustment Co-
Allocation strategy. We evaluate four co-allocation schemes: (1) Brute-Force (Brute), 
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(2) History-based (History), (3) Conservative Load Balancing (Conservative) and (4) 
Recursive-Adjustment Co-Allocation (Recursive). We analyze the performance of 
each scheme by comparing their transfer finish time, and the total idle time faster 
servers spent waiting for the slowest server to finish delivering the last block.  

In our example, we assumed that a client site at Tunghai University (THU), 
Taichung city, Taiwan, was fetching a file from three selected replica servers: one at 
Providence University (PU), one at Li-Zen High School (LZ), and one at Da-Li High 
School (DALI). We monitored the bandwidth variations from THU to each server 
using NWS [18] probes. Network environment variations of each connection are 
shown in Figure 4.  

We assign  = 0.5 and experiment it over several file sizes, such as 500MB, 
1000MB, 2000MB, and 4000MB. We set the LeastSize limit threshold to 100MB, 
which result in 12, 15, 17, and 19 block numbers. As mater of comparison, we use the 
equal block numbers above to calculate the performance of each size, when using the 
Conservative Load Balancing. In Figure 5, we show the cost time of each scheme that 
transfers different file sizes. Obviously, Figure 5 shows that our approach reduces the 
time efficiently when compared with the other three schemes. 

For each of schemes, we analyzed the effect of faster servers waiting for the slow-
est server to deliver the last block. In Figure 6, we calculate the total waiting idle time 
with different file sizes, and it shows that our Recursive-Adjustment Co-Allocation 
scheme offers significant performance improvements in every file size case when 
compared with other schemes. This result is due to our approach reduces the differ-
ence of each server’s finished time efficiently. 

For the Recursive-Adjustment technique, we study the effects of various  values 
on the block numbers and the total idle times. Figures 7 and 8 ,show for an assigned 
file size of 10MB to LeastSize, the total idle time increased and the total block num-
ber decreased as the  value increased. When the  value was greater then 0.7, the 
wait time grew rapidly, and although the wait time performance was good when the  
value was less than 0.4, it resulted in a great increase in block numbers, which may 
cause high co-allocation costs. This experiment indicates that the assigned  value 
should be neither too large nor too small. 

 

Fig. 4. Network variation between client and each server 
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Fig. 5. Completion times for various methods  Fig. 6. Idle times for various methods 

 

 Fig. 7. Idle times for various  values                 Fig. 8. Block numbers for various  values 

Figures 9 and 10 show that the LeastSize threshold value in our Recursive-
Adjustment method is also an important factor affecting total wait time and block 
numbers. In this experiment, we set the  value to 0.5 and tested various LeastSize 
values. The results indicate that decreasing the LeastSize threshold value effectively 
reduces the total wait time. Although this results in more block numbers, the increase 
is not excessive. Figure 9 indicates we may infer that the Recursive-Adjustment 
scheme performs better with smaller LeastSize threshold values for most file sizes 
because smaller size final blocks are less influenced by network variations. 

 

Fig. 9. Idle times for various LeastSize values  Fig. 10. Block numbers for various LeastSize   
values 
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6   Conclusions 

Using the parallel-access approach to downloading data from multiple servers reduces 
transfer time and increases resilience to servers. The co-allocation architecture pro-
vides a coordinated agent for assigning data blocks. A previous work showed that the 
dynamic co-allocation scheme leads to performance improvements, but cannot handle 
the idle time of faster servers, that must wait for the slowest server to deliver its final 
block. This study proposes the Recursive-Adjustment Co-Allocation scheme to im-
prove data transfer performances using the co-allocation architecture in [13]. In this 
approach, the workloads of selected replica servers are continuously adjusted during 
data transfers, and we provide a function that enables users to define a final block 
threshold, according to their data grid environment. Experimental results show the 
effectiveness of our proposed technique in improving transfer time and reducing over-
all idle time spent waiting for the slowest server. 
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Abstract. This paper describes the design and evaluation of a federated, peer-
to-peer indexing system, which can be used to integrate the resources of local 
systems into a globally addressable index using a distributed hash table. The sa-
lient feature of the indexing systems design is the efficient dissemination of 
term-document indices using a combination of duplicate elimination, leaf set 
forwarding and conventional techniques such as aggressive index pruning, in-
dex compression, and batching. Together these indexing strategies help to re-
duce the number of RPC operations required to locate the nodes responsible for 
a section of the index, as well as the bandwidth utilization and the latency of the 
indexing service. Using empirical observation we evaluate the performance 
benefits of these cumulative optimizations and show that these design trade-offs 
can significantly improve indexing performance when using a distributed  
hash table. 

1   Introduction 

Current, peer-to-peer keyword indexing systems that are built on top of distributed hash 
tables (DHT), map keywords and documents into a globally accessible index of feder-
ated resources. To facilitate load balance and scalability many global indexing systems 
fragment index data by keyword so that a particular node will only index a fraction of 
the total keyword indices. The postings lists of such an index will most likely be broken 
into a series of fixed size blocks which will provide efficient means to update, and read 
document indices. The keyword indices that a particular node is responsible for are 
identified deterministically using a hash value derived from the keyword. 

This indexing strategy presents two problems. First, the node responsible for a par-
ticular keyword index has to be located. Second, the keyword indexing data has to be 
exported to a remote peer. Therefore, if a node wanted to export its local index so that 
its files and resources were globally accessible. The nodes indexing service would 
have to lookup the remote systems responsible for every <term, postings list> pair in 
the index, forwarding keyword index data to the appropriate systems. As a conse-
quence, data indexing operations may consume excessive amounts of bandwidth, lo-
cating nodes and sending data across the network. 

Index duplication is another problem that a DHT based indexing service will have 
to cope with. In a homogenous local-area network, which is the target environment of 
such an indexing system we expect index data to be heavily duplicated between dif-
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ferent systems. A recent study carried out by Bolosky. Et al in [1] showed that across 
550 desktop file systems at Microsoft nearly 47% of the aggregate disk space was 
consumed by duplicate documents. Therefore, if duplicate document indices could be 
eliminated from the indexing process before they are sent to a remote host, the re-
sources involved with the indexing process could be significantly reduced.  

In this paper, we use a combination of batch indexing, bloom filter duplicate detec-
tion, aggressive index pruning, compression and leaf set forwarding to reduce the la-
tency and bandwidth required to locate and store term-document indices in a DHT. To 
accomplish this we have developed a prototype indexing system that is based upon 
the Bamboo DHT [2] and have incorporated these optimizations into the indexing ser-
vices lookup and put methods.  

2   Background and Related Work 

In this section, we provide a brief introduction to distributed hash tables (DHTs), and 
describe how they can be used to locate, store, and distribute data items in a reliable 
manner. Moreover, we review some of the indexing techniques used by similar pro-
jects and analyse their short comings to provide a motivation for this project. 

2.1   Distributed Hash Tables 

Structured P2P networks use distributed hash tables to map objects into a large virtual 
identifier space in which individual peers assume responsibility for a small range of 
the key space. Objects are uniformly mapped to key identifiers using a hash function 
on the contents or label of an object. This improves load balance, scalability and re-
trieval performance over unstructured P2P networks as queries can be directly routed 
to the peers that are responsible for items of interest. DHTs such as Chord [3], Bam-
boo [2], and Pastry [4] are able to route query requests in O(log n) steps for a network 
of n hosts. DHT implementations commonly use a hash function on a node’s IP ad-
dress to generate the nodeID or address of a node in the ring topology. In the Chord 
and Pastry systems, key-value pairs are stored on the host which has a nodeID that 
immediately succeeds a keys identifier, whereas the Bamboo system stores data items 
on the numerically closest node (modulo 2160).  

2.2   Routing in a Distributed Hash Table 

To efficiently route messages to one another, each node participating in the ring main-
tains a routing table of log N rows, where N is the number of nodes in the system. 
Each row n of the routing table maintains information (address and node id) relating 
to peers which share the present node’s nodeID in the first n digits but whose n + 1 
entries do not match the n + 1 digits of the present node’s nodeID. Nodes use this in-
formation to route messages deterministically around the ring by forwarding mes-
sages to nodes in the routing table whose nodeID matches the largest number of digits 
in the messages destination hash address. This process is called prefix routing, and 
theoretically allows nodes to route messages in O(log N) time. 

To improve the routing performance and fault tolerance of the ring topology many 
distributed hash table implementations maintain a set of pointers or a leaf set to the 
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nodes immediately to the left of a peer’s nodeID and immediately to the right of a 
peer’s nodeID. These are called the predecessor and successor nodes respectively, and 
most DHT implementations typically maintain a leaf set of two to four neighbouring 
systems. This parameter can be tuned to support different performance trade offs, 
such as routing performance, memory utilization and leaf set maintenance. 

2.3   Related Work 

Several projects have recently considered using distributed hash tables to support 
keyword indexing and search and have attacked the problem of efficient index dis-
semination from several different angles. The research projects that are the most per-
tinent to our research project are reviewed below. These papers can be divided 
roughly into three different categories: data indexing, query processing, and duplicate 
file detection. Many of the papers that relate to data indexing concentrate their efforts 
on efficient query execution in a distributed environment. Therefore, in a lot of these 
systems the underlying index implementation is often lacking and will more often 
than not consume excessive amounts of bandwidth to index and update postings lists.  
Similarly, the research projects which deal with duplicate file detection often concen-
trate their efforts on detecting redundant data in a distributed file system. In this pa-
per, we seek to exploit the distinct properties of distributed inverted indexes to pre-
vent redundant index data being re-indexed. 

In [5] Reynolds and Vahdat simulate a vertically distributed inverted index which 
caches popular indices along the lookup paths of queries. The system exchanges 
bloom filter summaries of document postings lists to reduce the bandwidth require-
ments of conjunctive “and” queries which require remote document listings to be in-
tersected. Our research project uses a similar bloom filter summary of the documents 
stored on a node to prevent redundant duplicate document indices being re-indexed. 
The major difference between this work and ours is that we initially use a smaller 
term filter to reduce the number of documents summarized in the resultant document 
bloom filter. This helps to reduce the bandwidth requirements of the bloom filter 
document summaries which are exchanged between indexing systems and  
remote hosts. 

Burkard [6] extended the routing mechanism of Chord to support ring based for-
warding, which reduces many of the lookup operations required to locate the system 
responsible for particular data items. The salient feature of ring based forwarding is 
that routing costs can be eliminated if the node the index service is currently sending 
data to forward its successor node back to the indexing system. In this way the in-
dexer can “walk” around the DHT ring and distribute term-document indices with out 
having to lookup the host responsible for every term. Our prototype system uses a 
similar indexing strategy to forward a list of successor nodes from a remote system’s 
leaf set back to the indexing system.  

A possible drawback to using leaf set or ring based forwarding is that a remote sys-
tem’s leaf set maybe out of date due to nodes joining and leaving the system. Cur-
rently, we assume a relatively stable system state and have left issues such as leaf set 
inaccuracies for future work. 

Apoidea [7] a decentralized web crawler which uses a distributed hash table main-
tains a large in memory bloom filter of the current URLs that have been processed by 
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a peer to prevent peers re-processing a URL. The system filters URL listings that are 
to be processed and prevents previously indexed URLS being re-indexed. However, 
because of the large size of the in memory bloom filter URL listings are only filtered 
after a URL listing has been sent to a peer. Therefore, a lot of redundant URL listings 
still have to be transmitted across the network. 

In [8] Muthitacharoen et. Al developed a low bandwidth file system (LBFS) which 
exploits the similarities between different versions of files to save bandwidth. To 
minimize redundant network transfer LBFS divides files into content based chunks, 
and indexes each of the chunks by a 64-bit hash value. Network bandwidth is reduced 
by identifying the chunks of data that a remote system already has so as to avoid hav-
ing to transmit redundant data across the network. The duplicate detection process 
used by LBFS is similar in spirit to bloom filter summaries used in this research pro-
ject. However, using the LBFS scheme a client indexing system would have to ex-
change several chunk identifiers with a remote system before redundant indexing data 
can be eliminated. Moreover, we expect the chunk identifiers used by LBFS to be too 
coarse to index the differences between new documents and duplicate documents in 
various postings lists.  

3   Efficient Data Indexing in a DHT 

In this section we detail the design and optimizations of the indexing service used in 
this paper and discuss some of the advantages and potential draw backs of the meth-
ods that we have used. We also discuss the two different index routing methods we 
use: the baseline batch indexing algorithm, leaf set forwarding and how duplicate de-
tection using bloom filter digests can help reduce redundant network traffic. 

3.1   Batch Indexing 

The first indexing optimization that this paper uses is batch indexing. The basic idea be-
hind batch indexing is that the postings lists for a particular term will be batched to-
gether so that a lot of smaller messages do not have to be routed along the same path. 
This works well, but performance can be improved by further aggregating those term-
document indices which are destined for the same remote system. For example, the fol-
lowing index terms all generate a hash address which shares a common prefix of at least 
two digits. Instead of routing a single RPC put request for each of these terms indexes it 
makes more sense to batch them together and send them as a single unit. 

Table 1. SHA-1 Term Images 

base 0x1405df66cbe219b0bf6355bc3d60361a8376b6b4 
input 0x140f86aae51ab9e1cda9b4254fe98a74eb54c1a1 
mar 0x1418c40237ee713b2752a18beb0b3335c688b68b 

In our prototype system we implement batch indexing using a two step process. 
Using a temporary inverted index structure we transform document indices into a se-
ries of <hash, term > listings, which are sorted in sequential order. Once this tempo-
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rary index has been constructed, the indexer will iterate through the <hash, term> list-
ings, and locate the nodes responsible for hosting a particular terms postings list. The 
indexing service will either look to its leaf set to find the remote system responsible 
for a term, or lookup the node responsible for a term using the underlying DHT. Once 
the node responsible for a particular term has been found the term and its associated 
document postings list are put on the indexing queue for that node. This indexing 
queue is emptied periodically and the data it contains is sent to the DHT in com-
pressed form to be serialized. The current batch indexing prototype serializes queued 
indexing data at regular intervals in blocks of 500 terms. The number of terms that the 
indexer serializes can be tuned to reduce the indexer’s memory requirements or in-
crease the number of terms that are batched together. 

In addition, compression can be used to minimise network utilization. The intuition 
behind this is that the network will be the biggest bottleneck in distributing document 
indices, so the extra processing and memory resources required to queue and com-
press the indices should have a small impact on the indexing service. The current pro-
totype system uses generic GZIP compression.  

Finally, to reduce the number of index terms and the number of documents the pro-
totype indexing system utilises aggressive index pruning, stemming, and stop word 
removal to select the most informative terms and document postings from local in-
dexes. These techniques improve the performance of index construction and retrieval 
by eliminating uninformative words and document postings from the index. Terms are 
selected for indexing based upon their document frequency (df) value which quanti-
fies the number of documents a term occurs in. The document frequency filter in the 
prototype indexing system has a lower limit of df >=6 and an upper limit of 
df<=1000.  

3.2   Leaf Set Forwarding 

The major problem associated with batch indexing is that the node responsible for a 
particular keywords postings list has to be looked up using a DHTs routing substrate. 
Not only is the expensive in terms of messages disseminated though out a system. 
But, it may also be inaccurate as the state of a system may change, invalidating previ-
ously batched indices. Therefore, our system makes use of ring based forwarding as 
proposed by Burkard [6] in his thesis about data indexing and web crawling in a DHT 
environment. The ring based forwarding indexing process is largely complementary 
to our work on duplicate detection. 

3.3   Duplicate Index Elimination Using Bloom Filters 

Distributed indexes integrate a wide range of different document resources into a sin-
gle, globally addressable, distributed index. As a consequence, it is natural to assume 
that some of these integrated resources are also mirrored or duplicated on a number of 
systems. Therefore, to reduce bandwidth consumption and redundant RPC messages 
between systems it makes sense to utilize some form of duplicate detection to ensure 
duplicate term-document indices are not needlessly re-indexed.  

Bloom filters are a lossy indexing scheme, used to compactly represent a set or in-
dex as a series of superimposed bitmap patterns, which are used to represent the items 
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stored in the set [9]. Using this technique, the amount of memory (or bandwidth) re-
quired to perform membership queries on an index can be significantly reduced in 
comparison to storing the entire set. However, this comes at the price of an adjustable 
false positive which is dependent on the number of bits used to construct the bloom 
filter, and the number of items represented by the bloom filter. Bloom filters are de-
fined using two parameters: m which specifies the size of the filter in bits, and k 
which defines the number of independent hash functions used to derive a data items 
bitmap pattern. These parameters determine the amount of space required to encode n 
items and the associated false positive p of the bloom filter. The false positive rate of 
a bloom filter can be calculated using the following formula.  

k

m

kn
ep
−−= 1  (1) 

Data items can be inserted into the bloom filter by hashing the label of an item or the 
contents of an item with the bloom filter’s k hash functions h1, h2, … hk, each of which 
map into the range {0, …,m-1}. The corresponding bit locations as generated by the k 
hash functions are then set to one within the bloom filter. Successive, updates to the 
bloom filter may set the same bit location to one multiple times as different data items 
may hash to the same bit locations. Once a bloom filter has been populated member-
ship queries can be accomplished by hashing a data item using a bloom filter’s k hash 
functions and checking that the k bit locations in the bloom filter are set to one. If all 
the corresponding bit locations are set to one, then the item has probably been stored 
in the bloom filter with a small chance of false positive. If any of the bit locations are 
set to zero, then the data item is definitely not in the bloom filter. A diagram illustrat-
ing the insertion of an item into a bloom filter using four hash functions is shown be-
low in figure 1. 

 

Fig. 1. Inserting Data Item X into the Bloom Filter 

In this paper, we use bloom filters to summarize the term and document indices 
stored at a particular node and derive the k hash functions used to perform index and 
lookup operations from the SHA-1 hash of an index items label. This is accomplished 
by dividing the result of the SHA-1 hash function into several equally sized blocks, 
where the content of each block corresponds to the result of one of the k hash func-
tions to be used by the bloom filter. The bloom filter index summaries used in this pa-
per are created using a two step process to reduce the number of bloom filter entries 
that are to be transferred between the indexing system and the remote host. Initially 
the indexing system will create a bloom filter summary of the indexing terms that are 
to be sent to a remote system taking into account the number of documents indexed 
under a specific term. Once the remote system has received the indexing clients list of 
terms, it will create a bloom filter digest which summaries the documents that are in-
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dexed under the terms specified by the indexing service. In this way, the number of 
documents that are transferred between the two systems can be reduced, especially 
when the number of terms to be indexed is small in comparison to the number of 
terms stored on the remote node. Finally, if a duplicate document is found it is not 
completely discarded from the indexing process and it is still indexed in the replica 
location index as a replica document. 

4   Experimental Evaluation 

In this section, we present the preliminary results of these optimizations using a proto-
type indexing service that has been integrated into the Bamboo DHT’s [10] lookup 
and put remote procedure calls. In particular, we quantify the potential bandwidth 
savings using a realistic document set and compare the optimizations to a baseline 
batch indexing system. The experiments have been carried out on a network of 30 
Pentium II nodes, where each system has 384 MB of memory and is connected to the 
network using a 100 Mbps network card. 

To evaluate the performance of the indexing system we have indexed the “Large 
Web Document Clustering Collection” [10] which in total constitutes 10,000 docu-
ments and 27,620 terms. Each of the indexing terms of this collection on average in-
dexes ≈ 57 document postings. The frequency rank distribution of these indexing 
terms is shown on the next page in figure 2. The relationship between the index terms 
and document postings approximates Zipf’s law. Therefore, a few terms will index 
many document postings whilst the majority will only index a few. 

For each benchmark we measure the time it takes to index this document set and 
record the number of RPC operations used to locate the host responsible for a particu-
lar index term as well as the amount of bandwidth consumed by the indexer.  To 
minimise the effect of various errors or bias in the experiment, we repeat each ex-
periment 10 times and present the average result in the following figures and analysis.  
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Fig. 2. Index Distribution Fig. 3. RPC Lookups Fig. 4. Mean Chunk Size 

A similar benchmark is used to evaluate the performance of the bloom filter dupli-
cate detection system. However, this time we measure the bandwidth used to transfer 
a bloom filter and compare this to the bandwidth saved by eliminating duplicate docu-
ments from the index. To determine the basic performance and overhead of the bloom 
filter duplicate detection system, we repeatedly re-index the local text database so that 
the maximum number of duplicate documents may be found by the system. This 



 Reducing the Bandwidth Requirements of P2P Keyword Indexing 57 

means the duplicate detection system will flag every document as being a duplicate as 
exactly the same index is being re-indexed again. For each experiment we have also 
varied the maximum number of document postings that can be indexed, by a constant 
increment of 250 documents. However, this doesn’t seem to have had much effect on 
the overall results of the indexing algorithms. The reason for this isn’t immediately 
clear but we surmise this is due to the heavy tailed distribution of postings lists as 
shown figure 2. 

4.1   RPC Lookups 

Figure 3 presents the results of the RPC lookup benchmark which we use to compare 
the performance of the batch indexing and leaf set forwarding lookup algorithms. The 
batch indexing lookup procedure roughly performs 25 thousand lookup operations to 
locate the remote systems responsible for individual indexing keywords and their 
document posting lists. The reason for this is that the batch indexing algorithm has to 
perform a lookup operation for nearly every term in its database except for those des-
tined for its leaf set. In comparison, the leaf set forwarding (LSF) algorithm signifi-
cantly reduces the number of RPC lookup operations required to locate a remote sys-
tems. The reason for this is that the leaf set forwarding algorithm is able to amortize 
the costs of looking up a node in a DHT by simply forwarding a remote system's suc-
cessor list back to the indexing service. 

4.2   Mean Chunk Size 

Figure 4 depicts the average size of a compressed indexing chunk as used by the batch 
indexing, leaf set forwarding, and bloom filter indexing schemes. In this experiment 
an indexing chunk represents a compressed group of serialized term-document indices 
which are to be sent to the same remote system. On average, the leaf set forwarding 
and batch indexing algorithms roughly transmit ≈ 80 Kb to remote indexing systems. 
In comparison, the bloom filter indexing scheme roughly transmits ≈ 6 Kb of data to 
remote indexing systems which is much less. This 6 Kb of data represents the over-
head of the bloom filter duplicate detection system in terms of the term-document 
summaries used by the indexing service to identify duplicate documents.  
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4.3   Aggregate Bandwidth 

In figure 5 we examine the differences between the aggregate bandwidth utilized by 
the leaf set, batch and duplicate detection indexing algorithms. For each of these algo-
rithms the aggregate bandwidth metric is used to quantify the amount of data trans-
ferred between a system's indexing service and the DHT. Moreover, for the duplicate 
detection algorithm the aggregate bandwidth metric also quantifies the size of the 
term-document filters exchanged between the indexing service and remote host. The 
batch indexing and leaf set forwarding algorithms in aggregate consume a similar 
amount of bandwidth as they index exactly the same number of documents. In Com-
parison, the duplicate detection algorithm in aggregate uses far less bandwidth as it 
suppresses many of the redundant indices that have already been indexed. Despite the 
significant bandwidth savings of the duplicate detection algorithm more research 
needs to be carried out to more accurately quantify the bandwidth savings under dif-
ferent levels of duplication. In addition, using a bloom filter to summarize the con-
tents of a node for each indexing transfer is expensive and in some cases will proba-
bly be unnecessary. Therefore, different strategies need to be developed to reduce the 
size and computational cost of creating a bloom filter document summary.  

4.4   Indexing Latency 

Figure 6 shows the average latency of the various algorithms used in the indexing 
process. The fastest algorithm by far is the leaf set forwarding (LSF) algorithm. The 
duplicate detection algorithm is almost as fast. But, the overhead of dynamically cre-
ating a bloom filter increases the latency of the algorithm by a constant factor. The la-
tency of the batch algorithm is significantly worse than the other algorithms and we 
attribute this to large number of RPC requests made by the algorithm. 

5   Conclusion and Further Work 

In this paper, we have proposed a set of mechanisms to significantly reduce the number 
of lookup operations, and bandwidth required to index term-documents in a distributed 
hash table. Our results show that the combination of the different techniques such as in-
dex compression, batching, leaf set forwarding and specifically duplicate detection can 
help to improve the performance and bandwidth utilization of indexing operations.  

We are currently conducting more extensive investigations to address some of the 
current limitations of the system and plan to develop a comprehensive index distribu-
tion which accurately reflects the distribution of duplicate and non-duplicate docu-
ments in a networked environment. Finally, we would also like to perform a larger 
scale evaluation of the indexer using more nodes to more accurately gauge the scal-
ability of the system. 
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Abstract. In this paper, we present an algorithm for scheduling of distributed
data intensive Bag-of-Task applications on Data Grids that have costs associated
with requesting, transferring and processing datasets. The algorithm takes into ac-
count the explosion of choices that result due to a job requiring multiple datasets
from multiple data sources. The algorithm builds a resource set for a job that
minimizes the cost or time depending on the user’s preferences and deadline and
budget constraints. We evaluate the algorithm on a Data Grid testbed and present
the results.

1 Introduction

Multi-institutional scientific projects in domains such as high energy physics, astron-
omy and bioinformatics are increasingly generating data in the range of Tera Bytes
(TB) which is replicated at various sites for improving reliability and locality. Grid
computing [1] has made it possible to aggregate heterogeneous, geographically dis-
tributed compute and storage resources for executing large-scale applications in such
eScience [2] projects. Data Grids [3] are instances of Grids where access and man-
agement of distributed data resources have equal or higher priority than computational
requirements. A well-cited example of a Data Grid is the one being set up for processing
the output of the ATLAS experiment at the Large Hadron Collider(LHC) at CERN [4].

The execution of data-intensive applications involves requirements for discovering,
processing, storing and managing large distributed datasets and is guided by factors
such as cost and speed of accessing, transferring and processing data. There may be
multiple datasets involved in a computation, each replicated at multiple locations that
are connected to each other and to the compute resources by networks with varying cost
and capability. Consequently, this explosion of choices makes it difficult to identify the
most optimal resources for retrieving and performing the required computation on the
selected datasets.

In large collaborations that form Data Grids, there can be a lot of pressure on the net-
work, storage and processing elements. This can lead to overloading of resources and
appearance of network ”hot spots” as is commonly observed in the World Wide Web [5].
Previous work has suggested a computational economy metaphor for resource manage-
ment within computational grids [6]. Resource providers price their goods to reflect sup-
ply and demand in order to make a profit or to regulate consumption. On the consumer
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side, users specify their deadlines for completing their jobs, the budget available to them
and their preference for the cheapest or the fastest processing according to their needs
and priorities. While such strategies have been proposed and evaluated for computational
grids [7], no study has yet been made for similar requirements on Data Grids.

In this paper, we introduce an algorithm for scheduling a Bag-of-Tasks(BoT) ap-
plication on a set of geographically distributed, heterogeneous compute and data re-
sources. Each of the tasks within the application depends on multiple datasets that may
be distributed anywhere within the grid. Also, there are economic costs associated with
the movement and processing of datasets on the distributed resources. The algorithm
minimizes either the overall cost or the time of execution depending on the user’s pref-
erence subject to two user-defined constraints - the deadline by which the processing
must be completed and the overall budget for performing the computation.

The rest of this paper is organised as follows. In Section 2, we survey previous
work in data-intensive Grid scheduling. We extend the notion of user-driven deadline
and budget constrained scheduling within computational grids to data grids in Section
3. In Section 4, the proposed algorithm is evaluated on a real Grid testbed and the results
are reported. Finally, we conclude our paper and outline future work.

2 Related Work

Several approaches have been proposed to schedule data-intensive applications on dis-
tributed resources. In [8], the authors evaluate various heuristics for parameter-sweep
jobs which have files as input. They introduce a new heuristic, XSufferage, that takes
into account file locality by scheduling jobs to those clusters where the files have al-
ready been transferred for a previous job. Takefusa, et. al [9] explore various combi-
nations of scheduling and replication algorithms and come to the conclusion that for
large files, moving computation close to the source of data is the best strategy. Ran-
ganathan and Foster [10] have simulated job scheduling and data scheduling algorithms
and recommend that it is best to decouple data replication from the job scheduling.
In Chameleon [11], the scheduling strategy executes a job on one site while taking
into account computation and communication costs. Kim and Weissman [12] explore
a Genetic Algorithm-based approach for decomposing and scheduling a parallel data-
intensive application. In previous work [13], we have proposed an adaptive algorithm
that schedules jobs while minimizing data transfer. It evaluates all known replica loca-
tions of the file and submits the job to the compute resource which is located closest
to one of the replica locations. However, in the case of applications having to deal
with data from multiple sources, the problem is executing the application such that it
is optimal with respect to all the data sources rather than a single source as has been
considered in the works presented before.

The problem of scheduling BoT applications on distributed systems is a very well-
studied one [14][8][15]. Deadline and budget constrained scheduling algorithms for
compute-intensive BoT applications were proposed and evaluated in [7]. In this paper,
we extend the same notion to data-intensive BoT applications in the following manner.
This paper proposes a detailed cost model for distributed data-intensive applications
that builds on the models for system costs (processing and transferring overheads) pre-
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viously discussed in [12][11][16] and takes into account expenses for storage, transfer
and processing of data. It then proposes a new algorithm based on the Min-Min heuris-
tic described in [14] that takes into account the deadline and budget constraints of the
users and produces a schedule that minimises either cost or time depending on their re-
quirements. The proposed algorithm also explicilty deals with the explosion of choices
in scheduling Data Grid applications as is mentioned in the previous section. While
this is similar in intent to the work presented in [17], there is a lot of difference in the
methodologies. In [17], the search space is pruned by grouping resources into collec-
tions and then sorting the collections in the order decided by a certain performance
metric. As will be shown later, within our algorithm, the resource sets are created in an
incremental fashion and the search space is limited to only those resources that minimze
the objective function.

3 Scheduling

Fig. 1 shows a typical Data Grid environment which is composed of storage resources,
or data hosts, which store the data and compute resources which run the jobs that exe-
cute upon the data. This is based on the scenarios drawn up for users of the production
Data Grid projects such as LHC Grid [18]. It is possible that the same resource may
contain both storage and computation capabilities. For example, it could be a super-
computing center which has a Mass Storage Facility attached to it. The datasets may
be replicated at various sites within this data grid depending on the policies set by the
administrators of the storage resources and/or the producers of data. The scheduler is
able to query a data directory such as a Replica Catalog [19] or the SRB [20] Metadata
Catalog for information about the locations of the datasets and their replicas. We asso-
ciate economic costs with the access, transfer and processing of data. The processing
cost is levied upon by the computational service provider, while the transfer cost comes
on account of the access cost for the data host and the cost of transferring datasets from
the data host to the compute resource through the network.

Fig. 1. An economy-based data grid environment
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We consider a job (equivalent to a task in a BoT) as the atomic unit of computation
within this model. Each job requires one or more datasets as input. Each dataset is avail-
able through one or more data hosts. The steps for submitting a job to the grid shown
in Fig. 1 are as follows: The scheduler gathers information about the available compute
resources through a resource information service (1) and about the data through the data
directory (2). It then makes decision on where to submit the job based on the availability
and cost of the compute resource, the minimization preference and the location, access
and transfer costs of the data required for the job (3). The job is dispatched to selected
the remote compute resource (4) where it requests for the dataset from the replica lo-
cation selected by the scheduler (5 & 6). After the job has finished processing (7), the
results are sent back to the scheduler host or another storage resource which then up-
dates the data directory(8). This process is repeated for all the jobs within the set. Here,
only resources that meet minimum requirements of the application such as architec-
ture(instruction set), operating system, minimum free memory and storage threshold
are considered as suitable candidates for job execution.

We consider, therefore, a set of N independent jobs J = {j1, j2, . . . , jN} which
have to be scheduled on M computational resources R = {r1, r2, . . . , rM}. Typ-
ically, N � M . Each job j, j ∈ J requires a subset Fj = {fj1, fj2, . . . , fjK}
of a set of datasets, F , which are each replicated on a subset of P data hosts,D =
{d1, d2, . . . , dP }. For f ∈ F , Df ⊆ D is the set of data hosts on which f is replicated.

The time taken to execute a job is the sum of the execution time and the times taken
to transfer each of the datasets required for the job from their respective data hosts to
the compute node. If the execution time for job j on compute resource r is denoted by
tjr and the transfer time for a dataset fj ∈ Fj from a location dfj ∈ Dfj to compute
resource r is denoted by tfjr, then the total time required for executing the job j is
given by tj = tjr +

∑
fj∈Fj

tfjr where tfjr is the sum of the response time of dfj and
the time taken for the actual data movement. We define response time as the difference
between the time when the request was made to the data host and the time when the
first byte of the file was received at the compute resource. It is an increasing function of
the load on the data host. The time taken for the data movement is the size of the data
divided by the available bandwidth between the data host and the compute resource.
While we have considered a case of sequential data transfer in this model, it can be
modified to consider a parallel data transfer model as presented in [12].

To calculate the economic cost of executing the job, we denote the economic cost of
executing the job j on the compute resource r by ejr and cost of transferring the dataset f
by efjr. Therefore, the total execution cost for job j is given by ej = ejr +

∑
fj∈Fj

efjr

where efjr is the sum of access cost, which is the price levied by the data host for serving
the requested dataset and network transfer cost dependent on the size of the file and the
cost of transferring unit data from data host to compute resource . The access cost can
be an increasing function of either the size of the requested dataset or the load on the
data host or both. This cost regulates the size of the dataset being requested and the
load which the data host can handle. The cost of the network link may increase with
the Quality of Service(QoS) being provided by the network. For example, in a network
supporting different channels with different QoS as described in [21], a channel with a
higher QoS may be more expensive but the data may be transferred faster.
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We associate two constraints with the schedule, the deadline by which the entire
set must be executed (denoted by TDeadline) and the maximum budget, Budget, for
processing the jobs.The deadline constraint can therefore be expressed in terms of job
execution time as max(tj) ≤ TDeadline, ∀ j ∈ J . The budget constraint can be ex-
pressed as

∑
J ej ≤ Budget.

3.1 Algorithm

Depending on the user-provided deadline, budget and scheduling preference, we can
have two objective functions, viz:

– Cost minimization We try to execute the jobs in the schedule that causes least
expense while keeping the execution time within the deadline provided.

– Time minimization Here, the jobs are executed in the fastest time possible with
the budget for the execution acting as the constraint.

In both cases the same algorithm can be applied to solve the different objective func-
tions. This is done by means of a switch Min which allows us to change the deci-
sion variables depending on the minimization chosen within the algorithm. We define
a function fmin that returns the smallest value within a set of values, A, depending on
the minimization applied. Formally,

fmin(Min, CV ar, TV ar, A) =

⎧⎪⎪⎨
⎪⎪⎩

min(CV ar, A)
if Min = Cost
min(TV ar, A)

if Min = T ime

Here, CV ar and TV ar represents variables deal with cost and time respectively. The
functions min(CV ar, A) and min(TV ar, A) will return the element of A with the
smallest value of CV ar and TV ar respectively. Hence, by changing the value of Min
we can determine the objective function to be minimized by the algorithm. Conse-
quently, Min is a parameter to the scheduling algorithm.

The listing for the algorithm is given in Figure 2. JU , JA, JC and JF are sub-
sets of the set of jobs J consisting of jobs in Unsubmitted, Active, Completed and
Failed states respectively. Jobs initially are in the Unsubmitted state, once they are
submitted, they become Active and finally end up being Completed or Failed. The
scheduling algorithm exits if all jobs are in the final states or if the deadline or budget
constraints are violated. The initial part of the loop does bookkeeping. At every polling
interval, we update the performance data of the compute resources and calculate the al-
location for the current polling interval. For each data resource, we update the network
conditions between itself and the computational resources. Then, we sort the compu-
tational resources either by the cost of the network link or the bandwidth between the
compute resource and the data host depending on the minimization required. The rest
of the algorithm is in two parts : the first part maps the jobs to the selected compute
resources depending on selected minimization objective (cost or time) while the sec-
ond dispatches the jobs while enforcing the deadline and budget constraints. These are
described as follows:



A Deadline and Budget Constrained Scheduling Algorithm 65

while J �= JC ∪ JF OR Tcurrent < TDeadline OR Budget spent < Budget do1
Update Budget spent by taking into account the jobs completed in the last2
interval;
for each r ∈ R do3

Calculate performance data on the basis of resource performance in previous4
polling interval;

end5
for each d ∈ D do6

Based on current network values, sort R in the increasing order of7
Cost(Linkdr) or 1/BW (Linkdr)) depending on whether Min is Cost or
T ime;
Maintain this list as Rd;8

end9
MAPPING SECTION;10
for j ∈ JU do11

Sj , T empj ← {};12
for fj ∈ Fj do13

Select {r, dfj
} such that, depending on Min, either efjr or tfjr is14

minimised;
if Sj = {} then15

Sj ← Sj ∪ {r, dfj
};16

Tempj ← Sj ;17

end18
else19

Sj ← (Sj − {rprev}) ∪ {r, dfj
};20

Tempj ← Tempj ∪ {dfj
};21

end22
Sj ← fmin(Min, ej , tj , {Sj , T empj});23
Tempj ← Sj ;24
rprev ← r ∈ Sj ;25

end26

end27
DISPATCHING SECTION;28
Sort JU in the ascending order of ej or tj depending on Min;29
Expected Budget ← Budget spent;30
for j ∈ JU do31

Take the next job j ∈ JU in sorted order;32
r ← r ∈ Sj ;33
if r can be allocated more jobs then34

if Min = Cost AND (TCurrent + tj) < TDeadline then35
if (Expected Budget + ej) ≤ Budget then submit j to r;36
else stop dispatching and exit to main loop37

end38
if Min = T ime AND Expected Budget + ej ≤ Budget then39

if (TCurrent + tj) < TDeadline then submit j to r;40
else stop dispatching and exit to main loop41

end42
Expected Budget = Expected Budget + ej ;43
Remove j from JU ;44

end45

end46
Wait for the duration of the polling interval;47

end48

i d d f dli d d i d b d h d li f

Fig. 2. Pseudo-code for Deadline and Budget Constrained Cost-based Scheduling of Data Inten-
sive Applications.
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Mapping: We require one compute resource to execute the job and one data host each
for every dataset required by the job. That is, for each job j, we create a resource
set Sj = {rj , dj1, dj2, . . . , djK} that represents the compute and data resources to
be accessed by the job in execution. However, if we try all possible combinations of
compute and data resources for each job, this results in a O(N(MP )K) mapping where
K is the maximum number of datasets for each job.

We, therefore, decrease the complexity by making a choice at each step within the
mapping section. For a job, we iterate through the list of datasets it requires. For each
dataset, we pick the combination of a compute resource and a data host that returns
the lowest value for expected transfer cost(efjr) or time(tfjr) depending on either cost
or time minimization. This is done in O(P ) time as for each data host, we only have
to pick the first compute resource out of its sorted list of compute resources. Then we
create two resource sets, Sj and Tempj, the former with the current selected compute
and data resources and the latter with the current selected data resource but with the
compute resource selected in the previous iteration, rprev (lines 15 - 22) . Then, we
compare the two sets on the basis of the expected cost or execution time and select the
resource set which gives us the minimum value (line 23). This procedure ensures that
the choice of the compute resource and the resource set so formed at the end of each
iteration is better than those selected in all previous iterations. For N jobs, therefore,
the above mapping loop runs in O(NKP ) time.

Dispatching: In the dispatching section, we first sort all the job in the ascending or-
der of the value of the minimization function for their respective combinations. Then,
starting with the job with the least cost or least execution time, we submit the jobs to
the compute resources selected for them in the mapping step if the allocation for the re-
sources as determined in the initial part has not been exhausted. For cost minimization,
we see if the deadline is violated by checking whether the current time(TCurrent) plus
the expected execution time exceeds TDeadline (line 35). If so, the job goes back into
the unsubmitted list in the expectation that the next iteration will produce a better com-
bination. If Budget is exceeded by the current job then we stop dispatching any more
jobs and return to the main loop since the rest of the jobs in the list will have higher
cost (lines 36-37). For time minimization, we check if the budget spent (including the
budget for all the jobs previously submitted in current iteration) plus the budget for the
current job exceeds Budget. If the deadline is violated by the current job then we stop
dispatching and return to the main loop.

4 Experiments and Results

We have implemented the scheduling algorithm presented in Section 3 within the Grid-
bus Broker [13]. The testbed resources used in our experiments is detailed in Table
1. The cost per sec denotes the rate for performing a computation on the resource in
Grid Dollars (G$). It can be seen that some of the resources were also used to store the
replicated data and therefore, were performing the roles of both data hosts and com-
pute resources. The average available bandwidth between the compute resources and
the data hosts is given in Table 2. We have used NWS (Network Weather Service) [22]
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Table 1. Resources within Belle testbed used for evaluation and their costing

Organization Resource details Role Compute
Cost(G$
/sec)

Total Jobs
Done

TimeCost
Dept. of Computer
Science, University of
Melbourne

belle.cs.mu.oz.au
4 Intel 2.6 GHz CPU, 2 GB RAM,
70 GB HD, Linux

Broker Host, Data
Host, Compute
resource, NWS
Server

6 94 2

School of Physics,
University of Mel-
bourne

fleagle.ph.unimelb.edu.au
1 Intel 2.6 Ghz CPU, 512 MB
RAM, 70 GB HD, Linux

Replica Catalog
host, Data host,
NWS sensor

N.A.∗ – –

Dept. of Computer
Science, University of
Adelaide

belle.cs.adelaide.edu.au
4 Intel 2.6 GHz CPU, 2 GB RAM,
70 GB HD, Linux

Data host, NWS
sensor

N.A. ∗ – –

Australian National
University, Canberra

belle.anu.edu.au
4 Intel 2.6 GHz CPU, 2 GB RAM,
70 GB HD, Linux

Data Host, Com-
pute resource, NWS
sensor

6 2 4

Dept of Physics, Uni-
versity of Sydney

belle.physics.usyd.edu.au
4 Intel 2.6 GHz CPU(1 avail), 2
GB RAM, 70 GB HD, Linux

Data Host, Com-
pute resource, NWS
sensor

2 2 119

Victorian Partnership
for Advanced Com-
puting, Melbourne

brecca-2.vpac.org
180 node cluster (only head node
utilised)

Compute resource,
NWS sensor

4 27 0

∗Not used as a compute resource but only as a data host

for measuring the network bandwidths between the computational and the data sites.
We have used only the performance data and not the bandwidth forecasts provided by
NWS. It has been shown that NWS measurements with 64 KB probes cannot be corre-
lated with large data transfers[23][24]. However, we consider the NWS measurements
are indicative of the actual available bandwidth in our case. In the future, we hope to use
regression models for more accurate measurements as has been shown in [23][24] .The
broker itself was extended to consider the price of transferring data over network links
between the compute resources and the data hosts while scheduling jobs. In our experi-
ments, although we have artificially assigned data transmission costs shown in Table 3,
they can be linked to real costs as prescribed by ISPs (Internet Service Providers). Dur-
ing scheduling, data movement cost and time were explicitly taken into account when
data and compute services were hosted on different resources.

Within the performance evaluation, we wanted to capture various properties and
scenarios of Data Grids and applications. Accordingly we devised a synthetic applica-
tion application that requests K datasets that are located on distributed data sources and
are registered within a replica catalog. The datasets are specified as Logical File Names
(LFNs) and resolved to the actual physical locations by the broker at runtime. The ap-
plication then processes these datasets and produces a small output file (of the order
of KB). In this particular evaluation, the datasets are files registered within the catalog.
There are 100 files of size 30 MB each, distributed between the data hosts listed in
Table 1. The BoT application here is a parameter-sweep application consisting of 125
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Table 2. Avg. Available Bandwidth between
Data Hosts and Compute Resources as reported
by NWS(in Mbps)

Compute Resources
Data Hosts UniMelb

CS
ANU UniSyd VPAC

ANU 6.99 – 10.242 6.33
Adelaide 3.45 1.68 2.29 6.05
UniMelb
Physics

41.05 6.53 2.65 20.57

UniMelb
CS

– 6.96 4.77 36.03

UniSyd 4.78 12.57 – 2.98

Table 3. Network Costs between Data Hosts
and Compute Resources (in G$/MB)

Compute Resources
Data Hosts UniMelb

CS
ANU UniSyd VPAC

ANU 34.0 0 31.0 38.0
Adelaide 36.0 34.0 31.0 33.0
UniMelb
Physics

40.0 32.0 39.0 35.0

UniMelb
CS

0 30.0 36.0 33.0

UniSyd 33.0 35.0 0 37.0
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Fig. 3. Distribution of file access

Table 4. Summary of Evaluation Results

Minimiz-
ation

Total
Time
(mins.)

Compute
Cost (G$)

Data Cost
(G$)

Total
Cost (G$)

Cost 80 31198.27 39126.65 70324.93
Time 54 76054.90 43821.64 119876.55

jobs, each job an instance of the application described before requiring 3 files (that is,
K = 3 for all the jobs in this evaluation). Fig. 3 gives the distribution of the number of
requests for data made by the jobs versus the data hosts. The distribution is the same for
both cost and time minimization. The datasets were transferred in sequence, that is, the
transfer of one dataset was started after the previous had completed. The computation
times for the jobs were randomly distributed within 60-120 seconds.

There are two measures of performance that we are interested in: the first is the rela-
tive usage of the computational resources under cost and time minimization which indi-
cates how the choice of minimization criteria impacts resource selection and the second,
is the distribution of jobs with respect to the computational and data transfer costs and
times incurred within each minimization which tells us the how effective the algorithm
was in producing the cheapest or the fastest schedule. The experiments were carried out
on 29th November 2004 between 6:00 p.m. and 10:00 p.m. AEDT. The deadline and
budget values for both cost and time minimization were 2 hours and 500,000 G$ re-
spectively. Table 4 shows the summary of the results that were obtained. The total time
is the wall clock time taken from the start of the scheduling procedure up to the last
job completed. All the jobs completed successfully in both the experiments. The aver-
age costs per job incurred during cost and time minimization are 562.6 G$ and 959 G$
with standard deviations of 113 and 115 respectively. Mean wall clock time taken per
job(including computation and data transfer time) was 167 secs for cost minimization
and 135 secs for time minimization with standard deviations 16.7 and 19 respectively.
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Fig. 4. Cumulative number of jobs completed vs time

As expected, cost minimization scheduling produces minimum computation and
data transfer expenses whereas time minimization completes the experiments in the
least time. The graphs in Figs. 4 and 4 show the number of jobs completed versus
time for the two scheduling strategies for data grids. Since the computation time was
dominant, within cost minimization, the jobs were executed on the least economically
expensive compute resource. This can be seen in Fig. 4 where the compute resource
with the least cost per sec, the resource at University of Sydney, was chosen to execute
95% of the jobs. Since a very relaxed deadline was given, no other compute resource
was engaged by the scheduler as it was confident that the least expensive resource alone
would be able to complete the jobs within the given time. Within time minimization, the
jobs were dispatched to the compute resources which promised the least execution time
even if they were expensive as long as the expected cost for the job was less than the
budget per job. Initially, the scheduler utilised two of the faster resources, the Univer-
sity of Melbourne Computer Science(UniMelb CS) resource and the VPAC resource.
However, as seen from Fig. 3, 26.67% of the requests for datasets were directed to
the UniMelb CS resource. A further 6.67% were directed to the resource in UniMelb
Physics. Hence, any jobs requiring one of the datasets located on either of the above
resources were scheduled at the UniMelb CS resource because of the low data transfer
time. Also, the UniMelb CS resource had more processors. Hence, a majority of the
jobs were dispatched to it within time minimization.

Figs. 5(a) and 5(b) show the distribution of the jobs with respect to the compute and
data costs respectively. For cost minimization, 95% of the jobs have compute costs less
than or equal to 400 G$ and data costs between 250 G$ to 350 G$. In contrast, within
time minimization, 91% of the jobs are in the region of compute costs between 500
G$ to 700 G$ and data costs between 300 G$ to 400 G$. Hence, in time minimization,
more jobs are in the region of high compute costs and medium data costs. Thus, it can
be inferred that the broker utilized the more expensive compute and network resources
to transfer data and execute the jobs within time minimization.

Figs. 6(a) and 6(b) show the distribution of the jobs with respect to the total execu-
tion time and the total data transfer time for cost minimization and time minimization
respectively. The execution time excludes the time taken for data transfer. It can be seen
that within time minimization 6(b) the maximum data transfer time was 35s as com-
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Fig. 5. Distribution of jobs against compute and data costs
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Fig. 6. Distribution of jobs against execution time and data transfer time

pared to 75s for cost minimization. Also, there are more jobs within time minimization
that have had transfer time less than 10s which implies that the jobs were scheduled
close to the source of the data. Therefore, from the results, it can be seen that given cost
or time minimization, the algorithm presented in this work does minimize the objective
function for upto 90% of the set of jobs.

5 Conclusion and Future Work

We have presented here a model for executing jobs on data grids which takes in to ac-
count both processing and data transfer costs. We have also presented an algorithm which
greedily creates a resource set, consisting of both compute and data resources, that
promises the least cost or least time depending on the minimization chosen. We have pre-
sented empirical results obtained from evaluating the algorithm on a Data Grid testbed.
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We plan to conduct further evaluations to conclusively state that the algorithm mini-
mizes its objective functions. We also plan to evaluate the algorithm with a testbed with
different levels of replication of data and with varying resource prices.
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Abstract. Even in an intrusion tolerant system, the resources will be fa-
tigued if the intrusion is long lasting because of compromising iteratively
or incrementally. In due course, the system will not provide even the mini-
mum critical functionality. Thus we propose a model to increase the cluster
system survivability level bymaintaining the essential functionality. In this
paper, we present the cluster recovery model with a software rejuvenation
methodology, which is applicable in security field and also less expensive.
Firstly, we perform the steady-state analysis of a cluster system and then
study the 4th Generation Security Mechanism: Restore system with cold
standby cluster. The basic idea is investigate the consequences for the ex-
act responses in face of attacks and rejuvenate the running software or/and
service, or/and reconfigure it. It shows that the system operates through
intrusions and provides continued the critical functions, and gracefully de-
grades non-critical system functionality in the face of intrusions.

1 Introduction

After intrusion protection, detection and tolerant systems mechanisms, the next
4th security mechanism is the restore system. Restore system includes diagnosis,
learning, reconfiguration, software rejuvenation, natural immunity and reflection
[1]. Thus we propose a restore system model to increase the cluster system
survivability level by maintaining the essential functionality. In this paper, we
present the cluster recovery model with a software rejuvenation methodology,
which is applicable in security field and also less expensive. An attacker carries
out a DoS attack by making a resource out of action. The nature of attacks is
very dynamic because attackers have the specific intention to attack and well
prepare their steps in advance. So far no respond technique able to cope with
all types of attacks has been found. In most attacks, attackers overwhelm the
target system with a continuous flood of traffic designed to consume all system
resources, such as CPU cycles, memory, network bandwidth, and packet buffers.
These attacks degrade service and can eventually lead to a complete shutdown.
In this work, we address attacks mainly related to CPU usage, physical memory
and swap space usage, running processes, network flows and packets. It will
automatically detect potential weaknesses and reconfigure with attack patterns,
which are characterizing an individual type of attack and attack profiles. We had
analyzed the attack datasets and injected the attacks events into a system, and
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learned the prior knowledge. The next step is to restore the system to a healthy
state within a set time following the predictive alerts [2]. Software rejuvenation is
a proactive fault management technique aimed at cleaning up the internal system
state to prevent the occurrence of more severe future crash failures. It involves
occasionally terminating an application or a system, cleaning its internal state
and restarting it. IBM Software Rejuvenation is a tool to help increase server
availability by proactively addressing software and operation system aging [3].
The effect of aging is captured as crush/hang failures [4].

In the current literature, there are significant numbers of researches, which
are mainly concerned with survivability analysis. Jha et. al. [5]and Nikolopoulos
et. al. [6] have studied reliability, latency and cost benefit model. Jha et. al. have
analyzed survivability of network systems, which are service dependent; therefore
a system architect should focus on the design of the system by analyzing only the
service required of that system. They use a Constrained Markov Decision Process
(CMDP) to form the basis of the survivability analysis, which is composed of
reliability, latency, and cost benefit.

Liew et. al. [7] had presented a survivability function model. In their study,
a survivability function is used as the measure instead of a single value for sur-
vivability. They evaluate network survivability in terms of nodes connected after
a failure (disaster) that results in unavailable or destroyed nodes. The surviv-
ability function is described as the probability that a fraction of the nodes are
connected to the central node. The function allows for different quantities to be
calculated based on the network characteristics such as type of failure (disaster)
and goodness of the network. The survivability function can calculate expected,
worst-case, r-percentile, and probability of zero survivability. Newport [8] built
node and link connectivity models. The terms connectivity and survivability are
used interchangeably in their research. They measure survivability using Node
Connectivity Factor (NCF) and Link Connectivity Factor (LCF). A modified
cut-saturation algorithm in conjunction with Floyd’s algorithm is used in the
design process for networks. Moitra et. al. [9][10] simulated the model for man-
aging survivability of network information systems. They propose a model to
assess the survivability of a network system. Different parameters affect surviv-
ability such as the frequency and impact of attacks on a network system. The
authors finally conclude that there is no absolute survivability and sites other
measures of survivability such as relative survivability, worst-case survivability,
and survivability with expected compromise. Simulations to analyze survivabil-
ity used the Poisson model.

In this paper, we present a model to increase the cluster system survivability
level using software rejuvenation. The organization of the paper is as follows. In
Section 1, we define the problem and address related research. Section 2 presents
a proposed model which can be used to analyze and proactively manage the
effects of cluster network faults and attacks, and recover accordingly and in the
following section, the model is analyzed and experiment results are given to
validate the model solution. Finally, we conclude that software rejuvenation is a
viable method and present further research issues.
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2 Proposed Model

Significant features of various system resources may differ between specific at-
tacks. And the response and restore methods would differ as well. In this work,
the system has divided into three stages; healthy stage, restoration stage and fail-
ure stage (refer to Figure. 1). The model consists of five states: healthy state (H),
infected state (I), rejuvenation state (Rj), reconfiguration state (Rc) and failure
state (F). The healthy state represents the functioning and service providing
phases. In the healthy stages, the systems aware to resist by various policies and
offer proactive managements which are periodic diagnostics and automatic error
log analysis, scheduled tasks (checking routine) based on experiences to assess
the approximate frequency of unplanned outages due to resources exhaustion,
monitoring server subsystems and software processes to ascertain common trends
accompanying regular failures, error logging and alerts (error logging controls).

At the rejuvenation performing state, we need to be able to weigh the risk
of policy with further damage against the policy of shutting the system in an
emergency stage. In this case, the tools not only detect an attacker’s presence but
also support to get the information containments. The events are preconditions
and are related to compromised system states. Susceptible to attack is an action
or series of actions that lead to a compromise. Multiple defense mechanisms are
the set of actions that may be taken to correct vulnerable conditions existing

Fig. 1. Proposed Model
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on the system or to move the system from a more compromised state to a
less compromised state. To this end, software rejuvenation methodologies are
reviewed and synthesized by the policies. The main strategies are occasionally
stopping the executing software, cleaning the internal state and restarting by
means of effectiveness of proactive managements, degrading mechanism, service
stop, service restart, reboot and halt.

At the restoration stage, they may be decomposed into three types according
to their specific attacks such as

– Performing rejuvenation only
– Performing reconfiguration only and
– Performing both rejuvenation and reconfiguration

For example, if an attacker carries out attack by overloading processes, causing re-
sources to becomeunavailable,wewill performa rejuvenationprocess by gracefully
terminating processes causing the resource overload and immediately restarting
them in a clean state. But for the other kinds of attacks, we have to reconfigure the
system according per their impact. In this case we have considered the reconfigu-
ration state with various reconfiguration mechanisms, such as

– Patching (operating system patch, application patch),
– Version control (operating system version, application version),
– Anti virus (vaccine),
– Access control

(IP blocking, port blocking, session drop, contents filtering), and
– Traffic control (bandwidth limit)

As an example, performing rejuvenation only could deter the attacks, which
cause the process degradation such as spawn multiple processes, fork bombs,
CPU overload etc. For the cases of process shutdown and system shutdown
attacks, the attackers intend to halt a process or all processing on a system.
Normally it happens by exploiting a software bug that causes the system to
halt could cause system shutdown. In this case, just as with software bugs
that are used to penetrate, so until the software bug is reconfigured, all sys-
tems of a certain type would be vulnerable. An example of attacks called mail
bombardment or mail spam, the attacker accomplishes this attack by flooding
the user with huge message or with very big attachments. Depending on how
the system is configured, this could be counteracted by performing both recon-
figuration and rejuvenation processes. To perform the various reconfiguration
mechanisms, we have implemented the event manager, which contains the var-
ious strategies with respect to the various impact levels of the specific infected
cases. Each type of event has its own routine, to be run when the attack takes
place [2].
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Fig. 2. State Transition Diagram of non-cluster system

3 A Survivability Model with Cold Standby Cluster

3.1 Steady-State Analysis on a Single Node Through Markov
Process

According to the state transition diagram of Figure. 2 We denote as,
λh,i = infected rate from the healthy state
λi,j = rejuvenation rate from the infected state
μj,h = rejuvenation service rate to the healthy state
λi,c = reconfiguration rate from the infected state
μc,j = reconfiguration service rate to the rejuvenation state
λc,f = failure rate from the reconfiguration state
μc,h = reconfiguration service rate to the healthy state
λi,f = failure rate from the infected state
μf,h = service rate from the failure state

And let the steady-state probabilities of the state of the system be
πh = the probability that the system is in Healthy State
πi = the probability that the system is in Infected State
πr = the probability that the system is in Rejuvenation State
πc = the probability that the system is in Reconfiguration State
πf = the probability that the system is in Failure State
Using principle of the rate at which the process enters each state with the rate
at which the process leaves can derive the balance equations for the system (refer
to Figure 3).

λh,iπh = μj,hπj + μc,hπc + μf,hπf (1)
πi = Eπh (2)

πc =
λi,c

F
Eπh (3)

πj =
(

λi,j +
λc,jλi,c

F

)
E

1
μj,h

πh (4)
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Fig. 3. Restoration system with cold standby cluster

πf =
(

λi,f +
λc,fλi,c

F

)
E

1
μj,h

πh (5)

By solving above equation in terms of πh and the condition πh + πi + πr +
πc + πf , we get

πh =
1

1 + E + λi,c

F E
+

1(
λi,j + λc,jλi,c

F

)E
1

μj,h
+

1(
λi,f + λc,f λi,c

F

)E
1

μj,h
(6)

Where E = λh,i

λi,j+λi,c+λi,f
and F = λc,f + λc,j + μc,h

The availability for the steady-state analysis on a single node through Markov
Process can be expressed as:

A = 1 − (πf + πj + πc) (7)

3.2 Steady-State Analysis with Two Nodes Through Semi-Markov
Process

When only one of the states in the diagram violates the memoryless property,
which means that soj0urn time in a state does not follow exponential distribu-
tion, the diagram is classified as a semi-Markov process. Semi-Markov models
contain a Markov chain, which describes the stochastic transitions from state
to state, and transition or ’sojourn’ times, which describe the duration that
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the process takes to transition from state to state. We address the survivability
model with semi-Markov process. We consider a cold standby cluster with two
nodes through Semi-Markov process. One node is as an active (primary) and
other as a standby (secondary) unit. The failure rate of the primary node and
secondary node are different, and also the effect of failure of the primary node is
different from that of secondary node. The state transition diagram is shown in
Figure 3. Initially the system is in state (1,1). In the infected state, the system
has to figure out whether rejuvenate or reconfigure to recover or limit the dam-
age that may happen by an attack. If the primary node has to reconfigure, the
system enters state (Rc, 1) otherwise enters rejuvenation state (Rj , 1). If both
strategies fail then the primary system enters the fail state. When the primary
is infected by active attacks, the system enters state (I, 1).When the primary
node fails a protection switch successfully restores service by switching in the
secondary unit, and the system enters state (0,1). If the node failure occurs when
the system is in one of the states : (0,I) or (0, Rc), the system fails and enters
state (F,F).To calculate the steady-state availability of the proposed model, the
stochastic process of equation 1 was defined.

X(t) : t > 0 (8)

XS= {(1, 1), (I, 1), (Rj , 1), (Rc, 1), (F, 1), (0, 1), (0, Rj), (0, Rc), (F, F )} Through
SMP (Semi-Markov Process) analysis applying M/G/1, whose service time is
general distribution; we have calculated the steady-state probability in each
state. Healthy Stage: π1,1 + π0,1 Restoration Stage: πRj ,1 + πRc,1 + π0,Rj + π0,Rc

Failure Stage: πF,1 + πF,F As all the states shown in Figure 3 are attainable to
each other, they are irreducible. Additionally, as they do not have a cycle and
can return to a certain state, they satisfy the ergodicity (Aperiodic, Recurrent,
and Nonnull) characteristics. Therefore, there is a probability in the steady-state
of SMP for each state and each corresponding SMP can be induced by embed-
ded DTMC (Discrete-time Markov Chain) using transition probability in each
state. If we define the mean sojourn times in each state of SMP as h′

is and define
DTMC steady-state probability as d′is, the steady-state probability in each state
of SMP πi can be calculated by equation 2 [11].

πi =
dihi∑
j djhj

, i, j ∈ XS (9)

The system availability in the steady-state is defined as equation 3, which is the
same as the exclusion of the probability of being in (F, 1) and (F, F) in the state
transition diagram.

A = 1 − (πF,1 + πF,F ) (10)

The cluster systems are not survive in all of the rejuvenation process in the
normal state (1), all of the switchover states, and the failure state (0). The
survivability of cold standby cluster systems is defined as follows:

S = A − ((1 − πRj ,1) + (1 − πRc,1) + (1 − π0,Rj ) + (1 − π0,Rc)) (11)
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4 Numerical Results

Weperformthe experimentsusing the same systemoperatingparameterswith [12].
Failure rate of the server is one time per year and repair time is fifteen hours. Re-
juvenation is scheduled at every month. The rejuvenation and switchover time are
10 and 3 minutes, respectively. The expected downtime cost per unit is 100 times
greater than thatof the scheduled rejuvenation cost.Thenumber of servers is varied
from simplex to multiplex (n=4), at the same time we perform software rejuvena-
tion with the interval from 10 days (rate = 3) to infinity (rate=0: no rejuvenation).

From the graph (Figure 4), the amount of survivability level increment from
simplex to duplex is significant but from duplex to multiplex very little is shown.
As infected states are removed frequently with high rejuvenation rates, the sur-
vivability of the cluster systems with simplex configuration increases. However,
as the degree of redundancy is larger than or equal to 3, the improvement of
availability is not significant. According to the required survivability level, the
decision making of a rejuvenation rate is possible under consideration of various
evaluation criteria such as state probabilities and downtime cost.

Figure 5 shows the relationship between switchover time and rejuvenation
rate with survivability level. When switchover time is less than 15 minutes,
a high rejuvenation rate is beneficial for improving survivability level. However
when switchover time exceeds 15 minutes, frequent rejuvenation is not beneficial.
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Fig. 4. Survivability level changes due to rejuvenation
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Due to this fact, switchover time must be considered carefully when determining
the rejuvenation policy. The influence of failure rates along with rejuvenation
rates on survivability level is shown in Figure 6. In the duplex configuration,
failure rates are less sensitive to rejuvenation rate for availability. These results
suggest that software reliability is more important than hardware reliability in
improvement of the survivability of cluster systems.

5 Conclusion

In this paper, we have presented a survivability model for cold standby system.
This study defined 10 states for a cold-standby cluster system, computed DTMC
steady-state probability and SMP steady-state probability using the transition
probability and the mean sojourn time in each state and based on the results,
defined the availability of general systems. We have demonstrated the model can
be used to analyze and proactively manage the effects of cluster network faults
and attacks, and restore accordingly. According to the system operating param-
eters, we have modeled and analyzed steady-state probability and survivability
level of cluster systems under DoS attacks by adopting a software rejuvenation
technique. The result shows that the system operates through intrusions and
provides continued the critical functions, and gracefully degrades non-critical
system functionality in the face of intrusions. As an ongoing work, we are per-
forming our model with the real sojourn times of specific attacks in order to
generalize it with various attacks. We are analyzing a variety of probability dis-
tributions in the real attack data, which is, described the attackers’ transitions
and the sojourn time that they spend in every state. The integration of re-
sponse time and throughput with downtime cost will provide a more accurate
evaluation measure.
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Abstract. In this paper, we present an efficient method for optimizing 
localities of data distribution when executing data parallel applications.  
The data to logical grid nodes mapping technique is employed to enhance 
the performance of parallel programs on cluster grid.  Cluster grid is a 
typical computational grid environment consists of several clusters 
located in multiple campuses that are distributed globally over the 
Internet.  Objective of the proposed technique is to reduce inter-cluster 
communication overheads and to speed the execution of data parallel 
programs in the underlying distributed cluster grid.  The theoretical 
analysis and experimental results show improvement of communication 
costs and scalable of the proposed techniques on different hierarchical 
cluster grids. 

1   Introduction 

Computing grid system [8] integrates geographically distributed computing resources 
to establish a virtual and high expandable parallel machine; cluster grid is a typical 
paradigm in which each cluster is geographically located in different campus and is 
connected by software of computational grids through the Internet.  In cluster grid, 
computers might exchange data through network to other computers to run job 
completion.   This consequently incurs two kinds of communication between grid 
nodes in a cluster grid.  If the two grid nodes are geographically belong to different 
clusters, the messaging should be accomplished through the Internet.  We refer this 
kind of data transmission as external communication.  If the two grid nodes are 
geographically in the same space domain, the communications take place within a 
cluster; we refer this kind of data transmission as interior communication.  
Intuitionally, the external communication is usually with higher communication 
latency than that of the interior communication sine the data should be routed through 
numbers of layer-3 routers or higher-level network devices over the Internet.  
Therefore, to efficiently execute parallel programs on cluster grid, it is extremely 
critical to avoid large amount of external communications. 



84 C.-H. Hsu et al. 

This paper presents a generalized processor reordering technique for minimizing 
external communications of data parallel program on cluster grid.  We employ the 
problem of data alignments and realignments in data parallel programming languages to 
examine the effective of the proposed data to logical processor mapping technique.  As 
many research discovered that many parallel applications require different access 
patterns to meet parallelism and data locality during program execution.  This will 
involve a series of data transfers such as array redistribution.  For example, a 2D-FFT 
pipeline involves communicating images with the same distribution repeatedly from one 
task to another.  Consequently, the computing nodes might decompose local data set into 
sub-blocks uniformly and remapped these data blocks to designate processor group.  
From this phenomenon, we propose a processor-reordering scheme to reduce the volume 
of external communications of data parallel programs in cluster grid.  The key idea is that 
of distributing data to grid/cluster nodes according to a mapping function at data 
distribution phase initially instead of in numerical-ascending order.  The theoretical 
analysis and experiments results of the processor-reordering technique on mapping data 
to logical grid nodes show improvement of volume of external communications and 
conduce to better performance of data alignment in different cluster grid topologies. 

2   Related Work 

Research works on computing grid have been broadly discussed on different aspects, 
such as security, fault tolerance, resource management [10, 4], job scheduling [2, 18, 
19, 20], and communication optimizations [6].  From the issue of communication 
optimizations, Dawson et al. [6] addressed the problems of optimizations of user-level 
communication patterns in local space domain for cluster-based parallel computing.  
Plaat et al. analyzed the behavior of different applications on wide-area multi-clusters 
[17, 3].  Similar research works were studied in the past years over traditional 
supercomputing architectures [13, 14].  Guo et al. [12] eliminated node contention in 
communication step and reduced communication steps with schedule table.  Y. W. Lim 
et al. [16] presented an efficient algorithm for block-cyclic data realignments.  A 
processor mapping technique presented by Kalns and Ni [15] can minimize the 
total amount of communicating data.  Namely, the mapping technique 
minimizes the size of data that need to be transmitted between two algorithm 
phases.  Lee et al. [11] proposed similar method to reduce data communication 
cost by reordering the logical processors’ id.  They proposed four algorithms for 
logical processor reordering.  They also compared the four reordering algorithms 
under various conditions of communication patterns. 

There is significant improvement of the above research for parallel applications on 
distributed memory multi-computers.  However, most techniques applicable for 
applications running on local space domain, like single cluster or parallel machine.  For 
a global grid of clusters, these techniques become inapplicable due to various factors of 
Internet hierarchical and its communication latency.  In this following discussion, our 
emphasis is on minimizing the communication costs for data parallel programs on 
cluster grid and on enhancing data distribution localities. 

3   Data Distribution on Cluster Grid 

Appropriate data distribution is critical for balancing the computational load.  A typical 
function to decompose the data equally can be accomplished via the BLOCK 
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distribution directive in many data parallel programming languages.  However, a good 
mapping of data to logical processors must change adaptively in order to ensure good 
data locality and reduce inter-processor communication during program running.  For 
example, a global array could be equally allocated to a set of processors at beginning in 
BLOCK distribution manner.   As the algorithm goes into another phase that requires to 
access fine-grain data patterns, processors might divide their own data set into 
sub-blocks locally and then exchange these sub-blocks with corresponding processors 
over the cluster grid.  To explicitly define the problem, upon the number of clusters 
(C), number of computing nodes in each cluster (ni) and the degree of refinement, we 
consider two models of cluster grid when performing data reallocation. 

3.1   Identical Cluster Grid Model 

Identical cluster grid is composed by several clusters in which each cluster provides the 
same number of computing nodes (identical ni) involved in the computation.  Figure 1 
shows an example of this scenario.  Cluster 1 owns logical grid nodes P0, P1, …Pm-1, 
cluster-2 owns Pm, Pm+1, …, P2m-1, and so on.  If the number of nodes provided by 
cluster i is ni, we have ni =m, for all i=1~C.  Considering the data reallocation problem 
described above, in this model, each node is initially responsible to hold a complete 
block.  When algorithm goes into a refinement phase (assume the degree of refinement 
is k), it will partition its own block of data into k sub-blocks locally and redistribute 
them over the global grid processor set.  This process will bring volumes of 
inter-processor message exchange during program execution.  These exchanges could 
be intra-cluster or inter-cluster communications.  Because of network latency of 
inter-cluster message passing, how to increase data localities and transform 
inter-cluster communications as intra-clusters becomes an important subject to the 
performance of these applications. 

 

Fig. 1. Identical cluster grid model 

3.2   Non-identical Cluster Grid Model 

Non-identical cluster grid is composed by several clusters in which each cluster may 
provides different number of computing nodes (non-identical ni) involved in the 
computation.  Because of the unequal ni, the total number of grid nodes can be denoted 
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as P = 
=

C

i
in

1

, where C is the number of clusters in grid.  Since cluster grid is composed 

of heterogeneous cluster systems over the internet, the overheads of interior and 
external communications among different clusters should be identified individually.  
To formulate cost model for evaluating the communication costs in cluster grid, let Ti 
represents the time of two nodes both in Cluster-i to transmit per unit data; Ii is the total 
number of interior communications within cluster i; for external communication 
between cluster i and cluster j, Tij is used to represent the time of processor p in cluster 
i and processor q in cluster j to transmit per unit data; similarly, the total number of 
external communications between cluster i and cluster j is denoted by Eij.  According to 

these declarations, we can have equation )()(
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equation explicitly defines the communication costs of a parallel program running on a 
cluster grid.  However, there are various factors might cause unstable communication 
delay over internet; it is difficult to estimate accurate costs.  As the need of a criterion 
for performance modeling, integrating the interior and external communications 
among all clusters into points is an alternative mechanism to get legitimate evaluation.  

Therefore, we totaled the number of these two terms as |I| = 
=
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communications for the following discussion and analysis. 

4   Localized Data Mapping  

4.1   Motivating Example 

To motivate the proposed localization technique for data reallocation, we use the 
example shown in Figure 2 for explanation.  As demonstrated in section 3, the degree 
of data refinement is set to three (K = 3).  This example also assumes an identical 
cluster grid that consists of three clusters and each cluster provides three nodes to join 
the computation.  In algorithm phase, to accomplish the fine-grained data distribution, 
processors partition its own block into K sub-blocks and distribute them to 
corresponding destination processors in ascending order of processors’ id that 
specified in most data parallel programming languages.  For example, processor P0 
divides its data block A into a1, a2, and a3; it then distributes these three sub-blocks to 
processors P0, P1 and P2, respectively.  Because processors P0, P1 and P2 belong to the 
same cluster with P0; therefore, these three communications are interior.  However, the 
same situation on processor P1 generates three external communications.  Because 
processor P1 divides its local data block B into b1, b2, and b3.  It then distributes these 
three sub-blocks to processors P3, P4 and P5, respectively.  As processor P1 belongs to 
Cluster 1 and processors P3, P4 and P5 belong to Cluster 2.  Therefore, this results three 
external communications.  Figure 2(a) summarizes all messaging patterns of this 
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example into communication table.  We noted that messages {a1, a2, a3}, {e1, e2, e3} 
and {i1, i2, i3} are interior communications (| I | = 9); all the others are external 
communications (| E | = 18).   

The idea of changing data to logical processor mapping [11, 15] is employed in our 
implementation.  Such techniques were used in many previous research works to 
minimize data transmission time of runtime array redistribution.  In cluster grid, we can 
derive a mapping function to produce a realigned sequence of logical processors’ id for 
grouping communications into local cluster.  Given an identical cluster grid with C 
clusters, a new logical id for replacing processor Pi can be determined by New(Pi) = (i 
mod C) * K+ (i / C ), where K is the degree of data refinement.  Figure 2(b) shows 
the communication table of the same example after applying the above reordering 
scheme.  The source data is distributed according to the reordered sequence of 
processors’ id, i.e., <P0, P3, P6, P1, P4, P7, P2, P5, P8> which is computed by mapping 
function.  In the target distribution, processor P0 distributes three sub-blocks to 
processors P0, P1 and P2 in the same cluster.  Similarly, processor P3 sends three 
sub-blocks to processors P3, P4 and P5 that are in the same cluster with P3; and 
processor P6 sends e1, e2 and e3 to processors P6, P7 and P8 that causes three interior 
communications.  All other processors generate three interior communications as well.  
Therefore, we have |I|= 27 and | E | = 0. 

 
 D P  
 

S P  
P 0  P 1  P 2  P 3  P 4  P 5  P 6  P 7  P 8  

P 0  a 1  a 2  a 3        

P 1     b 1  b 2  b 3     

P 2        c 1  c 2  c 3  

P 3  d 1  d 2  d 3        

P 4     e 1  e 2  e 3     

P 5        f 1  f 2  f 3  

P 6  g 1  g 2  g 3        

P 7     h 1  h 2  h 3     

P 8        i 1  i 2  i 3  

 C l u s t e r - 1  C l u s t e r - 2  C l u s t e r - 3  

  

D P
 

S P  
P 0  P 1  P 2  P 3  P 4  P 5  P 6  P 7  P 8  

P 0  a 1  a 2  a 3        

P 3     b 1  b 2  b 3     

P 6        c 1  c 2  c 3  

P 1  d 1  d 2  d 3        

P 4     e 1  e 2  e 3     

P 7        f 1  f 2  f 3  

P 2  g 1  g 2  g 3        

P 5     h 1  h 2  h 3     

P 8        i 1  i 2  i 3  

 C l u s t e r - 1  C l u s t e r - 2  C l u s t e r - 3  
  

(a)                              (b) 

Fig. 2. Communication tables of data reallocation over cluster grid. (a) Without data mapping  
(b) With data mapping. 

4.2   Identical Cluster Grid 

For the case of K (degree of refinement) is not equal to n (the number of grid nodes in 
each cluster), the mapping function becomes impracticable.  In this subsection, we 
propose a grid node replacement algorithm for optimizing distribution localities of data 
reallocation.  According to the relative position of the first of consecutive sub-blocks 
that produced by each processor, we can determine the best target cluster as candidate 
for node replacement.  Combining with a load balance policy among clusters, this 
algorithm can effectively improve data localities.  Figure 3 gives an example of data 
reallocation on cluster grid, which has four clusters.  Each cluster provides three 
processors.  The degree of data refinement is set to five.  Figure 3(a) demonstrates an 
original reallocation communication patterns.  We observe that | I | = 12 and | E | = 36.   

If we change the distribution of block B to processors reside in cluster 2 (P3, P4 or 
P5) or cluster 3 (P6, P7 or P8) in the source distribution, we find that the 
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communications could be centralized in local cluster for some parts of sub-blocks.  
Because cluster 2 and cluster 3 will be allocated the same number of sub-blocks in the 
target distribution, therefore processors belong to these two clusters have the same 
priority for node replacement.  In our algorithm, P3 is first assigned to replace P1.  For 
block C, most sub-blocks will be reallocated to processors in cluster 4, therefore the 
first available node P9 is assigned to replace P2.  Similar determination is made to block 
D and results P1 replace P3.  For block E, cluster 2 and cluster 3 have the same amount 
of sub-blocks.  Processors belong to these two clusters are candidates for node 
replacement.  However, according to the load balance policy among clusters, cluster 2 
remains two available processors for node replacement while cluster 3 has three; our 
algorithm will select P6 to replace P4.  Figure 3(b) gives the communication tables 
when applying data to logical grid nodes mapping technique.  We obtain | I | = 28 and | 
E | = 20. 

 
 D P
 

S P  
P 0  P 1  P 2  P 3  P 4  P 5  P 6  P 7  P 8  P 9  P 1 0 P 1 1

P 0  a 1  a 2  a 3  a 4          

P 1      b 1  b 2  b 3  b 4      

P 2          c 1  c 2  c 3  c 4  

P 3  d 1  d 2  d 3  d 4          

P 4      e 1  e 2  e 3  e 4      

P 5          f 1  f 2  f 3  f 4  

P 6  g 1  g 2  g 3  g 4          

P 7      h 1  h 2  h 3  h 4      

P 8          i 1  i 2  i 3  i 4  

P 9  j 1  j 2  j 3  j 4          

P 1 0      k 1  k 2  k 3  k 4      

P 1 1          l 1  l 2  l 3  l 4  

 C l u s t e r - 1  C l u s t e r - 2  C l u s t e r - 3  C l u s t e r - 4  
  

(a) 
 

 D P
 

S P  
P 0  P 1  P 2  P 3  P 4  P 5  P 6  P 7  P 8  P 9  P 1 0 P 1 1

P 0  a 1  a 2  a 3  a 4          

P 3      b 1  b 2  b 3  b 4      

P 9          c 1  c 2  c 3  c 4  

P 1  d 1  d 2  d 3  d 4          

P 6      e 1  e 2  e 3  e 4      

P 1 0          f 1  f 2  f 3  f 4  

P 2  g 1  g 2  g 3  g 4          

P 4      h 1  h 2  h 3  h 4      

P 1 1          i 1  i 2  i 3  i 4  

P 5  j 1  j 2  j 3  j 4          

P 7      k 1  k 2  k 3  k 4      

P 8          l 1  l 2  l 3  l 4  

 C l u s t e r - 1  C l u s t e r - 2  C l u s t e r - 3  C l u s t e r - 4  
  

(b) 

Fig. 3. Communication tables of data reallocation on identical cluster grid. (C=4, n=3, K=4) (a) 
Without data mapping (b) With data mapping. 

4.3   Non-identical Cluster Grid 

Let’s consider a more complex example in non-identical cluster grid, the number of 
nodes in each cluster is different.  We need to add global information of cluster grid 
into algorithm for estimating the best target cluster as candidate for node replacement.  
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Figure 4 shows a non-identical cluster grid composed by four clusters.  The number of 
processors provided by these clusters is 2, 3, 4 and 5, respectively.  We also set the 
degree of refinement as K=5.  Figure 4(a) presents the table of original communication 
patterns that consists of 19 interior communications and 51 external communications.  
Applying our node replacement algorithm, the derived sequence of logical grid nodes 
is <P2, P5, P9, P3, P6, P10, P4, P11, P0, P7, P12, P1, P8, P13>.  This data to grid nodes 
mapping produces 46 interior communications and 24 external communications.  This 
result reflects the effectiveness of the node replacement algorithm in term of 
minimizing inter-cluster communication overheads. 

 
 D P  
 

S P  
P 0  P 1  P 2  P 3  P 4  P 5  P 6  P 7  P 8  P 9  P 1 0 P 1 1 P 1 2 P 1 3  

P 0  a 1  a 2  a 3  a 4  a 5           

P 1       b 1  b 2  b 3  b 4  b 5      

P 2  c 5           c 1  c 2  c 3  c 4  

P 3   d 1  d 2  d 3  d  4  d  5          

P 4        e 1  e 2  e 3  e 4  e 5     

P 5  f 4  f 5           f 1  f 2  f 3  

P 6    g 1  g 2  g 3  g 4  g 5         

P 7         h 1  h 2  h 3  h 4  h 5    

P 8  i 3  i 4  i 5           i 1  i 2  

P 9     j 1  j 2  j 3  j 4  j 5        

P 1 0          k 1  k 2  k 3  k 4  k 5   

P 1 1  l 2  l 3  l 4  l 5           l 1  

P 1 2      m 1 m 2  m 3  m 4  m 5      

P 1 3           n 1  n 2  n 3  n 4  n 5  

 C l u s t e r 1  C l u s t e r 2  C l u s t e r 3  C l u s t e r 4  
  

(a) 
 

 D P  
 

S P  
P 0  P 1  P 2  P 3  P 4  P 5  P 6  P 7  P 8  P 9  P 1 0 P 1 1 P 1 2 P 1 3  

P 2  a 1  a 2  a 3  a 4  a 5           

P 5       b 1  b 2  b 3  b 4  b 5      

P 9  c 5           c 1  c 2  c 3  c 4  

P 3   d 1  d 2  d 3  d  4  d  5          

P 6        e 1  e 2  e 3  e 4  e 5     

P 1 0  f 4  f 5           f 1  f 2  f 3  

P 4    g 1  g 2  g 3  g 4  g 5         

P 1 1         h 1  h 2  h 3  h 4  h 5    

P 0  i 3  i 4  i 5           i 1  i 2  

P 7     j 1  j 2  j 3  j 4  j 5        

P 1 2          k 1  k 2  k 3  k 4  k 5   

P 1  l 2  l 3  l 4  l 5           l 1  

P 8      m 1 m 2  m 3  m 4  m 5      

P 1 3           n 1  n 2  n 3  n 4  n 5  

 C l u s t e r 1  C l u s t e r 2  C l u s t e r 3  C l u s t e r 4  
  

(b) 

Fig. 4. Communication tables of data reallocation on non-identical cluster grid.  
(a) Without data mapping (b) With data mapping. 

5   Performance Evaluation 

5.1   Theoretical Estimate 

This section presents the theoretical value of processor reordering technique in 
different hierarchy of cluster grid. For the case of data reallocation on an identical 
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cluster grid that consists of five clusters (C=5) and K = n, the values of K vary from 2 to 
10.  The results in Figure 5(a) show that the processor reordering technique provides 
more interior communications than the method without processor reordering.  Figure 
5(b) gives the number of interior communications for both methods when n ≠ K and 
values of n vary from 2 to 10.  Figure 5(c) compares the amount of interior 
communications for three methods, the original method, reordering algorithm A and 
reordering algorithm B.  The difference between algorithms A and B is that algorithm 
A uses load balance policy to select target cluster for node replacement while algorithm 
B does not.  As the results shown in Figure 5(c), reordering algorithm A has better 
performance than the other methods.  Overall, the reordering technique enhances 
localities of data distribution and conduce lower communication overheads.  We 
emphasize that the result reported in Figure 5 is improvement ratio come from 
theoretical estimate which will not be affected by network latency. 

 
(a)                               (b) 

 
(c) 

Fig. 5. Improvement of interior communications (a) C=5 and K = n (b) C= 5, K=3 (c) 
non-identical cluster grid C=4, n1= 2, n2= 3, n3= 4, n4= 5 

5.2   Experimental Results 

To evaluate the performance of the proposed technique, we have implemented 
processor reordering technique with the application of data reallocation on Taiwan 
UniGrid [1], eight universities’ clusters are geographically internet-connected.  Each 
cluster owns different number of computing nodes.  The programs were written in the 
single program multiple data (SPMD) programming paradigm with C+MPI codes. 

Figure 6 shows the execution time of the methods with and without processor 
reordering to perform data reallocation on an identical cluster grid with C=n=4 and 
K=3.  The size of test data is 10 MB that required remote I/O access.  Different 
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combinations of cluster grid denoted as NTCH, NTCI, NTCD, etc. were tested.  The 
composition of these labels is summarized in Table 1. 

In this experiment, method with processor reordering technique outperforms the 
method that without processor reordering.  Compare to the results given in Figure 6, 
this experiment matches the theoretical estimation.  It also satisfying reflects the 
efficiency of the processor reordering technique.  This experimental result shows the 
proposed localization methods provide significant improvement. 

   

 

Table 1. Labels of different cluster grid 
 

Label Organization 

N National Center for High Performance Computing 

T National Tsing Hua University 

C Chung Hua University 

H Tung Hai University 

I Institute of Information Science, Academia Sinica 

D National Dong Hwa University 

P Providence University 
 

 

Fig. 6. Execution time to perform data reallocation on different combination of cluster grids in 
Taiwan UniGrid 

6   Conclusions 

In this paper, we have presented a generalized processor reordering method for localizing 
distributions of parallel data.  The data to logical grid nodes mapping technique is 
employed to enhance the performance of parallel programs on cluster grid.  Effectiveness 
of the proposed technique is to reduce inter-cluster communication overheads and to 
speed the execution of data parallel programs in the underlying distributed cluster grid.  
The theoretical analysis and experimental results show improvement of communication 
costs and scalable of the proposed techniques on different hierarchical cluster grids. 
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Abstract. Many of the key features of file transfer mechanisms like
reliable file transferring and parallel transferring are developed as part of
the service. It makes very hard to re–use the same code for the different
systems. We are trying to overcome this disadvantage by decoupling
useful features of file transfer mechanisms from the implementation of
the service and protocol, and instead placed into the messaging substrate.
We may thus treat file transfer operations as a specific usage case for a
more general messaging environment. This will allow us to provide file
transfer quality of service to other file transfer tools that does not have
same features.

1 Introduction

Today’s network environments require people to download many things on a
daily basis. Especially new technologies developed recently, like Grid environ-
ments, require reliable, secure high performance file transfer as the most im-
portant services. GridFTP [2] [6] is the one of the most common data transfer
services for the Grid and is a key feature of Data Grids [1]. This protocol provides
secure, efficient data movement in Grid environments by extending the standard
FTP protocol. In addition to the standard FTP features, the GridFTP protocol
supports various features offered by the Grid storage systems currently in use.

Even though GridFTP has good features of file recovery technologies,many
interesting features of GridFTP are tied to its protocol and implementation.
Providing these features to other file transfer services (such as those based
on Web Services, for instance) requires re–implementation and re-engineering.
These shortcomings may be addressed by inserting a reliable, high performance
messaging substrate between the client and service. This addresses specific prob-
lems in GridFTP client lifetimes, but more generally will allow us to extend
GridFTP-like features to other services without extensive re–implementation.
According to specification of GridFTP [2], GridFTP also has a restriction that
the client needs to remain active at all the times until the transfer finishes.
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This in turn implies that we cannot use the rich set of recovery features of
GridFTP when the client state has been lost. In the event of client state loss,
transfer has to restart from scratch.

2 Related Work

We are using many different file transfer mechanisms on daily basis. One of the
most commonly used file transfer mechanism is File Transfer Protocol (FTP)
[5]. This is the simplest way to exchange files between computers. FTP is an
application protocol that uses the TCP/IP protocols. A more secure replacement
for the common FTP, protocol is Secure Copy (SCP), which uses the Secure
Shell (SSH) as the lower-level communication protocol. From the popularity of
World Wide Web, we are also commonly using Hypertext Transfer Protocol
(HTTP) as mechanism for transferring files. Even though some of file transfer
mechanisms are quite reliable, these mechanisms do not provide guaranteed,
reliable file transfer features like automatic recovery from failures.

Issues about reliable file transfer mechanism are more actively discussed
and developed from the Grid community recently. More relevant service to our
project is Reliable File Transfer (RFT) [8] [11] service developed by the Globus.
RFT service provides reliable file transfer mechanisms like automatic failure re-
covery. In the next section we will discuss more about behaviors of RFT.

The RFT is developed with automatic failure recovery while overcoming the
limitation of its predecessor technology, GridFTP. The most important idea
added to the RFT service is automatic failure recovery mechanism when any
problems are occurred during file transfer like dropped connections and tempo-
rary network outage. The RFT is dealing with problem by performing a retry
until the problem is resolved. The RFT also will inherit all the features that
GridFTP has since it is built on top of existing GridFTP. The RFT will in-
herit most of the automatic recovery features like restart support and remote
problems of the RFT service and it also will not lose performance of GridFTP.

The RFT service resolved a strict restriction of its predecessor GridFTP. The
client of GridFTP needs to remain active at all the times until the transfer finishes.
However, the RFT no longer requires this restriction. The RFT introduced a non-
user-based service. This service will store the transfer state in a persistent manner
and this state will be used to recover transfer from the last marker recorded for that
transfer when failure occurs including the client state failure.

3 NaradaBrokering

NaradaBrokering [9] [10] is messaging middleware designed to run on a large
network of cooperating broker nodes (we avoid the use of the term servers
to distinguish it clearly from the application servers that would be among the
sources/sinks to messages processed within the system). Communication within
NaradaBrokering is asynchronous and the system can support large client
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configurations publishing messages at a very high rate. The system places no
restrictions on the number, rate and size of messages issued by clients.

In NaradaBrokering entities can also specify constraints on the Quality-of-
Service (QoS) related to the delivery of messages. Among these services is the
reliable delivery service, which facilitates delivery of events to interested entities
in the presence of node and link failures. Furthermore, entities are able to retrieve
any events that were issued during an entity’s absence (either due to failures or
an intentional disconnect). The scheme can also ensure guaranteed exactly-once
ordered delivery.

Another service, relevant to this paper, is NaradaBrokering’s Fragmenta-
tion/Coalescing service. This service splits large files into manageable fragments
and proceeds to publish individual fragments. Upon receipt at a consuming entity
these fragments are stored into a temporary area. Once it has been determined
(by the coalescing service) that all the fragments for a certain file have been
received, these fragments are coalesced into one large file and a notification is
issued to the consuming entity regarding the successful receipt of the large file.
The fragmentation/reliable delivery service combination can be used to facili-
tate transfer of large files reliably. Access to these capabilities is available to
entities through the use of QoS constraints that can be specified. This facilitates
exploiting these capabilities with systems such as GridFTP.

We emphasize here that NaradaBrokering software is a message routing sys-
tem which provides QoS capabilities to any messages it sends. The NaradaBro-
kering system may be the messaging layer between many different applica-
tions, such as Audio/Video conferences [4]. The QoS features provided by the
NaradaBrokering system are independent of the implementation details of the
endpoint applications that use it for messaging. Thus applications do not need
to implement (for example) reliable messaging.

Furthermore, NaradaBrokering provides capabilities for communicating
through a wide variety of firewalls and authenticating proxies while supporting
different authenticating-challenge-response schemes such as Basic, Digest and
NTLM (a proprietary Microsoft authenticating scheme).

4 Enhancing GridFTP

On the previous papers ([3] [7]) we already described enhancing mechanisms. In
this paper we will briefly describe enhancing GridFTP with NaradaBrokering.And
we will focus more on how reliable mechanism works in the NaradaBerokering.

GridFTP and other file transfer mechanisms may already incorporate a num-
ber of reliability features on there implementation of service and protocol. How-
ever, the most important weakness of these architectures is all the great features
can not be used outside of its own architecture. This means whenever people
want develop new file transfer mechanism and if they want existing features
of other mechanisms, they have to re-develop same features within the service
implementation. It is our goal to show that these reliability features can be de-
coupled from the implementation of the service and protocol, and instead placed
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into the messaging substrate. This will allow us to provide file transfer quality
of service comparable to GridFTP in other file transfer tools (such as normal
FTP, SCP, HTTP uploads, and similar mechanisms).

Fig. 1. (a) Traditional GridFTP (b) GridFTP with NaradaBrokering

Figure 1 is present the basic architecture of integration between GridFTP
and NaradaBrokering. For initial testing we developed the router approach even
though proxy approach is the more preferred method. Main difference of those
two approaches is usage of NaradaBrokering Agent A. The router approach will
use NaradBrokering Agent A as simple router to transfer requests to the remote
server. Key to the proxy approach is the remote GridFTP server is simulated
by the NaradaBrokering Agent A. Since NaradaBrokering Agent A is a simple
router on the router approach, it is easier than the proxy approach to implement.
However, the router approach also has disadvantages like we have to change
the user application, even though change is minor and also requires some minor
extensions to FTP/GridFTP client codes to communicate with NaradaBrokering
Agent A. The client and server communicate solely with the agents on the edge of
the broker cloud. For the GridFTP client point of view, NaradaBrokering Agent
A is a server and NaradaBrokering Agent B is a client for GridFTP server point
of view. The proxy approach is the preferred method since the GridFTP client
code and user application do not have to change. All existing GridFTP code
and user application can be used in our architecture without any changes once
this method is implemented. Disadvantage of this approach is it is harder to
implement and time consuming process since we have to create GridFTP server
from the scratch.

4.1 Reliable Mechanism in NaradaBrokering

We will describe in depth about how reliable mechanism of NaradaBrokering
works. As we mentioned earlier we assumed that any of our architecture nodes
could be go down during transfer except GridFTP server. To achieve this idea
we are using acknowledgements and database. As we can see from Figure 2, the
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Fig. 2. Reliable Mechanisms in NaradaBrokering

first step is that we divide large file into small pieces (a1, a2, . . . , an−1, an) of
same size except last piece that may truncated. Once NaradaBrokering get a
piece from NaradaBrokering Agent A, it stores the piece into the database for
any failure cases while NaradaBrokering is also sending same file to NaradaBro-
kering Agent B. An acknowledgment of receiving a piece on the NaradaBroker-
ing from NaradaBrokering Agent A is taking place when NaradaBrokering is
finished storing piece into the database. Also, there is an acknowledgment to
NaradaBrokering after NaradaBrokering Agent B received and stored a piece
into the temporary local directory. Those acknowledgments will be stored in the
local file system and will be used when any failures occur during transferring a
file. Once failure is fixed NaradaBrokering Agent A, and/or NaradaBrokering is
looking for acknowledgment file and figure out the start point of resume trans-
mission. For example, we have a machine failure on NaradaBrokering Agent A
during sending a7 with a6 on acknowledgment file. After machine is re-started,
NaradaBrokering Agent A is looking in the acknowledgment file and fined start
point as a7 since there are receive acknowledgment until a6. This is goes to same
between NaradaBrokering and NaradaBrokering Agent B.

Database on the NaradaBrokering will be used as storage of small pieces
of files. In this way we can transfer file from NaradaBrokering Agent A to
NaradaBrokering without any guarantee of NaradaBrokering Agent B running
and it is true for sending file form NaradaBrokering to NaradaBrokering Agent
B. Even NaradaBrokering server itself can be go down. NaradaBrokering server
is smart enough to know resuming point to NaradaBrokering Agent B after
recovered from failure.

4.2 Multiple Stream Transfer Mechanism in NaradaBrokering

Advancement in network technologies is providing increasing data rates, but
current TCP implementation prevents us to use maximum bandwidth across
high-performance networks. This problem becomes very clear especially when
transferring data happens on a high-speed wide area network. Either increas-
ing the TCP window size by tuning network settings or using multiple TCP
streams in parallel can be used to overcome this problem and achieve optimal
TCP performance. Since lack of automatic network tuning and tuning network
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settings is different in each every operating system, it cannot be considered
as cross platform solution. Hence, we chose multiple parallel TCP streams to
achieve maximum bandwidth usage and we will describe in depth about our
implementation in this section.

Our idea of multiple parallel TCP streams consists of splitting data into
sub small packets at sender side and sending these sub small packets over the
network by using multiple Java socket streams in parallel. Although the default
socket buffer size is not set to value of the bandwidth delay product, using
multiple parallel TCP streams gives better transfer rate by aggregating each
socket bandwidth.

Fig. 3. NaradaBrokering PTCP Architecture

Figure 3 illustrates the architecture of NaradaBrokering Parallel TCP
(NBPTCP) transport layer, and NBPTCP usage as communication layer be-
tween NaradaBrokering Agent A and NaradaBrokering Agent B. Like all
other NaradaBrokering transport protocols, NBPTCP is implemented in the
NaradaBrokering’s transport layer as multi stream protocol, and it uses our Par-
allel TCP Socket (PTCPSocket) implementation. PTCPSocket can handle mul-
tiple sockets’ input and output streams and it is derived from Java.net.Socket. It
consists of packet splitter, packet merger, senders, receivers, and TCP sockets,
and it has two types of channels; communication and data channels. All control
information and negotiations are sent over the communication channel, which
stays open till the end of whole data transfer, and data channels are used for
actual user data transfer. For example, both sender side and receiver side agree
on the number of streams, which will be used during the data transfer by using
communication channel. Sender side is responsible for deciding the number of
parallel streams before initiating the actual user data transfer.

After the setting parallel streams number, packet splitter starts diving user
data into small packets. These packets are passed to senders layer and senders
send them to receiver side by writing these packets into TCP sockets’ output
streams (data channels). The number of senders and receivers are same as the
number of parallel streams. At receiver side, receivers read packets from the
TCP sockets’ input streams (data channels) then pass these packets to upper
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layer, which is called packet merger. The packet merger combines these incoming
packets by checking their packet number, which is given by the packet splitter.
Since TCP uses a checksum computed over the whole packet to verify that the
protocol header and the data in each received packet have not been corrupted,
there is no need to check data integrity at the packet merger layer again.

5 Benchmarks

In this section, we will discuss how well our reliable middleware architecture is
performing in the existing services. To increase realities, we are done performance
tests between Cardiff University at United Kingdom and Indiana University at
United State. We are also using multiple platform environments to show inter–
operability of the NaradaBrokering. For example, we are running NaradaBro-
kering server on the Windows platform and NB Agents on the Linux platform.
The experimental setup is described below (see Figure 1 for each parts):

– GridFTP Client: Dual Pentium III 1GHz CPU with 1.5 GB of RAM on
Red Hat Linux 7.2. Located at Cardiff University.

– NB Agent A: Dual Pentium III 1GHz CPU with 1.5 GB of RAM on Red
Hat Linux 7.2. Located at Cardiff University.

– NaradaBrokering Server: Pentium 4 2.53GHz CPU with 512 MB of RAM
on Windows XP Professional Operating System. Located at Indiana Univer-
sity.

– NB Agent B: Intel(R) Xeon(TM) CPU 2.40GHz CPU with 2GB of RAM
on Red Hat Linux 7.2. Located at Indiana University.

– GridFTP Sever: Dual AMD Athlon(tm) MP 1800+ CPU with 513 MB on
Red Hat Linux 7.3. Located at Indiana University.

In our performance measurements, we wish to examine the performance
penalty represented by adopting the architecture of Figure 1. Again, the routing
approach allows us to provide reliability features (such as recovery from network
failures) on top of the basic GridFTP file transfer mechanisms. This will create
some additional overhead, which we determine below.

Fig. 4. File Transfer Results with 1 Stream
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We will present performance results up to 2 streams since there are vir-
tually no differences beyond 2 streams. This kind of behavior is due to the
network setting between Cardiff University at UK and Indiana University at
USA, which is beyond our control. Figure 4 shows the performance result of 1
stream of GridFTP, NBGridFTP, and NaradaBrokering. As we can see on this
Figure, NBGridFTP is slower by 22.22% (25 MB) to 28.76% (400 MB) range.
Those percentages of delays come from inside NaradaBrokering like dividing
large file, writing to database, and temporarily copying data on the NaradaBro-
kering Agent A and NaradaBrokering Agent B. Result of NB only represent the
performance result of between NaradaBrokering Agent A and NaradaBroker-
ing Agent B. This means that we remove timing for temporary file store and
NaradaBrokering Agent A is worked as GridFTP Client and NaradaBrokering
Agent B is worked as NBGridFTP server. This result gives us idea about how
well our NaradaBrokering network implemented. As actual network stand point
of view it is only about 11.91% to 18.52% slower compared with GridFTP, plus
our NaradaBrokering system has reliable mechanisms are there.

Fig. 5. File Transfer Results with 2 Streams

As we can see on the Figure 5, we also have similar results for 2 streams
case. In this case our architecture is slower compared with GridFTP by 25.44%
to 30.91% for NB + GridFTP case and about 7.56% to 13.45% for NB only
case. We also can see the rate of second dropping from the 1 stream case is very
similar to GridFTP-GridFTP dropped 42.36% and NaradaBrokering dropped
44.57%. This means our implementation of multiple streams is as effective as
what GridFTP has currently. For the future optimization issues, we will discuss
about the matters that delays our architecture in the next section.

5.1 NaradaBrokering Timing

We will look deeply into the time spent in our architecture for further optimiza-
tion (see Table 1). We divide NaradaBrokering with GridFTP into 2 parts; Tim-
ing for internal and external NaradaBrokering time. Internal NaradaBrokering
time is divided into initialization, deleting temporary file, writing to database,
actual transferring, and merging file. For the external time, we measured file
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Table 1. Detailed timing for NaradaBrokering + GridFTP with 2 streams in seconds

MB Temp. Transfer Init Del. DB Merging Network NB + GridFTP GridFTP

25 4.82 0.95 0.02 1 0.36 25.52 25.52 26.95
50 9.16 1.80 0.05 2 0.72 52.24 52.24 54.18
100 17.54 3.88 0.11 4 1.66 106.05 106.05 103.93
200 36.42 17.28 0.22 8 3.15 206.63 206.63 208.66
400 74.20 41.04 0.43 16 5.97 418.56 418.56 424.85

transfer between GridFTP client to NaradaBrokering Agent A and between
NaradaBrokering Agent B to GridFTP server. A large file will be divided into
small pieces of fixed size and will be stored into temporary directory in the Ini-
tialization phase and after done transfer, timing for the cleanup those temporary
files are measured on the Delete phase. Those small pieces of a file will be stored
into the database that located on the NaradaBrokering server first. This time is
estimated timing based on the experimental benchmark. Actual file transferring
time is measured on the Network phase. After NaradaBrokering Agent B gets
all the small pieces of file it will reconstruct original file using those pieces. As
we can see for this table, most of the time is either negligible (delete, database,
and merging) or non-avoidable (temporary file transfer). And also actual timing
for the transferring file is reasonable. According last two measurements of Table
1, actual file transfer rates are as good as GridFTP file transfer rates. GridFTP
is little bit slower because we did not separate authentication from the actual
file transfer.

One part we believe we can optimize is initialization. Table 1 shows that it is
not taking much time if dealing with small file size. However it takes more then
necessary when dealing with larger file size. Initialization phases will be deeply
investigated for the future optimization.

6 Conclusions

We discussed reliable transfer mechanism in NaradaBrokering using GridFTP
as an example. NaradaBrokering system is an event brokering system designed
to run on a large network of cooperating broker nodes and is used here as a
general purpose messaging substrate. Communication within NaradaBrokering
is asynchronous and the system can be used to support different interactions by
encapsulating them in specialized events. . Decoupling desirable features of exist-
ing systems like file recovery technologies in GridFTP from the implementation
of the service and instead placing into the reliable, high performance messaging
substrate between the client and service will allow us to extend to other services
without extensive reimplementation.

We also discussed deploying NaradaBrokering in GridFTP and its perfor-
mance tests. As we can see from the performance tests we have reasonable file
transfer rates with added features like reliable transfer and multiple stream file
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transfer. We show the possibilities of our goal of decoupling reliability features
from the implementation of the service and protocol, and instead placed into the
software messaging substrate without great lose of performances.

For future work, the brokering system is by design a many-to-many messaging
system, so we may exploit this to support simultaneous delivery of files to multi-
ple endpoints. Finally, we will develop more examples of using other file transfer
mechanisms that will mimic RFT-like features without reimplementation
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Abstract. Data intensive task is becoming one of the most important applications 
in grid environment. The scale of data sets has been hundreds of terabytes and 
soon will be petabytes. The primary problem we face is how to organize the 
geographical distributed storage devices to support the collaborative operations 
on data in those resources. On the one hand, performance is critical to such 
application, but on the other hand the diverse network conditions prevent users 
from getting the same service quality. This paper focuses on how to resolve the 
above problem, and presents a 2-layered metadata service model in grid 
environment which utilizes the special locality of users’ distribution and provides 
a platform for grid data management. We have implemented that 2-layered 
metadata service model in ChinaGrid Supporting Platform (CGSP) - the grid 
middleware for ChinaGrid project. 

1   Introduction 

Advances in science are made possible largely through the collaborative efforts of 
many researchers in a particular domain. We see collaborations of hundreds of 
scientists in areas such as gravitational-wave physics [1], high-energy physics [2], 
astronomy [3] and many others coming together and sharing a variety of resources 
within collaboration in pursuit of common goals. These resources are geographically 
distributed and can encompass people, scientific instruments, computer and network 
resources, applications and data. It is common to see datasets on the order of terabytes 
today, and soon be petabyte-scale. Grid technologies [4, 12, 13] enable efficient 
resource sharing in collaborative distributed environments. In this paper, we focus on 
the area of data management of the grid, with a particular emphasis on metadata 
management so that data can be well placed to provide high access efficiency. 

One challenge in these shared environments is how to put data sets to proper 
storage resource so that the relevant researchers can fetch them with high efficiency. 
Usually data are transparently stored in system and users need not care how to select 
storage resources. Also the data must be easy to be discovered and accessed. But 
because of the complexity of grid components and their connectivity, geographical 
distributed users can hardly get the same performance from the grid environment. 
Perhaps a set of users gets much high transfer speed but the others can get very poor 
performance. Such conditions will not be tolerable especially when the scale of 
required data sets getting much larger. 
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For example, thousands of scientists from worldwide collaboratively work on the 
same project in grid environment and data are shared among them. They often get and 
store data from and into the grid. All of them want to get high transfer speed to 
improve the efficiency. However, the difference of logical distance between the 
scientists and the storage resources with the data makes the different performance of 
data transfer. How to build a common data management platform in grid environment 
so that all the users interested in the same domain will get alike performance is a big 
barrier in the development of grid technology. 

Traditional replica mechanism is one solution to eliminate the performance gap 
among users. But with the data scale getting larger and the frequency of operations on 
the data becoming higher, the maintenance of data consistency will be a very complex 
work, which constrains users waiting for the data updating or working in degrading 
model in a long time. An alternative solution of such problem may be an intelligent 
data scheduling algorithm, which can store data in proper location to satisfy users’ 
access requirement as much as possible according to users’ access pattern. When the 
pattern changes, data will be migrated to another location to adapt to the new 
condition. This method contains two main shortcomings. One is that it is hard to find 
a common algorithm to satisfy all the requirements of application. The distribution of 
storage resources and users may cause different data scheduling mechanism, and the 
cost of scheduling is very expensive. The other is that when the access pattern 
changes frequently, data will be migrated in the grid environment very frequent. This 
will cause the whole system unstable and make the probability of data error higher. 

This paper addresses the issue on how to build a metadata management model in 
grid environment to get high performance. In our model, we divide the traditional 
metadata manager in grid environment into two parts. One is responsible for building 
a global namespace for users in a special domain, and the other is responsible for 
collecting a set of storage resources to store data in that domain. We have implement 
this data management model in ChinaGrid project [10] as a part of ChinaGrid support 
platform (CGSP) [10]. Through that users in the same domain can get almost the 
same transfer speed. 

This paper is organized as follows. We discuss the related work in section 2. In 
section 3, we give the overview of the data management in CGSP, and the two-layered 
metadata service in CGSP in section 4. Section 5 is the use case study of the model. We 
perform the performance study in section 6, and conclude this paper in section 7. 

2   Related Works 

Storage Resource Broker (SRB) [5] and its associated Metadata Catalog [6] provide 
metadata and data management services. SRB supports a logical name space that is 
independent with physical name space. The logical objects, logical files in SRB can 
also be aggregated into collections. SRB provides various authentication mechanisms 
to access metadata and data within SRB. 

Replica Metadata (RepMec) [14] catalog is built upon the Spitfire database service. 
The RepMec Catalog stores logics and physical metadata. It is used within the EDG 
project to map user-provided logical names of data items to unique identifiers called 
GUIDs. RepMec is used in the Reptor system in cooperation with a replica  
location service. 
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Internet Backplane Protocol (IBP) [7] is a middleware for managing and using 
remote storage. It supports logistical networking in large scale, distributed systems 
and applications. It defines logistical networking as the global scheduling and 
optimization of data movement, storage and computation based on a model that takes 
into account all the network's underlying physical resources. IBP provides a 
mechanism for using distributed storage for logistical purposes and also provides 
strategies of data depots and repositories, and replica management. 

Majority of data grid projects, such as Particle Physics Data Grid [15] and LHC 
Computing Grid Project [16], are focusing on designing higher-level services on top 
of the basic Globus infrastructure. Some of the services being developed are: replica 
management, which combines replica catalog with file transfer; replica selection, 
which chooses the “best” replica with respect to network and storage performance; 
and broker services, which seek out available resources to schedule jobs. 

3   Overview of Data Manager in CGSP 

ChinaGrid [10] integrates all the resources among participant universities in China, 
and makes users and heterogeneous grid resources work cooperatively. It provides 
transparent grid services with high performance, high reliability for all kinds of 
science computing and research. ChinaGrid Support Platform (CGSP) [10] is the core 
middleware for ChinaGrid, which also provides development environment for grid 
application. 

CGSP integrates all kinds of resources in education and research environments, 
makes the heterogeneous and dynamic nature of resource transparent to the users, and 
provides high performance, high reliable, secure, convenient and transparent grid 
service for the scientific computing and engineering research. CGSP provides both 
ChinaGrid service portal, and a set of development environment for deploying various 
grid applications. 

The current version, CGSP 1.0, is based on the core of Globus Toolkit 3.9.1, and is 
WSRF [8] and OGSA [9] compatible. CGSP contains five building blocks: grid 
portal, grid development toolkits, information service, grid management and grid 
security. Grid management has four parts: service container, data manager, job 
manager, and domain manager [10]. 

Data management is the core service in CGSP. It manages heterogeneous storage 
resources and data in grid environment. When a user sends a request to data manager 
for storing a set of data, data manager selects a proper storage resource to receive the 
data set and in the meaning while, it also recodes the relevant metadata. When a user 
wants to fetch a set of data, data manager will find the relevant metadata according to 
the data identifier and return to the user with the best replica. Data logical domain 
manager and data domain manager are in charge of metadata maintenance. Different 
from the traditional metadata management mechanism, it uses the 2-layered metadata 
management model to record the relevant metadata. We will discuss this model in 
detail in next section. In section 5 we also give a use case study to descript how this 
model works in grid environment. 
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4   2-Layered Metadata Services 

4.1   Requirements of Metadata Services in CGSP 

Basically, metadata manager records a variety of information of the related data. 
Some information is application dependent, such as the creation time, author, 
described in Dublin Core [6]. It also provides data location service. For example, if a 
user wants to fetch a data file with a given logical file name in his data namespace, 
the metadata service finds the corresponding metadata associated with the file name 
and provides the URL of the storage location storing the data. The metadata service 
records Access Control List (ACL) for every data file. Data are shared among 
different users and the author does not want to let all users have the same access right 
to the data. Receiving a data access request, the metadata service first checks the ACL 
to tell whether the user has the right to do such operation. 

Metadata service must also have a proper data scheduling mechanism to confirm 
all the transfer speed to users. In grid environment, it is hard to find such an algorithm 
to satisfy all the users’ requirement. We need to change to traditional metadata 
organization to satisfy such requirement. We design 2-layered metadata service model 
to guarantee the service quality of metadata management. 

4.2   2-Layered Metadata Service Model 

This design is adaptive to the applications in grid environment, especially to the 
data-intensive applications. In these applications, data are stored in storage resources 
and shared by users, which are all geographically distributed. Collaborative work 
makes the shared data becoming the key component among the users. But all 
applications have space locality, that is to say users and data usually distributed in 
some special sites. Using this locality, we provide the 2-layered metadata service 
model which can largely improve the data transfer speed. The design of 2-layered 
metadata service model focuses on how to resolve the data transfer speed in grid 
environment. Such solution does not make emphasis on data transfer protocol, but on 
the organization of data and storage resources. In such a model, system creates a data 
logical domain for every application containing a set of users. In order to confirm data 
near to users, data logical domain also contains a set of storage resources logically 
near to the users and data are always stored in them. Through that, proper data are 
confirmed to be stored on the proper storage resources, making high effective data 
transfer speed between users and resources. 

The 2-layered metadata service model in CGSP has two parts: the lower part 
organizes distributed storage resources into a manageable storage pool and also 
provides data location service, which is called Data Domain (DD); the upper part 
with the name of Data Logical Domain (DLD) connects special applications and a set 
storage resources, also it maintains the domain independent metadata. DD takes care 
of the management of storage resources with the dynamic state of resources, which 
supports resource selection strategy. DLD does not manage any storage resource, but 
it contains a list of resources for a special data logical domain. All data in the DLD 
are stored in those resources, which are selected to satisfy almost all users’ transfer 
speed requirement. 
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4.3   Data Domain 

The tremendous storage resources are organized as where they are, that is, all storage 
resources in that region are collected together and managed by DD. Every storage 
resource sends its own state information such as CPU load, storage capacity, to DD 
periodically. Through such information, DD knows status of each resource so that 
upper component can decide where to store data when receiving data storing request. 
If a resource does not send its information to DD in a certain internal, it will be 
considered as out-of-work and the next task will not refer to this resource. Through 
this mechanism, DD dynamically knows which resource adapts to the type of task. 
For example, if a task is a data back-up, usually it will focus on the capacity of the 
resource but not on CPU processing capability. 

Replica catalog is another function of DD. The main task of replica catalog is to 
provide data location service and maintain the integrity of data. It implements 
mapping from data uniform identifier to URLs where user can fetch data. Because a 
data can have multiple replicas, replica catalog must also choose the best one. 
Through this mechanism, users can transparently access data, without knowing where 
to store or fetch data and what type of data transfer protocol is. When updating a 
replica, replica catalog will maintain the consistent among the replicas. 

4.4   Data Logical Domain 

DLD is the main feature in data management of CGSP, through which performance 
consistency can be achieved. DLD is a triple-tuple: <application, user, resource>, 
which describes an application stores data on which storage resources and which 
users work together for the application. The element application indicates the task to 
which DLD provides storage service. A given application usually has fixed users 
working in some special places, and also application decides the type of resource for 
it. The element user is a collection of user IDs with an administrator in it. When a 
DLD is created, user has only one element: administrator. The administrator takes 
care of user management. The user joining the DLD is added into the user collection 
and has the right to access data in DLD. The administrator manages storage resources. 
It selects storage resources from resource list, and the selected resource is the last 
element of DLD: resource. Because of the locality of user’s geographical distribution, 
administrator can choose resources logically for almost every user, but not with 
tremendous users with disordered distribution. Through this the data storage quality 
of service is confirmed. 

DLD builds a uniform namespace for each user. When launching a DLD, user sees 
a tree structure directory. A group of data operations are supported, such as data 
upload, download. For example, a user can upload a data file with a given file name in 
any directory of the namespace. Insides the system the relevant metadata information 
including the logical file name (the complete path in the namespace) is recorded. A 
global uniform ID is corresponding to the logical file name. In DD the ID is mapped 
to a set of URLs. The two translations make data operations transparent, and user 
does not need to know the location of data. Every application has its own data shared 
by all the collaborative users, and DLD provides a mechanism to publish the data to 
all. DLD records metadata of all shared data and adds them to every user’s 
namespace. In user’s namespace, a fixed directory called common in a DLD contains 
all the shared data. Any user can operate these data under certain access control rule. 
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A user has a namespace even if he is not belonged to a DLD. Each user is in a 
default data logical domain. Default data domain is created during system 
initialization, and contains all users registered in the system. The difference between a 
DLD and default DLD is that default DLD contains all the resources of the DD, that 
is, data are distributed in all the resources, which will decrease the transfer 
performance without considering the locality. Default DLD is convenient to users 
when they work alone, but the performance seems worse than that of DLD (seen in 
the performance study section). Metadata in DLD and default DLD together compose 
a uniform namespace for a user. 

In some circumstances, no storage resource can satisfy users for the performance 
requirement. DLD will duplicate data for them. DLD chooses the most frequently 
used data replica near to those users, and makes consistent between the replica and 
original data. Through this, all users in DLD will get relative high performance. 

 

Fig. 1. Workflow of 2-layered metadata services in CGSP 

5   Use Case Study 

When a user uses data management in CGSP, he may first login from the portal or the 
data management client. Through the client or portal, the user sends request to operate 
data. The request which contains the data path in the user’s namespace is sent to the 
Access Point and the Access Point forwards it to the corresponding DLD manager. In 
DLD manager the request is resolved to the following format: <request type, DLD 
name, data path>. If the request is a query operation, DLD manager will search the 
metadata in the corresponding DLD according to the DLD name and data path, which 
will be returned to Access Point and sent to user. Fig. 1 illustrates a fetching operation 
workflow. Like the query operation, DLD manager finds the uniform identifier (UID) 
and sends it to DD manager which will get URLs of data from replica catalog.  
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When a portal or a client gets the URLs, it can get data from the relevant storage 
resource directly. When creating a new file, DLD manager will create a new UID for 
the file, record metadata of the file and choose a proper resource to store the file from 
the DLD resource list. UID is sent to DD manager. Also the URL reserved in replica 
catalog is created according to the selected storage resource. Data will be uploaded 
from portal or client to the site indicated by URL. 

6   Performance Evaluation 

The data management of CGSP is run on a cluster with 16 nodes and each node is 
configured with 1GHz Xeon CPU with 512MB memory and 40GB disk, with Red 
Hat 7.3 kernel version 2.4.9 as its operating system. All nodes are connected by 
100Mb Ethernet. All the data management modules including DD and DLD are 
installed in the cluster. Clients are distributed in the wide area network. 

With this study we aim to address two issues: 1) the performance of metadata 
service model; and 2) the performance of data transfer speed in DLD and default 
DLD. The key measurement of metadata services is the operation rate to metadata. 
The operation contains two aspects: metadata read which is used to query or list data 
and metadata write when creating new data file. We also compare the performance 
between data in DLD and default DLD. 

We used 1 to 12 concurrent threads to perform the read/write operation to 
metadata. The result is showing in Fig. 2. From the result we can see that metadata 
read rate is about 15% higher than that of write. That is because we use OpenLDAP to 
optimize read operation to store metadata information. 
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Fig. 2. Performance of metadata operation (read, write) 

For data transfer test, we fetch data in DLD and default DLD with the size range 
from 50 to 1000 MB, respectively. We use GridFTP [12] as the data transfer protocol. 
From Fig. 3, we find that the performance of data transfer speed in DLD is averagely 
60% higher than that in default DLD. The data transfer speed is much steady because 
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users are distributed in relative small scale sites and the storage resources are logically 
near them. For data in default DLD, data transfer speed may be high, but for the most 
circumstances, we just get poor performance. The performance difference shows that 
using geographical distribution locality, we can get much better result. 
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Fig. 3. Performance of data transfer speed 

7   Conclusion and Future Work 

In this paper we present the 2-layered metadata service model in grid environment. 
The model is based on the locality distribution of users. With the separation of 
traditional metadata service, we manage metadata in DLD and DD. DLD manages a 
set of resources and a user’s namespace and in DD it maintains replica catalog. 
Without complex resources scheduling algorithm, we can get a good data transfer 
speed. The model is implemented in CGSP 1.0 of ChinaGrid project. 

Replica mechanism is another important aspect in the model. We have 
implemented some simple algorithms for replica creating, resource selection and 
replica shifting, but they are not enough for the complex conditions in grid 
environment. In the future we plan to design efficient replica algorithms to satisfy 
users’ distribution in larger area. 
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Abstract. The state-of-the-art keyword search system for structured P2P 
systems is built on the distributed inverted index. However, Distributed 
inverted index by keywords may incur significant bandwidth for executing 
more complicated search queries such as multiple-attribute queries. In order 
to reduce query overhead, KSS (Keyword Set Search) by Gnawali partitions 
the index by a set of keywords. However, a KSS index is considerably 
larger than a standard inverted index, since there are much more word sets 
than individual words. And the insert overhead and storage overhead are 
obviously unacceptable for full-text search on a collection of documents. In 
this paper, we presents pKSS, a P2P keyword search system that that adopts 
term ranking approach such as TFIDF and exploits the relationship 
information between query keywords to improve performance of P2P 
keyword search. Experimental results clearly demonstrated that the 
improved keyword search is more efficient than KSS index in insert 
overhead and storage overhead, and much less than standard inverted index 
on bandwidth costs for a query. 

1   Introduction 

In recent years, P2P has emerged as a popular way to share huge volumes of data. The 
key to the usability of a data-sharing P2P system, and one of the most challenging 
design aspects, is efficient techniques for search and retrieval of data. 

Structured P2P systems, such as Chord [1], Pastry [2], don’t support full text 
search directly. While, as they actually implement distributed hash tables (DHTs) 
over them, keyword search can easily be implemented by distributing inverted indices 
among hosts by keyword. Then a query with k keywords can be answered by at most 
k hosts through the intersection of inverted lists. However, Distributed inverted index 
by keywords may incur significant bandwidth for executing more complicated search 
queries such as multiple-attribute queries. This is unacceptably large bandwidth for 
query in a P2P system because bandwidth available to most nodes in the Internet is 
rather small. 

In order to reduce query overhead, KSS (Keyword set Search)[3] partitions the 
index by a set of keywords. A KSS index is considerably larger than a standard 
inverted index, since there are more word sets than there are individual words. And 
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insert overhead for KSS grows exponentially with the number of the keywords while 
query overhead is reduced because no intermediate lists are transferred across the 
network for the join operation. However, the insert overhead and storage overhead of 
KSS are obviously unacceptable for full-text search on a collection of documents 
even if KSS makes use of the distance window technology. 

Our work aims to design an efficient P2P keyword search system which has the 
same order of insert and storage overhead as standard distributed inverted index while 
has the same (or better) performance of keyword search as (or than) KSS. pKSS (P2P 
keyword search system), presented in this paper, adopts term ranking approach such 
as TFIDF and exploits the relationship information between query keywords to 
improve performance of P2P keyword search. In pKSS, instead of publishing 
keyword pairs as done in KSS, we only publish individual important keywords and 
associate each publishing keyword with a set of related keywords, and the insert and 
storage overhead can be greatly reduced when compared with KSS. When doing 
keyword search, related query keywords are grouped into sets, and search can be done 
in keyword set like KSS. Therefore the performance of keyword search can also be 
greatly improved when compared with standard distributed inverted index. 

2   Keyword Relationship Discovering 

To speed up the keyword search in pKSS, each publishing term is associated with a 
set of keywords that are usually queried by the user together. To determine the 
keyword relationship, we take a query log which can be obtained from WWW or FTP 
search sites as input and map it into a graph which expresses the relationship between 
keywords. The algorithm has three basic steps: 

Step 1  Construct a directed graph G(A,E) according to the query log 
Step 2  Pruning the graph to G(A,E)|θ according to a given connectivity threshold θ 
Step 3  Output Eθ 

We discuss each step in turn. 

Step1. Construct a directed graph G(A,E) according to the query log. 
The set of vertices A in graph G(A,E) corresponds to the search terms used in the user 
queries. The set of edges E corresponds to search terms co-occurrence as observed in 
the user queries.  

E={e|weight(e)>0}. Since the graph G(A,E) is a directed graph, EA1->A2 and EA2->A1 
should be distinguished form each other. The weight of a directed edge is defined as 
follows: 

1 2

( 1 2)
weight( )

( 1)A A

freq A A
E

freq A−>
∩=  (1) 

Where A1 and A2 are vertices in set A. The freq(X) represents the frequency that 
search term X occurs in users’ query. For instance, if a query procedure contains the 
search terms "p2p" and "search" the frequency of the relevant vertices is added one 
respectively. The weights on the directed edge (p2p search) are computed as the 
normalized frequencies by dividing them with the occurrence frequencies of the 
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“p2p” vertices .The effect of the normalization is to remove the bias for 
characteristics that appear very often in all users. 

Step2. Pruning the graph to G(A,E)|θ  according to a given connectivity  
threshold θ. 
As the connectivity of the resulting graph G is usually high, we use a connectivity 
threshold, aiming at reducing the number of edges in the graph. The connectivity 
threshold represents the minimum weight allowed for the edge’s existence. When this 
threshold is high the graph will be sparse and when the threshold is lower the graph 
will be dense. 

In graph G(A,E)|θ, the set of vertices A in graph G(A,E)|θ is same to the set of 
vertices A in graph G(A,E) , which corresponds to the search terms used in the user 
queries. However, the set of edges Eθ corresponds to search terms co-occurrence as 
observed in the user queries. Eθ can be obtained from following equation. 

{ | , ( ) }E e e E weight eθ θ= ∈ ≥  (2) 

It is obvious that different connectivity threshold θ may output different Eθ. The 
larger connectivity threshold θ is, the sparser the graph is. In pKSS, we choose 
θ=0.05. 

Step3. Output Eθ . 
This step outputs the vertex pairs corresponding to Eθ, which expresses the co-
occurrence relationship of query keywords.  

3   Keyword Publishing and Search in pKSS 

In pKSS, we make two optimizations for keyword search in structured P2P network. 
Firstly, by adopting TFIDF technique, only important terms that best describe the 
document are selected as publishing keywords. This can reduce the costs for 
publishing inverted list of the documents at cost of ignoring some less important 
documents that may be queried by unimportant keywords which have low TFIDF 
weight. Secondly, pKSS exploits keyword relationship, the inverted list intersection 
cost for multiple-attribute queries can be greatly reduced. 

When a user shares a document, pKSS first builds the inverted list of the document 
with each term associated with a weight. The term weight is computed by TFIDF 
approach. Then the most significant term list is selected as the publishing keywords. 
Of cause, we can publish every keyword in the inverted list as is done in traditional 
structured P2P keyword search system[4][5][6]. However, in pKSS, only the first L 
largest weighted terms are published, and if the number of terms in the inverted list 
are less than L, all the terms will be published. Therefore, if L is large enough, for 
example larger than the size of lexicon, all the keywords in inverted list will be 
published. In pKSS, we let L=500 in favor of reducing the insert overhead at the cost 
of ignoring some less important documents that may be queried by unimportant 
keywords which have low TFIDF weight. 
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The index entry to publish in pKSS contains three parts: the keyword itself, the 
document ID, and a set of keywords that are in the document and related to the 
publishing keyword. The keyword set in the index entry can be expressed as follows: 

{ | ( , ) , }i j i j jKS K K K E K Dθ= ∈ ∈  (3) 

where Ki is the publishing keyword in index entry, D is the document, Kj is the related 
keyword, KSi is the related keyword set, and Eθ is the keyword relationship graph 
introduced in section 2. In pKSS, instead of storing related keyword set in the index 
entry, we use Bloom Filter to compress the keyword set and store the bloom filter in 
the index entry. BF(KSi) represents the bloom filter of the related keyword set KSi. 
Thus the index entry of keyword Ki can be represented as follows: 

, , ( )i i iIE K DocID BF KS=< >  (4) 

where IEi is the index entry of keyword Ki, DocID is the document ID. 
To publish the index entry to the P2P network, pKSS first compute the hash of the 

keyword as key, then maps the key to the node in the network using Chord algorithm, 
and stores the index entry to that node at last. The algorithm of publishing keyword in 
pKSS works as follows: 

Query in pKSS is consisted of a set of keywords. Thus, the query can be expressed 
as follows: 

1 2{ , ,..., }nQ k k k=  (5) 

where Q represents the query, ki(i=1,2,…n) is keyword in the query. To speed up the 
keyword search process, keywords in the query are grouped into sets of related 
keywords. Each group has a primary keyword which will be used to accomplish the 
keyword lookup process by Chord algorithm, while other keywords in the group set 
are the related keywords of the primary keyword that are used to filter the documents. 
The grouping method lies in two key points. The first is how to determine the primary 
keyword of the group set, and the second is how to select the related keywords of the 
primary keyword. In pKSS, the resolving power of the term is used to determine the 
primary keyword, and the keyword relationship graph of the query log is used to 
select related keywords of the primary keyword. The grouping process can be divided 
by the following steps: 

Step1 In the query keyword set Q, select the term k that has maximum IDF value 
as the primary keyword, create a group set Gk, and remove this term from Q.  

Step2 Find all the related keywords of primary keyword k, add them to the group 
set Gk, and remove these keywords from the query set Q. The related keywords can be 
selected by the following equation. 

{ | ( , ) | , }k i i iG k k k E k Qθ= ∈ ∈  (6) 

Step3 If Q ≠ Φ , goto step1 to create another group set. 

Unlike standard distributed inverted index approach, pKSS performs distributed 
search based on each group set, not the term only. For each group set Gk, pKSS maps 
the primary keyword k onto the node in the network by Chord algorithm, then fetches 
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all the document index entries and filters the satisfied documents according to the 
BF(KSk) field. The filtering condition is defined as following equation. 

( ) ( ) ( )k k kBF G BF KS BF G∧ =  (7) 

where BF(Gk) is the bloom filter of group set Gk. The filtering condition in equation 
(7) is in fact to test that every the keyword in set Gk appears in set KSk. Finally, the 
intersection of documents fetched according to each group set are the final results that 
satisfy the query. Thus, compared to the standard inverted list intersection approach, 
the performance of keyword search in pKSS can be greatly improved by query 
keywords grouping. 

4   Experiments 

In this section, we evaluate pKSS by simulation. In order to find the relationship 
between query keywords, we used the query logs of the FTP search website 
bingle.pku.edu.cn from Dec 1, 2002 to Dec 31, 2002. 

We simulated inserting and querying of a document using pKSS. Next we ran the 
pKSS algorithm on each text file to create index entries and published them to 
corresponding virtual peers. We evaluated these algorithms by insert overhead and 
query overhead.  

Insert Overhead is the number of bytes transmitted when a document is inserted in 
the system. When a user asks the pKSS system to share a file, the system generates 
index entries which are inserted in the distributed index. Unlike KSS, in which if we 
generate index entries for a document with n keywords for typical keyword-pair 
scheme the overhead required is bounded by C(n,2), pKSS only generates small index 
entries which results in a small insert overhead. 
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Fig. 1. Insert overhead Fig. 2. Query overhead 

Fig.1 gives the curves of size of index entries generated vs. number of words in a 
document using the standard inverted indexing scheme, pKSS with θ=0.05 and KSS 
with window size of ten. Fig.1 shows that the insert overhead for pKSS is much lower 
than that for KSS, is a little higher than that of the standard inverted index scheme 
when the document is small, and is lower than that of the standard inverted index 
scheme when the document is large. 
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Query overhead is a measure of bytes transmitted when a user searches for a file in 
the system. As we know, the overhead to send the intermediate result list in the 
system from one host to another is the main part of the query overhead.  

Fig.2 gives mean data transferred in KB when search using the standard inverted 
index with Bloom Filter, the standard inverted index without Bloom Filter, KSS with 
window size of 5, pKSS with θ=0.05, for a range of query words. Fig.2 shows that the 
query overhead for pKSS is much lower than that of the standard inverted index 
scheme, with or without bloom filter, and is a little lower than that for KSS when the 
number of keywords is greater than 3. 

5   Conclusions 

In this work, we adopt keyword ranking approach such as TFIDF and exploit the 
relationship between query keywords which can be extracted from users’ queries logs, 
to improve the performance of P2P keyword search system. Experiments results 
clearly demonstrated that pKSS index is more efficient than KSS index in insert 
overhead and storage overhead, and more efficient than a standard inverted index in 
terms of communication costs for query. In a forthcoming paper, the authors will 
show how the parameter L and θ  in pKSS impact the insert and query overhead and 
the query accuracy. 
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Abstract. Cluster systems are becoming more prevalent in today’s computer 
society and users are beginning to request that these systems be reliable. 
Currently, most clusters have been designed to provide high performance at the 
cost of providing little to no reliability. To combat this, this report looks at how 
a recovery facility, based on either a centralised or distributed approach could 
be implemented into a cluster that is supported by a checkpointing facility. This 
recovery facility can then recover failed user processes by using checkpoints of 
the processes that have been taken during failure free execution.  

1   Introduction 

The advancements in computing are more often than not focused on improving 
performance rather than improving reliability. Reliability is often neglected because 
in most cases when reliability is improved, system performance decreases. But it is 
becoming an increasingly desired feature, especially in such systems as non-dedicated 
clusters. These systems provide an ideal platform for parallel processing, given their 
high scalability, availability and low cost to performance ratio [1]. However, given 
that non-dedicated clusters are composed of a collection of individual computers 
connected via a network and used by multiple users, reliability is somewhat lacking. 
Thus, many hours of execution of a parallel application could be lost. 

Methods such as redundancy, checkpointing and rollback recovery, failure 
semantics, and group failure masking have been developed to improve reliability, but 
these methods have not been widely researched in non-dedicated cluster operating 
systems [2]. It has been shown that checkpointing and rollback recovery is an ideal 
reliability method for non-dedicated clusters as it provides reliability for users and 
adapts well to environments where many processes are executing over multiple 
computers [3]. However, the systems currently developed either do not provide 
transparent and autonomic recovery for users, based on middleware and are not 
implemented as a system service, or users have to restart their applications manually 
after a failure [5][6][7]. The aim therefore of this paper is to detail how the recovery 
of processes in a cluster can be achieved transparently and autonomically to create 
seamless recovery in clusters using checkpointing and rollback recovery, and to 
furthermore show that the outcome will be beneficial to the users of the system. It is 
also the aim to demonstrate how recovery can be achieved using either a centralised 
or distributed recovery approach and present their comparative study.  
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2   Target Platform Architecture 

It has been identified that a microkernel based cluster operating system compliments 
the development of new research services as they can be developed independently of 
the other system services [2]. The microkernel based operating system uses peer to 
peer servers to provide the complex functionality of the cluster operating system. 
Whilst the microkernel only provides the minimal functionality needed, the other 
system servers provide any additionally needed facilities. Each of these facilities 
communicates using messages. To incorporate a recovery facility, five existing 
facilities are used to provide the additional services needed by the recovery facility: 
the checkpoint facility, remote execution facility, global schedular, process facility, 
and the self-discovery facility. 

The checkpoint facility is responsible for checkpointing applications in the system. 
When a checkpoint is taken, the process’s memory, communication buffers, and 
process information are copied into a new checkpoint. A coordinated checkpoint 
facility model has been identified for a cluster operating system by Rough and 
Goscinski, and will be used as a basis of this checkpointing facility [10]. In their 
model, checkpoints are taken at periodic intervals and are stored in the volatile 
storage of other computers within the cluster of computers.  The remote execution 
facility (REX) is responsible for process creation. The facility consists of many 
Remote Execution Managers; one manager is located on each computer within the 
cluster. These managers can cooperate together to create new processes within the 
system [1]. Scheduling of processes within the system is managed by a single 
centralised Global Schedular. This server combines static allocation and dynamic load 
balancing components. Using current loads and load trends, the Global Schedular 
makes decisions on where to create new processes. The process facility is responsible 
for managing processes within the system. The process facility is made up of many 
Process Managers and each Process Manager is responsible for the processes on its 
local computer. Lastly, the responsibility of the self-discovery facility is to provide 
high-level management of all computing resources on a global cluster-wide basis. The 
self-discovery facility is a dedicated service, which coordinates the discovery of the 
installed computing resources and their parameters. The self-discovery facility is also 
responsible for reporting failures of user processes to the recovery facility. 

3   Overview of the Proposed Recovery Facility 

The recovery facility uses the checkpoints created by the checkpoint facility to 
recover failed applications. The recovery facility is composed of many Recovery 
Managers; one Recovery Manager resides on each of the computers within the 
system. These Recovery Managers communicate using either single or group 
communications. Once a failure has occurred in the cluster, the recovery facility is 
alerted to the failure and begins the recovery process. Only user applications are 
recovered as an assumption is made that the system servers cannot fail.  

Transparency must also be upheld during the recovery of a failed application as the 
user should not know that it has failed, and does not need to know that it has failed 
unless the application is unrecoverable.  The checkpoint facility described in Section 
2 currently only stores checkpoints on the volatile storage of other computers within 
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the system. This feature of the checkpoint facility had to be extended to store the 
checkpoints on stable storage at regular intervals or when the computers are idle to 
prevent the checkpoint data being lost when a computer fails. 

At-least-k delivery semantics are used to store the checkpoints of the processes in 
the volatile storage of other computers [10]. At-least-k semantics guarantee to deliver 
messages to a user specified number of computers, this value is denoted by k (where k 
>= 1). Because of these delivery semantics, each time a new checkpoint of a process 
is taken, the checkpoint may be stored in the volatile storage of a different computer 
than that of the computer which was used to store the previous checkpoint of  
that process. 

Once implemented, the recovery facility has many advantages over existing manual 
recovery methods that exist due to the transparency and autonomy provided, as with 
manual recovery facilities, the user must have explicit knowledge of the recovery 
facility, how the recovery facility is used, and how to carry out the recovery operation. 

4   The Recovery Facility 

Different recovery approaches can be used to control how applications are recovered. 
The two approaches that exist are Centralised and Distributed.  . 

4.1   Centralised Approach for Recovery of Processes 

The centralised approach aims at using a Coordinating Recovery Manager in order to 
dictate to the recovery facility which processes should be started on each computer 
within the system. As there are many Recovery Managers within the system, one 
Recovery Manager must become a Coordinating Recovery Manager when a failure 
occurs in the system.  When a failure occurs, an election takes place to ensure that 
there is only one Coordinating Recovery Manager.  

The local Checkpoint Manager is queried by the Coordinating Recovery Manager to 
determine where the checkpoints are stored in the system. To select the computers that 
are used for the recreation of the processes, the Coordinating Recovery Manager 
contacts the Global Schedular informing it of the processes that need to be restarted and 
to request a list of computers that are to be used for the recovered processes. Several 
parameters are passed to the Global Schedular along with the request. These parameters 
include the location of the stored checkpoint data in the system so that it may use this 
information to make a more informed decision on where to recover the processes. The 
Recovery Managers on these target computers are then contacted by the Coordinating 
Recovery Manager and informed of the processes that have to be recreated on their 
respective computers. If a computer within the cluster fails during the recovery process, 
then the Coordinating Recovery Manager is informed by the self-discovery facility and 
requests another computer begin the recovery for that process. 

The information on where the images are stored is passed on to the remote 
execution facility. With this information, the remote execution facility attempts to 
retrieve the checkpoint data from the volatile storage of the other computers. If the 
image is no longer residing in volatile storage, then the image is retrieved from stable 
storage. The steps to recover an application when using the centralised approach 
shown in Figure 1 is as follows: step 1 – A fault is reported to the Local Recovery 
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Manager: step 2 – Check to see if checkpointing is enabled for the failed process: step 
3 – Find out which computers the new processes should be started on: step 4 – Inform 
the Remote Recovery Managers that a recovery is occurring: step 5a – Tell Process 
Managers to kill any surviving processes of the application: step 5b – Process 
Managers kill off any surviving processes: step 6 – Request each REX Manager to 
create the new processes: step 7 – Get the data from either volatile or stable storage: 
step 8 – Create the process: step 9 – Coordinating Recovery Manager informed that a 
process is recovered; and step 10 – Coordinating Recovery Manager informs all that 
recovery is complete. 

 

4.2   Distributed Approach for Recovery of Processes 

The distributed approach for recovery of failed applications is quite different to that of 
the centralised approach. The major difference with the distributed approach is that 
there is no one Coordinating Recovery Manager. Also, the distributed approach 
doesn’t contact the checkpoint facility, nor does it contact the Global Schedular. 
Instead, this approach looks at recreating processes whose checkpoints exist on the 
same computer as the Recovery Manager who is trying to recover the process of the 
application.  

Because the Recovery Manager does not contact the checkpoint facility or the 
Global Schedular, the recovery process can then get underway faster than in the 
centralised approach. If a process has been recovered on a heavily loaded computer, 
then the Global Schedular may choose to migrate the process at a later time once it is 
recovered. The distributed approach therefore has the advantage that the recovery is 
completed faster, but may be more expensive later if migration is required to balance 
the computer loads. 

As k copies of each checkpoint exist within the system, steps must be taken to 
ensure that only one of each process is recreated. This is done using majority voting 
with the other Recovery Managers within the system. 
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If the checkpoint data for a process exists on a local computer, then the Recovery 
Manager on that computer requests to recover that process. If the Recovery Manager 
on the local computer has already been informed that another Recovery Manager is 
attempting to recover that process within the system, then the Local Recovery 
Manager does not attempt to recover the process. 

Once a Recovery Manager has obtained the right to recover a process, it does so 
immediately. Once the process has been recovered, then the Recovery Manager that was 
responsible for recovering the process informs the other Recovery Managers that the 
process has been recovered. Once all Recovery Managers have been informed that each 
process of the application has been recovered then the recovery is deemed complete.  

If during the recovery of processes, a Recovery Manager fails to recover a process, 
then it sends a recovery failed message to the other Recovery Managers within the 
system. Once this has happened, another Recovery Manager can vote to start to 
recover the process that was unable to be recovered by the previous Recovery 
Manager. This also happens if a process is not recovered by another Recovery 
Manager in a specified length of time. If the recovering of a process fails a pre-
defined amount of times, then it is deemed that the failed application cannot be 
recovered, and all recovered processes must be terminated. The steps to recover an 
application when using the distributed approach as shown in Figure 2 is as follows: 
step 1 – A fault is reported to the Local Recovery Manager: step 2 – Inform the 
Remote Recovery Managers that a recovery needs to occur: step 3 – Each Recovery 
Manager sends votes to recover some of the processes: step 4a – Tell Process 
Managers to kill any surviving processes of the application: step 4b – Process 
Managers kill off any surviving processes: step 5 – Request each REX Manager to 
create the new processes: step 6 – Get the data from either volatile or stable storage: 
step 7 – Create the process; and step 8 – Inform the other Recovery Managers using 
reliable communications that the process has been created. 

 

Fig. 2. Operation of Distributed Recovery Mechanism 
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4.3   Centralised vs. Distributed Recovery 

Each of the two approaches has their own strengths and weaknesses. The strengths of 
the centralised approach are that it uses a Coordinated Recovery Manager to control 
the steps of the recovery process. The centralised approach also uses the Global 
Schedular to make an informed decision on where to recreate the processes. Lastly, 
this approach uses less communication than the distributed approach. The weaknesses 
however, are that this approach  has to deal with selecting a Coordinating Recovery 
Manager before the recovery can begin, and if the Coordinating Recovery Manager 
fails during a recovery, then a new Coordinating Recovery Manager needs to be 
selected. The strengths of the distributed approach are that it eliminates a single point 
of failure by using Coordinating Recovery Manager. Instead the Recovery Managers 
request to start a process if the checkpoint data already resides on the local computer; 
consequently, the checkpoint data does not need to be sent across the network. To 
ensure that no two Recovery Managers attempt to recover the same process, majority 
voting is employed by the Recovery Managers. However, this creates a weakness as 
the use of majority voting greatly increases the amount of traffic transmitted over the 
network during recovery. Failed processes also may not be recreated on the most 
suitable computers within the cluster as the computers may be heavily loaded.  

Although both approaches are innovative and provide major benefits to the user, 
the centralised approach is believed to provide a more suitable recovery approach as 
the proposed advantages appear to be better than that of the distributed approach. The 
centralised approach uses a Global Schedular in order to select the most appropriate 
computer to restart the processes. In the distributed approach, the processes could be 
started on heavily loaded computers and would then have to be migrated to different 
computers in the cluster. This along with the extra communication due to the use of 
voting mechanisms increases network traffic significantly.  

5   Conclusion 

Throughout this document, two logical designs of Recovery Facilities for non-
dedicated clusters have been detailed. It has been shown how cluster operating 
systems can be extended to provide seamless recovery of failed processes through the 
use of a recovery facility. This recovery facility is a unique and innovative system 
service in that it can provide transparent and autonomous recovery of processes for 
the users of the system. This was achieved by using Recovery Managers residing on 
each of the computers within the system. These managers then use checkpoints that 
have been taken of the failed processes to recover the failed processes. Furthermore, it 
has detailed and compared a model for both centralised and distributed recovery. 

References 

1. Goscinski, A., Towards A Cluster Operating System That Offers A Single System Image, In 
Distributed and Parallel Systems, 2002 

2. Maloney, A., Checkpointing and Rollback-Recovery Mechanisms to Provide Fault 
Tolerance for Parallel Applications, School of Information Technology, Deakin University, 
2004, http://www-development.deakin.edu.au/scitech/sit/dsapp/members/ index.php 



124 A. Maloney and A. Goscinski 

3. Elnozahy, M., Alvisi, L., Wang, Y. M. and Johnson, D. B., A Survey of Rollback-Recovery 
Protocols in Message-Passing Systems, School of Computer Schience at Carnegie Mellon 
University, Pittsburgh, PA 15213, 1999 

4. Badrinath, R., Morin, C., and Vallée, G., Checkpointing and Recovery of Shared Memory 
Parallel Applications in a Cluster. In Proc. Intl. Workshop on Distributed Shared Memory 
on Clusters (DSM 2003), Tokyo, pages 471-477, May 2003. 

5. Plank, J. S., Beck, M., Kingsley, G. and Li, K., Libckpt: Transparent Checkpointing under 
Unix, Proceedings of the USENIX Winter 1995 Technical Conference, p. 213-223, 1995 

6. Landau, C. R., The Checkpoint Mechanism in KeyKOS, from Proceedings of the Second 
International Workshop on Object Orientation in Operating Systems, September 1992 

7. Rough, J. and Goscinski, A, The development of an efficient checkpointing facility 
exploiting operating systems services of the GENESIS cluster operating system, In Future 
Generation Computer Systems 20, p. 523-538, 2004 



M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 125 – 131, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Toward Self Discovery for an Autonomic Cluster 

Eric Dines and Andrzej Goscinski 

School of Information Technology, 
Deakin University, 

Geelong, Vic 3217, Australia 
{esd, ang}@deakin.edu.au 

Abstract. Nondedicated clusters are currently at the forefront of the 
development of high performance computing systems. These clusters are 
relatively intolerant of hardware failures and cannot manage dynamic cluster 
membership efficiently. This report presents the logical design of an innovative 
self discovery service that provides for automated cluster management and 
resource discovery. The proposed service has an ability to share or recover 
unused computing resources, and to adapt to transient conditions autonomically, 
as well as the capability of providing dynamically scalable virtual computers  
on demand.  

1   Introduction 

The present generation of parallel processing systems, which have arisen to take 
advantage of the more accessible computers, tend to be add-ons to existing operating 
systems (such as Linux and Windows NT) rather than purpose built distributed or 
cluster operating systems. The most prominent of these add-on systems are PVM [6] 
and Beowulf [7]. Unfortunately this class of system has several major limitations; a 
static nature requiring interventionist management techniques [8], a need for 
dedicated individual component computers in the case of Beowulf [7], an inability to 
either exploit underutilized desktop workstations as members of a non-dedicated 
cluster [7] or dynamically manage resource allocation and assignment in real time or 
derive system knowledge through resource discovery [8]. 

We have identified five desirable attributes that articulate the requirements of a 
typical cluster operating system and which overcome these shortcomings: 

• Automated Cluster Management to replace the manual processes currently 
employed for managing membership and routine administration functions. 

• Resource Sharing to take advantage of the casual members of a non-dedicated 
cluster, such as end user computers. 

• Resource Discovery to determine current and potential members of the cluster, and 
also their computing resource complement, such as local hard drives, unallocated 
RAM, or specific installed applications.   

• Network Performance to monitor the underlying performance of the network 
infrastructure, and optimize scheduling decisions accordingly. 

• Dynamically Sizable Virtual Computers to dynamically reconfigure access to 
portions of a cluster based on user requirements. 
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Achieving these attributes requires that the system maintains a dynamic global 
knowledge of the resources of the non-dedicated cluster, from a fine grained 
knowledge of the computing resources on a given computer (e.g. free RAM) to 
knowledge of whole sub-groupings of computers.  This knowledge or self-awareness 
embraces a single system image (SSI) view of the cluster [3] incorporating: 

• A dynamic system with computers joining and leaving at unpredictable times; 

• A collection of independent computers, often controlled by other users; and  

• A collection of logical clusters set up for individual applications. 

The aim of this report is to show the outcome of our study into the development of 
a system service or set of services that are able to provide this functionality, through 
which the current shortcomings of existing cluster operating systems can be 
overcome. We propose a self discovery service in an attempt to meet these goals and 
enable the cluster operating system to self manage autonomically. 

2   Target Architecture 

The basic system requirements for the deployment of the self discovery service are for 
a microkernel, client-server (peer to peer) and distributed system architecture. Figure 
1 shows a simplified block representation of a microkernel based cluster operating 
system. At the lowest level, the microkernel forms a hardware abstraction layer that 
provides only the bare minimum set of services needed to support the marshalling of 
interrupts, context switching, local IPC and memory management. Operating system 
functionality and application execution environment are provided by kernel and 
system servers. Kernel Servers operate in the user context and “use a set of privileged 
calls to manipulate microkernel data” [2] and provide much of the system 
functionality. An instance of each of these servers is deployed per machine [5]. 

 

Fig. 1. Microkernel System Architecture 
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System Servers implement operating system functionality having system wide 
applicability. The system servers in contrast to the kernel servers can be hosted on any 
given computer within the cluster, as they are not bound to any specific microkernel. 

The major servers that are related to the self-discovery service are as follows: 

• Execution manger creates a process locally or remotely from a file or duplicates a 
process on one or more computers simultaneously.  

• Resource discovery manager collects system information about its host computer. 

• Migration manager coordinates the relocation of either an active process or a set 
of processes on one computer to another or a collection of computers. 

• Process manager manages the processes on the local computer. It manipulates the 
process queues and deals with parent and child process interactions. It cooperates 
with the execution manager to set up the process’ state when the process is created, 
and the migration manager to transfer a process’ state when it is migrated. 

• IPC Manager is responsible for delivering all messages including group 
communication services to both local and remote process and/or processes. 

• Global Scheduler provides scheduling services in order to allocate/migrate 
processes to idle and/or lightly computers to share and balance load. 

• Recovery Server oversees the checkpointing of active processes across the system 
and manages the recovery of these processes should one exit abnormally. 

3   The Logical Structure of the Self Discovery Service 

The self discovery service is provided by the system discovery server (SDS) and a 
set of resource discovery servers (RDS). The system discovery server is deployed as 
a single non-redundant instance for the entire physical cluster system, similarly to 
the global scheduler (Figure 2) with which it interacts and cooperates closely. 

 

Fig. 2. Architecture of the self discovery server 

The five desirable attributes for cluster from section 1 are encapsulated within the 
context of the three major duties of the self discovery service: managing the physical 
cluster; managing the virtual cluster; and managing system self-awareness. 

3.1   Roles of Servers 

The actual roles to be attributed to each of the three components global scheduler, 
resource discovery server and system discovery servers are as follows. 
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The global scheduler sets the policies for statically allocated work (remote 
execution manager) and load balancing (migration manager). The global scheduler’s 
view of the cluster is provided by the system discovery server who may alter the 
presented topology in order to influence scheduling decisions (Figure 3).  

The system discovery server implements the global scheduler’s policies by 
managing the individual resource discovery servers, collating and analyzing the data 
provided by the resource discovery server and manipulating the performance indices. 
The system discovery server organizes functional groups of computers as private 
virtual clusters (PVC); manages membership to the cluster and loss of a computer/s. 

The resource discovery server captures computer performance parameters, pre-
processes the raw data where appropriate and supplies the collated and processed data 
to the system discovery server.  

3.2   Management of the Cluster 

The self discovery service provides a stable fault tolerant platform for the execution 
of parallel applications within a dynamic computer membership environment.  

 

Fig. 3. Private virtual cluster management 

Managing the Physical Cluster. The self discovery service has complete oversight 
of the operation of the cluster system, with the system discovery server managing all 
computers from the bootstrap to planned or unplanned departure. 

Managing the Virtual Clusters. The private virtual cluster (PVC) is a logical 
aggregation of computers to collectively manage a computing task.  

At startup, all computers are in PVC0 (see figure 3). Once the first application has 
been scheduled for execution, the system discovery server selects one or more 
computers from PVC0 and allocates them to a new private virtual cluster (PVC1). 
Processing commences once PVC1 has been successfully initialized.  
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Similarly configured computers are drawn from the ranked lists (CPU speed, 
installed RAM and network interface speed, see figure 3) and allocated together in 
PVC’s. The initial groupings are tentative, and act as a forward planning optimization.  

Managing System Self-Awareness. The system discovery server maintains a logical 
map of active computers, with details of current resource capability; updated from 
periodically received RDS data. The SDS interrogates uncommunicative computers 
directly and removes them if they do not respond within a timeout period.  

3.3   Collection of Data 

The attributes of most critical interest to the system discovery server and the resource 
discovery mechanisms used to capture the required data are presented below.  

Static and Dynamic Parameters. There are two general categories of data collected, 
Static and Dynamic. Static parameters are set at boot-up time, and tend not to change: 
(i) Processor: clock speed, number of individual CPU’s present; (ii) System Memory: 
installed capacity, unallocated or free RAM; (iii) Hard disk: gross capacity, free disk 
space, access speed, latency, throughput; and (iv) Installed Software: knowledge of 
specialised software installations. 

Dynamic parameters are not fixed at boot-up time, and tend to fluctuate or change 
as processing and system load changes: (i) Number or process running; (ii) Available 
memory; (iii) Free disk space; and (iv) Inter-process communication pattern and 
volume, especially remote inter-process communication. 

Factors Impacting Data Collection. When collecting the system data, the capture 
must: (i) be conducted in real time, (ii) not adversely affect system performance, (iii) 
not appreciably impact the network during transmittal. 

4   Interaction of Servers 

Systems designers have experimented with reporting individual system resource data 
through the scheduler [Goscinski et al 2002], but at the expense of an overlap of the 
roles of the individual resource discovery servers and the global scheduler. 
Introducing the system discovery server simplifies the role and reduces the workload 
of the global scheduler by removing the overhead of processing the resource-data.  

Message 1 (M1) is the regular collection of performance data by the resource 
discovery servers. M2 shows a dual interaction, where the resource discovery server 
pushes data (including notification of changed workload) to the system discovery 
server periodically and the system discovery server requests performance data updates 
from a resource discovery server on demand. There is also a two way interaction 
between the global scheduler and system discovery server (M3). The system 
discovery server, after synthesizing the system’s state and global topology from data 
provided by the individual computers’ resource discovery servers (Figure 4), then 
provides this knowledge to the global scheduler. The global scheduler uses the 
updated data to schedule the most lightly loaded computer within given PVC.  
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Fig. 4. Server Relationship 

The system discovery server does not take part in load balancing or migration, but 
indirectly influences the cluster operating system’s response to changing workloads 
by dynamically resizing the physical cluster and the private virtual clusters. 

The resource discovery server has the ability to act independently when rapid 
action is required; responding to a user resuming control of their computer or to an 
urgent directive from the system discovery server.  

5   Implementation 

The system discovery server has been successfully implemented and is capable of 
communicating with the newly redeployed resource discovery server and the global 
scheduler. The resource discovery servers gather the static parameters at system start up 
and store them in a special area of RAM. Process loading and communication statistics 
are then collected by the resource discovery server during run time. Some rudimentary 
pre-processing such as calculating summary totals, and arithmetic means is undertaken 
at this stage before the processed data is forwarded on to the system discovery server.  

The system discovery server builds and maintains a map of the complete system 
topology to manage the private virtual cluster membership and storage of static and 
dynamic parameters (section 3.3) within a linked list of data structures.  

The global scheduler uses this same map to make its scheduling and load 
balancing decisions, but solely on the computers within a single private virtual cluster 
at any time, scheduling each private virtual cluster in turn. 

6   Conclusion 

The introduction of the self discovery service effectively addresses the inherent 
problems of existing cluster operating systems, namely their lack of self-regulation, 
their static character and their need for manual management [8]. The self discovery 
service has ensured that through improved self-awareness and more numerous points 
of control, the clusters are able to be much more autonomic and self-configuring. By 
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maintaining a system wide awareness of the state of each member of the cluster, new 
computers can join or others leave as required. The self discovery service also 
provides a private virtual cluster construct, enabling the aggregation of similarly 
configured computers together in dynamic units for ease of management.  

References 

1. Goscinski A & Zhou W, 1999. Client Server Systems. Wiley Encyclopedia of Electrical and 
Electronics Engineering, JG Webster (Ed), John Wiley & Sons, Vol. 3, pp. 431-451. 

2. Goscinski A “Finding Expressing and Managing Parallelism in programs executing on 
clusters of workstations”. Computer Communications 22:998-1016, 1999. 

3. Goscinski A “Towards and operating system managing parallelism of computers on 
clusters. Future Generation Computer Systems 17:293-314, 2000. 

4. Goscinski A., Fikkers P. and Zhou B. “A Global Scheduling Facility for Clusters Executing 
Communication Bound Parallel Applications”. School of Computing and Mathematics. 
Deakin University, 2002. 

5. Geist A, Beguelin A, Dongarra J, Jiang W, Manchek R & Sunderam V, “PVM: A Users' 
Guide and Tutorial for Networked Parallel Computing” MIT Press 1994 

6. Merkey P “Beowulf History” http://www.beowulf.org/beowulf/history.html 2003 
7. Sterling T and Savarese D “A Coming of Age for Beowulf-class Computing”. Center for 

Advanced Computing Research. California Institute of Technology June 1999 
8. Zaki M & Parthasathy S “Customised dynamic load balancing for a network of work 

stations” Technical Report, The University of Rochester. New York 1995 



Mining Traces of Large Scale Systems
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Abstract. Large scale distributed computing infrastructure captures
the use of high number of nodes, poor communication performance and
continously varying resources that are not available at any time. In this
paper, we focus on the different tools available for mining traces of the ac-
tivities of such aforementioned architecture. We propose new techniques
for fast management of a frequent itemset mining parallel algorithm. The
technique allow us to exhibit statistical results about the activity of more
that one hundred PCs connected to the web.

Keywords: Parallel algorithms, global computing platforms, meta-data,
data mining application, high performance and distributed databases,
trace analysis, data management, resource management.

1 Introduction

Frequent itemset mining (FIM) consists in discovering patterns that appear fre-
quently. In this paper the itemsets are informations about the activity (the
CPU/MEMORY loads, the number of IP packets sent or received from/to a
dedicated node, timestamp of the measure. . . ) of a set of PCs in a research
laboratory. The ultimate goal for that application is to extract information to
be pass to a scheduler in order to run jobs with a reasonable knowledge of the
“future state” of the global platform.

FIM algorithms are often used in search for other types of patterns (like se-
quences, rooted trees, boolean formulas, graphs). More than one hundred FIM
algorithms were proposed in the literature, the majority claiming to be the most
efficient. In any case, it is difficult to appreciate the experimental methodology.
For instance it is difficult to have answers to the following questions: what is the
part of the execution done in/out-of-core? What is the execution time for gener-
ating the 1-itemset (it corresponds in general to a full reading of the database)
and the execution time for generating the k > 1 itemsets?

Three algorithms play a central role due to their efficiency and the fact
that many algorithms are modifications or combinations of these basic methods.
These algorithms are APRIORI [1], ECLAT [2] and FP-growth [3].
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In this paper we introduce challenges, opportunities and technical solutions
that we believe to be important for mining the activities of large scale systems.
The discussion is conducted with our parallel algorithm for frequent itemset
generation [4] in mind. Besides the algorithmic and data-structure issues there
is a third factor that quite influences the effectiveness of the different approaches
found in the literature. It is the programming technique.

Thus, the organization of the paper is the following. In Section II, we intro-
duce the challenges and those we are concerned about in the paper. Section III
is about the data structure we use and section IV is about the problem descrip-
tion and the advantage of our approach. Section V concerns the programming
techniques and it shows experimental results. Section VI concludes the paper.

2 Building a FIM Algorithm for Large Scale Systems

Our target architecture is large scale systems. The main properties that we
require for large scale systems are:

– Scalability: the system must scale to 100000 nodes;
– Heterogeneity of nodes across hardware, OS and basic software;
– Availability: the owner of a computing resource must be able to decline a

policy that will limit the contribution of the resource (the resource will be
disconnected in a near future);

– Fault tolerance: the architecture must tolerate frequent faults while main-
taining performance;

– Security: all participating computers should be protected against malicious
or erroneous behaviors;

– Dynamicity: the system must accommodate to varying configuration; an
event may happen at any time;

– Usability: the system should be easy to deploy and to use.

In this paper we discuss only the advantage of our algorithm [4] in terms of
scalability, dynamicity, fault tolerance and performance at the large. We are also
concerning with an implementation.

3 The Data Structure

We estimate that the way we represent data will potentially enforce the efficiency
of mining algorithms. The parallel algorithm of [4] makes elementary operations
on radix-trees data-structures in order to compute the frequent episodes.

Let S be a set of integers written in basis b = 2 for instance (it is convenient to
chose as basis a power of 2). It is well known that the integers may be represented
in a radix tree. A radix tree is a tree which allows to store a set of words over
an alphabet A of same length (here the alphabet is the set of digits 0 . . . b − 1).

Consider the thesaurus of a column in a table. For instance, the lines where a
certain item appears are {1, 3, 4, 7}. A Radix Tree representation of set {1, 3, 4, 7}
is given on the next page.
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Suppose that we have to check if key
5 = 1012 is present in the tree on the right
side. We descend along the tree until we en-
counter the prefix 10 after that, since the
last bit (1) is not present, we conclude that
5 does not belong to the tree. The previ-
ous scheme, explains also how to answer to
a SQL like query with an AND clause, for
instance this one:

SELECT ALL FROM Accident
WHERE

= Accident KindOfCont ’Car’
AND
>= Accident MaxAmount 12,000

GROUP {NULL}

^
/ \

0 / \ 1
/ \
/ \
o o

0 /\ 1 0 /\ 1
/ \ / \
o o o o
\ 1 \1 0/ \ 1
\ \ / \

1 3 4 7

It is just necessary to intersect the Radix Tree for the ’Car’ item with the
Radix Tree for the ’≥ 12000’ item.

4 Problem Description

The problem of association rule discovery can be formalized [5] as follows. Let
I = {i1, · · · , im} be a set of m distinct items. A transaction is any subset of I
and each transaction T in a database D of transactions has a unique identifier.
A transaction is a p-tuple < TID, i1, · · · , ik > and we call i1, · · · , ik an itemset
or a k-itemset.

An itemset is said to have a support of s if s% of the transactions in D contains
the itemset. An association rule is an expression of the form A ⇒ B where
A, B ⊂ I and A

⋂
B = ∅. The confidence of the association rule is simply the

conditional probability that a transaction contains B, knowing that it contains
A. It is computed as support(A

⋂
B)/support(A).

Given m items, there are potentially 2m itemsets whose support is above
a given support. Enumerating all itemsets is thus not realistic. However, for
practical cases, only a small fraction of the whole space of itemsets is above a
given support requiring special attention to reduce memory and I/O overheads.

The “Apriori” sequential algorithm forms the core of many variants of associ-
ation rules discovery algorithms. It uses the fact that a subset of frequent itemset
is also frequent, then only candidates found ”previously” are used to generate
a new candidate set. In [4] we have introduced new techniques for association
rules discovering. We have revisited the Apriori algorithm that serves as the
main conceptual block for such purpose in showing how to store and generate
candidates by the mean of Radix Trees.

From a “large scale point of view”, the main properties of the algorithm on
p processors is:
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– The local database is read once. This step serves in building the 1-itemset,
that is to say the radix-trees coding “where” each item appears. The k > 1
itemsets are generated by intersections, locally on each node. If we assume
that a new itemset can arrive at any-time (a new measure in our application),
we should minimize its insertion time. In our case, the cost of inserting one
item is a constant time, independent of the number of data since it is based
on the tree high which is a constant in our implementation (for instance 40 if
we are working with tables with 240 lines). This property is important in the
case of the aforementioned property of dynamicity of large scale systems.

– When we exchange information about nodes, only the supports (integers)
are exchanged. There is (p − 1)2 messages during this steps and the length
of each message is proportional to the number of frequent itemsets that are
generated (k) multiply by the size of an integer. Thus the volume of in-
formation exchanged in any step of the parallel algorithm is exactly (p −
1)2 × k × sizeof(int). We note that it is independent of n the number of
data in the database. We may assume that in practical cases, this volume
is low. The consequence is that in the case of faults that are remedied by
checkpointing mechanisms, the checkpoint will contain not too much infor-
mation. For instance, if we use MPICH-V (a fault-tolerant MPI available on
http://www.lri.fr/~bouteill/MPICH-V/), the NAS Benchmark BT B on 25
nodes (32MB per process image size) leads to the average time of 68s to per-
form checkpoint with MPICH-V. The average time to recover from failure
with MPICH-CL is 65.8s. The application is much more communication in-
tensive than our frequent itemset algorithm. We are optimist to accomplish
a checkpoint in less than 1s on 25 nodes.

However, the number of generated itemsets varies from one iteration to an-
other one. In the context of heterogeneous computing (the candidate and fre-
quent itemset generations are computed on processors whith different CPU speed
and with different communication bandwidths) it is more difficult to estimate
the time cost of these two steps, hence potential unbalanced work. Techniques to
control the load balancing, such as the technique used in [6] in the case of sorting
and for a one-communication-step algorithm can not apply. Thus, the problem
of controlling load balancing is challenging both in theoretical and programming
terms. It is important to mention it at this time.

5 The Programming Technique Part

Let us now comment our implementation choices in the case of our sequential
prototype for mining frequent episode. Radix Trees can be implemented with
pointers (for the left and right children) when they are loaded into the RAM.
We know that pointers do not preserve spacial locality (the next item to be used
is “closed” in memory to the current item) and it is not also suited for temporal
locality (the current item will be re-used in a near future). To check this fact, we
have implemented tree operations (union, intersect) with the STL C++ library
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and lists and with pointers. We have obtained better experimental results for
pointers than for lists (implemented under the STL C++ framework).

But the time completion for union or intersect operation is not good enough
for large scale computation. For instance, 600 intersection operations on trees
containing 150000 elements each last 58.39 seconds on a Sun bi-opteron v20z
system. These 600 operations involve 90M of items.

We decided to shift to bitset abstract data type in order to implement “the
line where an item occurs” concept. Remind that Radix Trees have been intro-
duced to store sets of integers. With a bitset, we set to 1 the k-th bit if integer
k is a member of the set and we set it to 0 otherwise. The STL C++ library
offers an interface to bitsets but after some tests with the library and under g++
release 3.4.1 we have decided to re-implement it, partially in assembler code.

The motivation is to use MMX, SSE-2 or Altivec technologies for 32 bits
processors. For such technologies, the processor can address 128 bits registers
and we can use them to implement union operation (i.e. ”or” operation on two
bitsets), intersect operation (i.e. ”and” operation on two bitsets. The STL C++
library under g++ does not use such technologies.

We have also introduced (by hand) prefetching memory instructions. Such
optimizations are essential to fully exploit 128 bits registers and to hide memory
latencies.

We obtain a gain of at least 30% for our MMX/SSE or Altivec implementa-
tions against the STL C++ codes. For instance, the cost of 5000 ”and” operations
on two bitsets of size 1048576 bytes (representing two sets of 8388608 elements)
is 7.75 second on a Duron at 1.9Ghz. It is a very good result comparing to our
implementations based on pointers (see above). The effort in coding the new
bitset interface is not too important for a great result. We have to use GCC 4.x
release. One improvement of GCC 4.x is the possibility to produce SSE2 and
Altivec codes in order to use 128 bits registers. Two new compiling options were
introduced: -ftree-vectorize and -ftree-loop-linear.

5.1 Trace Analysis

The trace that we have explored corresponds to a set of 110 stand alone PCs
under Windows in a laboratory of researchers, engineers and administration
people. The trace records 11 events every 15 min during the day and for a
period of 15 days. The trace represents about 50Mb of uncompressed data in
size. The name of the table is BigTable. We estimate that if we sample every
minute, the file size will be about 11Gb for 15 days and we are optimist.

A Frequent Episode sequential algorithm based on [4] and on bitsets has also
been implemented. We have chosen 40 items in the BigTable table of 685673 lines.
Our implementation uses libpcre1 for matching patterns. The PCRE library is
a set of functions that implement regular expression pattern matching using the
same syntax and semantics as Perl 5. PCRE has its own native API, as well as a
set of wrapper functions that correspond to the POSIX regular expression API.

1 http://www.pcre.org/
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Since we have 685673 lines in the flat input table, we have set our bitset size
to 131072 bytes. The total memory size is thus about 40MB, that is to say closed
to the table size (47MB). So our implementation is an in-core one. Under GCC
3.3.4 (pre 3.3.5 20040809) the execution time on a Duron 1.8Mhz for counting
the occurrences of these 40 items and including the setting of bitsets with the
line numbers where they appear is 14.58 seconds.

This means that we need 14.58 seconds for generating 1-itemsets including one
pass over the input file. With a support equals to 68567, which represents 10%
of the number of lines in the input table, we get 13 1-itemsets. The number of 2-
itemsets is 17 (we compute it according to the same support) among potential 78
2-combinations. The number of 3-itemsets is 6 (we compute it according to the
same support) and these is no more frequent itemsets. One of the 3-itemsets cor-
responds to the event ”a CPU load greater than 90% and the number of running
processes is greater than 90 and the available memory is greater than 300MB”.

The total number of elements involved in intersect operations is 89342969.
The execution time from the end of the 1-itemset production to the end of
the program is less than 1 second (0.91s). This time includes the generation of
2-itemset, 3-itemset and 4-itemset. It is a very good result comparing to the
previous incomplete tests based on scripting languages. The number of elements
involved in intersect operations is quite impressive and the experiment confirms
that the data structure choice is a good one.

Under GCC 4.1 and the following option flags -O4 -fomit-frame-pointer

-fprefetch-loop-arrays -ftree-vectorize -msse2 -ftree-loop-linear we got
the same execution time. In fact, this test cannot allow us to distinguish the
performance of the bitset library alone because it uses the same ASM bitset
library.

5.2 Impact of the Statistical Results on Placement

The final aim of the experimental study is to discover trends in the behavior of
PCs connected on a large scale distributed system. The aim is to place tasks.
One of the frequent 3-itemset that we have generated according to our algorithm
is: “CPU load > 90% and Memory Available ‘> 300K and number of processes
> 90”. It shows that a high CPU load is frequent. Recommendation to place
tasks is difficult with this information. We have also another frequent 3-itemset
saying that “CPU load < 10% and Memory Available ‘< 20K and number of
processes < 40”.

It is a little bit surprising and it is due to the choice of the support. More
discriminant method should accompany the frequent episode algorithm. For
instance, in our result we have 5/6 frequent episodes saying that the load is
< 10% and only one frequent episode saying that the load is > 90′. We have
also 4/6 frequent episodes saying that the memory available is between 20 and
40K. The others occurrences of frequent items in the frequent episode is less or
equal to 2.

Moreover, if the application is not a critical one we could spend time on
collecting burst events to examine in deep this phenomenon. In this case, the
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key challenge is to master the disk space to store and/or to factorize massive
information with common properties: if the burst occurs for the CPU usage,
others informations may not vary a lot.

6 Conclusion

In this paper we have presented how we are currently implementing in the “ACI
Masse de donnée Grid Explorer Project” a middleware in charge of controlling
common data structures used in order to store activities of participant PCs in a
large scale system. Different techniques have been explored for mining the trace
of the activity and in order to get performance.

Our Apriori algorithm is based on Radix Tree and/or Bitset data structures.
Such data structures have been proved efficient according to a pointer based im-
plementation but bitsets are more promising. We are currently developing a multi-
threaded version of our bitset library for clusters of SMP. The multithreaded ver-
sion of the intersect operation of twoRadixTrees, for instance, introduces problems
with balancing the work among threads. We are investigating such issues.

Concerning the Apriori algorithm, we will implement an out-of-core version
in order to deal with large tables and before implementing the parallel version
depicted in [4]. Our objective is to capture tables until 240 lines. A compro-
mise between space and efficiency for the Bitset data structures is currently
under concern.

Acknowledgements. We also address a special thank to Oleg Lodygensky from
LAL laboratory in Orsay - France for his tool that inspect and collect traces.
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Abstract. A number of web services are now available and it therefore seems 
natural to reuse existing web services to create composite web services. The 
pivotal problems of web services composition are how to model the input and 
output data dependency of candidate web services and how to satisfy that of a 
service request by composition efficiently. In this paper we present the concept 
of “invocation layer” based on data dependency between web services 
invocation and design the algorithms to get the least invocation layers of 
candidate web services satisfying the given service request.  

1   Introduction 

A web service is a software system designed to support interoperable machine-to-
machine interaction over a network. There might be frequently the case that a web 
service does not provide a requested service on its own, but delegates parts of the 
execution to other web services and receives the results from them to perform the 
whole service. In this case, the involved web services together can be considered as a 
composite web service. 

All-sided development process for composite web services involves solutions to 
several problems, which, generally speaking, are discovery of useful candidate web 
services, calculation of their possible composition, and execution of the new 
generated Web Service. The work presented in this paper is providing concrete 
approaches to the problem of calculation of web services composition.  

We propose the concept of “invocation layer” based on data dependency between 
web services invocation. We design three algorithms to jointly get the least invocation 
layers of candidate web services satisfying the given service request. Firstly, we find 
the relevant web services from the repository. Secondly, we pick out the contributed 
web services based on dataflow optimization. At last, we use a search algorithm based 
on A* procedure to find the best composition setup.  

The remainder of this paper is organized as follows: Section 2 introduces our 
motivation and Section 3 describes our algorithms in details. Section 4 proposes to 
use Bloom Filter to implement the set operations in the algorithms. Finally, 
conclusions and future plans are given in Section 6. 
                                                           
∗ The work reported in this paper has been funded by the National Grand 

Fundamental Research 863 Program of China under Grant No.2003AA001023. 
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2   Motivation 

We represent web services and service request in the standard way [3] as two sets of 
parameters (inputs and outputs). 

Definition 2.1 (Web Service). A web service ws is 2-tuples ws=<wsin,wsout>, where 

wsin= {I1, I2,…, |in|wsI } is the set of input parameter, and wsout=  {O1,O2,…, |out|wsO } is 

the set of output parameters. 

Input and output parameters of web service have the following semantics: In order 
for the service to be invokable, a value must be known for each of the service input 
parameters. Upon successful invocation the service will provide a value for each of 
the output parameters. 

A service request can be represented in a similar manner, but its input and output 
parameter sets have different semantics: The request inputs are the parameters 
available to the composition (e.g., provided by the user). The request outputs are the 
parameters that a successful composition must provide. The solution must be able to 
provide a value for each of the parameters in the problem output. Likewise, we can 
define formally a composition request r as follows. 

Definition 2.2 (Service Request). A service request r is 2-tuples r=<rin,rout>, where 
rin ={A1,A2,…, |in|rA } is the set of available or existing input parameters and rout 

={D1,D2,…, |out|rD } is the set of desired output parameters. 

For manipulating web service or request descriptions we will make use of the 
following helper functions: 

Definition 2.3 (Function in and out). The functions are mapped from a web service 
or service request to its set of input parameters and output parameters respectively. 
That is, in(x)=xin and out(x)=xout where x is a web service or a service request. 

We assume that both service and request descriptions (x) are well formed in that 

they cannot have the same parameter both as input and output: in(x) out(x)= . The 
rationale behind this assumption is that if a description had an overlap between input 
and output parameters this would only lead to two equally undesirable cases: either 
the two parameters would have the same type in which case the output parameter is 
redundant or they would have different types in which case the service description is 
inconsistent. 

If we can discovery a web service ws satisfying a given service request r, then ws 
can be invoked using the existing parameters of r and produce the desired parameters 
of r. We define these conditions as a predication FullySatisfy. 

Definition 2.4 (Predication FullySatisfy). Let WS be the set of all available web 
services which can be found from a local file system, resources referenced by URIs or 
provided by a repository such as UDDI. Let RQ be all service requests. ws∈WS and 
r∈RQ. FullySatisfy is a predicate FullySatisfy: WS×RQ→ Bool  having the following 
definition: FullySatisfy (ws,r) = true iff (in(ws)⊆ in(r))∧ (out(ws)⊇ out(r)) 
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In practice, however, it is often impossible that one web service can fully satisfy 
the given request. Then, one has to combine multiple web services that only partially 
satisfy the request. Given a request r and two web services x and y, for instance, 
suppose one can invoke x using inputs in in(r), but the output of x does not have what 
we look for in out(r). Symmetrically, the output of y generates what we look for in 
out(r), but one cannot invoke y directly since it expects inputs not in in(r). 
Furthermore, using initial inputs of in(r) and the outputs of x, one can invoke y (i.e., 
in(r)∪out(x)⊇in(y)). So the request r can be satisfied by the invocation layers of 
r→{x}→{y}.We define the conditions above as a predication LayeredlySatisfy. 

Definition 2.5 (Predication LayeredlySatisfy). Let r be as definition 2.4. n1 S,,S , 

(n ≥ 1) is a sequence of web services set and Si ⊆ WS 1≤ i≤ n . The predication 

LayeredlySatisfy: BoolRQ(P(WS))Nat →× has the following definition. 

LayeredlySatisfy((S1,S2,…,Sn),r) = true iff the following three conditions hold: 

(a)∀ws∈S1 ( in(ws) ⊆ in(r) ) 

(b) ∀i 1≤ i ≤ n (( in(r)∪ 
1Sws∈ out(ws) ∪…∪ 1−∈Siws out(ws)) ⊇ Siws∈ in(ws)) 

(c) (
1Sws∈ out(ws)∪ …∪ Snws∈ out(ws)) ⊇ out(r) 

Here, S1,S2,…,Sn is called an Invocation Layers Sequence (ILS for short) for r and 
i 1≤ i≤ n is called Invocation Layer Number (ILN for short). Especially, n is called 
the Greatest ILN (GILN for short). According to the definition of predication 
LayeredlySatisfy, we can get out(r) by n layer invocations. Obviously, FullySatisfy is 
special case of LayeredlySatisfy. 

 

Fig. 1. LayeredlySatisfy(({s0},{s2,s3},{s5}),r) stands 

In Fig.1, there are four web services so,s2,s3 and s5 with s0=<{a},{b,c}, s2 = < {b}, 
{d} >, s3=<{b},{e}>,s5=<{d,e,c},{f}> and a service request r with r=<{a},{f}>. 
Obviously, LayeredlySatisfy ,},{s(({s 20 }),r)},{ss 53 stands and the GILN equals 3. 

3   Composition Setup Algorithm 

In this section, we introduce the algorithms to get the least invocation layers of 
candidate web services to satisfy the given service request. Firstly, we find the 
relevant web services from the repository. Secondly, we pick out the contributed web 
services based on dataflow optimization. At last, we use a search algorithm based on 
A* procedure to find the best composition setup. 
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3.1   Relevant Web Services Finding Algorithm 

The first part of our approach is to design an algorithm to find the relevant web services 
satisfying the predication LayeredlySatisfy. The pseudo code of it is shown as follows. 

Algorithm GetILS (Input: web services corpora WS, service request r; Output: 
invocation layers layer) 

1) visitedWs←∅ 
2) gottenPara← in(r) 
3) n← 0 
4) layer[n]←{start} 
5) While ¬(gottenPara⊇ out(r)) do  

5.1) S← {ws  ws∈ WS,ws∉ visitedWs, in(ws)⊆ gottenPara} 
5.2) if S =∅ 

5.2.1) then print “Failure!” and return 
5.3) n←n+1 
5.4) layer[n]←S 
5.5) visitedWs← visitedWs∪ S 
5.6)gottenPara← gottenPara ∪ ( Sws∈ out(ws)) 

6) n←n+1 
7) layer[n]←{end} 

8) return 

Variable visitedWs is a set and used to save the web services that have been visited 
so far, and variable gottenPara is also a set and used to save the parameters that have 
been available or generated so far. Array variable layer is used to save the web 
services of each invocation layer. Constant WS represents a set of all available web 
services which can be found from a local file system, resources referenced by URIs or 
provided by a repository such as UDDI. Variable r denotes a given web services 
composition request. Start and end nodes are virtual services that respectively provide 
require the data from the problem.  

At each iteration, some new web services that can be invoked using gottenPara are 
found. At some point, if gottenPara ⊇ out(r), then it means that using the parameters 
gathered so far, one can get the desired output parameters in out(r), thus finding the 
web services invocation layers with the least GILN satisfying the predication 
LayeredlySatisfy. 

 
Fig. 2. Invocation layers returned by GetInvocationLayer 
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For instance, now there is a request r as r=<{a},{f}> and in set WS, a fragment of 
relevant web services as following: s0=<{a},{b,c}, s1=<{a},{g}>, s2=<{b},{d}>, 
s3=<{b},{e}>, s4=<{g},{h}>, s5=<{d,e,c},{f}>, s6=<{a,h},{k}>. Then the algorithm 
GetILS gets the invocation layers as Fig.2. 

3.1.1   Analyzing Algorithm GetILS 

Theorem 3.1 (Termination). GetILS will terminate at some point. 

Proof. For any given service request r∈RQ: 

1) If r can be satisfied by some composition of several available atomic web 
services. Since there are only finite number of web services, and each of iteration 
of while loop adds only “new” set of web services, the condition of gottenPara 
⊇out(r) must be satisfied at some point. Then the iteration must end, so the 
algorithm will terminate.  

2) If r can not be satisfied by some composition of several available atomic web 
services. From condition b) of Definition2.5 for LayeredlySatisfy, we can find 
that the transition between Layer i-1 and i (Si-1 Si) is a partial order relationship, 
and the greatest lower bound (glb) is in(r) and the least upper bound (lub) is 
in(r)∪out(r). Meanwhile, the transition relationship between invocation layers is 
monotonic, and therefore, as Knaster-Tarski Theorem [5] implies, there always 
exists a fix point, ensuring that after this point, gottenPara will not change. That 
also means that S will not change, then if sentence of Line 5.2) of the algorithm 
will stand, causing the algorithm to return.                                                             

Theorem 3.2 (Least GILN) If the input service request can be satisfied by 
composing existing web services, then GetILS can get the ILS n1 S,,S  satisfying 

),r),...,S,Satisfy((SLayeredlyS n21 and with the least GILN. 

Proof. The former half part of Theorem can be proved by the exit condition of while 
sentence in Line5. Next, we will proof the latter half part of theorem using counter-
evidence. Let ',S',S m1  be another ILS of r. That is to say, LayeredlySatify((S1’, 

S2’,…,Sm’),r) stands and m<n. According to the iteration process of GetILS, it will 
return after the n-th iteration, which is contradicted with the fact that algorithm will 
return at the m-th iteration. So n1 S,,S  is with the least GILN.           

3.2   Further Optimization 

The ILS S1,S2,…,Sn returned by GetILS may include some web services which have 
no contributions to the service request. In order to delete these useless web services, 
we must optimize the ILS further. So, in the second phase of our approach, we 
perform dataflow analysis to remove unnecessary web services from each invocation 
layer. The optimization algorithm begins with set of outputs and finds all the web 
services that generate at least one output in the set of outputs. Next, the inputs to the 
selected web services are added to the set of outputs and the process is repeated till no 
more web services are needed. The web services in the resulting invocation layers are 
the ones contributed to the service request. 
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Fig. 3. Invocation layers after optimization 

Algorithm ILSOptimization ( input: invocation layers generated by GetILS layer; 
output: invocation layers after optimization layer) 

1) outputs←out(r) 
2) for i=n to 1 do  
2.1) for each ws∈layer[i] do  

2.1.1) if out(ws)∩ outputs=∅  
2.1.2)  then layer[i] ←layer[i] /{ws}  

2.2) for each ws∈layer[i] do 
          2.2.1) outputs← outputs ∪ in(ws)  
3) return layer 

After applying algorithm ILSOptimization on variable layer (cf.Fig.2) returned by 
GetILS, we get the invocation layers in Fig3. 

3.3   Optimal Path Search 

We can get an invocation path by selecting the minimal set of web services from each 
invocation layer returned by ILSOptimization. If LayeredlySatisfy ((S1,S2,…,Sn),r), 
and at i-th layer, there are mi  web services that can be invoked. When we consider 
invoke web services in parallel or sequentially, then there are 12 im − search choices 

at this layer, leading to  )12()12( 1 −− nmm  search paths. So, an effective search 

algorithm is mandatory. In this paper, we propose to use A* procedure [6].  
A* procedure is heuristics-based branch-bound search algorithm, with an estimate 

of remaining distance, combined with the dynamic-programming principle. The 
heuristics function of A* algorithm is based on the guesses about distances remaining 
as well as facts about distances already accumulated. It is comprised into two parts as: 
u(total path length) = d(already traveled)+u(distance remaining),where d(already 
traveled) is the known distance already traveled and u(distance remaining) is an 
estimate of the distance remaining. Since the performance of A* algorithm heavily 
depends on the quality of the heuristics function, it is important to use the right 
heuristics to strike a good balance between accuracy and speed. 

Definition 3.1 (Heuristics Function). Given some candidate sets of web services S 
])[( ilayerS ⊆ to visit next at Layer i, we design the heuristics function h as 

h(S)=d(S)+u(S), where d(S) represents the set of available parameters and u(S) 
represents the set of remaining parameters of out(r). Let output(S) = {s | s is output 
parameter generated by the visited web services until S in the current search path}. 
We define d(S) and u(S) as follows: 

d(S) = | in(r) ∪ output (S) | and  u(S) = | out(r)/output (S) | 
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The pseudo code of our search algorithm base on A*search idea is shown as 
follows. G is the adjacency-list representation of the graph generated by algorithm 
GetILS, whose vertices of layer i are the subsets of variable layer[i] except for ∅ and 
edges are from one vertex of layer i to each of the next layer i+1 and the root node of 
G is start. 

Algorithm HeuristicsBasedSearch (Input: service request r, invocation layers layer, 
heuristics functions d and u; Output: the optimal path ) 

1) Initialize OPEN list 
2) Initialize CLOSED list 
3) Add start node to the OPEN list 
4) while the OPEN list is not empty do 
4.1) Get node S off the OPEN list with the lowest h(S) 

4.2) Add S to the CLOSED list 
4.3) if d(S) ⊇ out(r)  
4.3.1) then return the path from the start node to S according to the function π  
4.4) for each S'∈Adj[S] do 

4.4.1) S]'S[ ←π  

4.4.2) d(S’)← d(S) ∪ ( 'Sws∈ out(ws))  

4.4.3) h(S’)← d(S’) +u(S’) 
4.4.4) if S' is on the OPEN list and the existing one is as good or better 

4.4.4.1) then discard S' and continue 
4.4.5) if S' is on the CLOSED list and the existing one is as good or better 

4.4.5.1) then discard S' and continue 
4.4.6) Remove occurrences of S' from OPEN and CLOSED list 
4.4.7) Add S' to the OPEN list 

5) return failure 

4   Implementation Issues 

When implementing the two algorithms above, there are many operations of sets 
occurring frequently, among which are subset judgment, union, intersection and 
difference operation. Their implementation efficiency is vital to that of whole 
algorithm. The key of all these operation is to solve the implementation of 
membership checking. In this paper, we propose to use Bloom Filter to finish the 
membership checking operations. 

A Bloom Filter is a simple space-efficient randomized data structure for 
representing a set in order to support membership queries. The space efficiency is 
achieved at the cost of a small probability of false positives, but often this is a 
convenient trade-off. Therefore, Bloom Filters have received little attention in the 
theoretical community. In contrast, for practical applications the price of a constant 
false positive probability may well be worthwhile to reduce the necessary space. It 
was invented by Burton Bloom in 1970 [4]. Broder in [1] presents a plethora of recent 
uses of Bloom Filters in a variety of network contexts, with the aim of making these 
ideas available to a wider community and the hope of inspiring new applications. 
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A Bloom Filter for representing a set S={x1,x2,…,xn} of n elements is described by 
an array of m bits, initially all set to 0. A Bloom Filter uses k independent hash 
functions h1,…,hk with range. We make the natural assumption that these hash 
functions map each item in {1,…,m} the universe to a random number uniform over 
the range {1,…,m} for mathematical convenience. (In practice, reasonable hash 
functions appear to behave adequately, e.g. [2].) For each element x∈S, the bits hi(x) 
are set to 1 for i (1≤i≤k). A location can be set to 1 multiple times, but only the first 
change has an effect. Fig.4 gives Bloom Filters example with three hash functions. 

To check if an item y is in S, we check whether all hi(y) are set to 1. If not, then 
clearly y is not a member of S. If all hi(y) are set to 1, we assume that y is in S, 
although we are wrong with some probability. Hence a Bloom Filter may yield a false 
positive, where it suggests that an element y is in S even though it is not. For many 
applications, false positives may be acceptable as long as their probability is 
sufficiently small. 

 

Fig. 4. Bloom Filters with three hash functions 

The salient feature of Bloom filters is that the probability of a false positive for an 
element not in the set, or the false positive rate, can be calculated in a straightforward 
fashion, given our assumption that hash functions are perfectly random. After all the 
elements of S are hashed into the Bloom Filter, the probability that a specific bit is 
still 0 is (1-(1/m))kn, hence the probability of a false positive in this situation 
is kmknkkn em )1()))/1(1(1( /−≈−− , the right hand side is minimized for k=ln2×m/n, 

in which case it becomes nmk /)6125.0()2/1( = .In fact, k must be an integer and in 

practice we might chose a value less than optimal to reduce computational overhead. 

5   Related Works 

Service composition is an exciting area which has received a significant amount of 
interest in the last period. Initial approaches to web service composition [7] used a 
simple forward chaining technique which results in the discovery of large numbers of 
services. There is a good body of work which tries to address the service composition 
problem by using planning techniques based either on theorem proving (e.g., Golog 



 Setup Algorithm of Web Service Composition 147 

[9, 10] and SWORD [11]) or on hierarchical task planning (e.g., SHOP-2 [12]). The 
advantage of this kind of approaches is that complex constructs like loops (Golog) or 
processes (SHOP-2) can be handled. All these approaches assume that the relevant 
service descriptions are initially loaded into the reasoning engine and that no 
discovery is performed during composition. 

Recently, Lassila[8] has addressed the problem of interleaving discovery and 
integration in more detail, which is also our goal in this paper, but he has considered 
only simple workflows where services have one input and one output. 

6   Conclusions 

This paper studies how web services are composed to provide more complicated 
services. We propose the algorithms based on the concept of invocation layer to get 
the least invocation layers of candidate web services to satisfy the given service 
request. Thee algorithms have been applied to IntelliFlow system prototype developed 
at CIT to find web services composition setup. 

The idea presented in this paper can be extended in future from different points of 
view. We are interested in solving the problem when specific costs such as time and 
money are important. Weighted graphs might be a good option to address the problem 
for these particular issues. As another extension, empowering the approach to support 
pre-conditions and post-conditions as part of the request is one of our future plans. 
This will help in specifying more accurate queries and providing more accurate 
results. The main idea can also be extended to the composition of general software 
services or even components. If we can somehow extract the required information 
(inputs, outputs, input-output dependencies) for each available component, the same 
approach could be used for other types of software services and components as well. 
This would be considered as another strength of the proposed method. 

One assumption in our paper is that the parameters having same name (properties 
in the case of DAML-S [18] or strings in the case of WSDL [5]) have same types, 
which simplifies our composition setup algorithm. We will consider the type-
compatible web services composition in next research plan. 
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Abstract. The move towards web services in Grid computing requires mecha-
nisms for services to maintain state. This is introduced by the Web Services Re-
source Framework which provides a basis for web services to access stateful re-
sources. While this allows access to stateful resources, the web services 
themselves are not stateful. Currently, Grids require a lot of direct involvement 
of application developers, who are, in general, not computing specialists. The 
principles of autonomic computing introduce characteristics which are aimed at 
automatic improvement of computing systems and can be applied to the Grid. 
This paper addresses the principles of self healing and self configuration in a 
Grid environment and implements a service using the WSRF.NET framework 
to investigate the affect and applicability of the Web Services Resource Frame-
work on these principles and improve the WSRF specification. 

1   Introduction 

The evolution of Grid computing primarily focuses on heterogeneity and interopera-
bility to provide a system which can share resources and services among disparate 
platforms [1]. Since the Grid's inception, the ability to provide heterogeneous, distrib-
uted computing has been a key goal to the acceptance of the Grid. Original implemen-
tations of Grid applications and middleware were developed using languages and 
tools which offered support for multiple architectures, however interoperability was 
not achieved due to the inflexible design of the underlying system. The introduction 
of web services for Grid computing improves interoperability by utilising open stan-
dards for describing, discovering and interacting with services. Web services by na-
ture however do not provide the ability to maintain state and once a client’s request is 
addressed by the web service, all knowledge of this interaction is lost. Therefore 
every interaction with a web service by different clients or multiple interactions by the 
same client have no native means to carry the state of the web service or the state of 
any resources the web service is using across client interactions. Web services are in-
voked by the client, therefore when the client calls a method or function provided by 
the web service, an instance of the web service is created and once the service com-
pletes the client’s request, the instance of the web service is destroyed. 

To offer flexible, interoperable services in a Grid environment, the ability to maintain 
state is desirable, especially for applications in high performance computing, industry 
and business where transaction based systems are required. In systems such as Globus 
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this was offered by the Open Grid Services Infrastructure and with recent developments 
in web services a revision of this infrastructure to include new web service standards has 
resulted in the development of the Web Service Resource Framework (WSRF) [2]. The 
WSRF provides the ability for web services to maintain stateful information by defining 
parts of the web service, such as variables, data structures and classes as stateful re-
sources, which are then stored in stateful storage, for example a database, between inter-
actions with clients. The WSRF model allows web services to access stateful resources; 
however the web services themselves are not stateful [3]. 

The current move toward autonomic principles for computing is being investigated 
for their application within the Grid [4] and are addressed in cluster operating systems 
[5, 6]. The development of the Holos operating system proves that it is possible to 
provide autonomic principles at the operating system level [5, 6]. The aim of this pro-
ject is to investigate the ability to apply autonomic principles to Grid computing 
which is moving towards a service oriented architecture, and more specifically web 
services as the model for applications within the Grid. In particular the principles of 
self healing and self configuration of web services in a Grid environment is being in-
vestigated. By providing the ability for services in a Grid to recover from problems 
and reconfigure itself to avoid such problems allows the system to be a dependable, 
robust and scalable platform which does not require complex maintenance [7]. This 
will also allow the system as a whole to adapt and dynamically change in response to 
events and changes within the system.  

The aim of this paper, however, is to carry out a preliminary study and examination 
of the WSRF specification by creating a web service using an implementation of 
WSRF. Particular attention is paid to the architecture of WSRF, what is provided, the 
ability for WSRF to contribute to the autonomic principles of self healing and self 
configuration, and a possible improvement of the WSRF specification to adhere to 
these principles. The platform used is the WSRF.NET implementation, which is writ-
ten for the Microsoft .Net environment and extends C# and ASP.Net web services to 
incorporate stateful resources [8]. An auction service is constructed using the 
WSRF.NET toolkit which allows a client to bid on an item at auction. The web ser-
vice exploits WSRF by allowing the current bid on the item to reflect a stateful re-
source and maintain state across client bids and is used to highlight the possibility of 
providing self healing and self configuration in a WSRF Grid environment. 

The report is structured as follows. In section 2 we examine stateful resources in 
Grid applications. In section 3 the logical design of the auction service is proposed to 
highlight the need for state in a WSRF environment. Section 4 discusses the imple-
mentation of the auction service using the WSRF.NET platform. Section 5 discusses 
the experiences with using the framework and provides testing of the service. Finally, 
section 6 concludes this study and presents future work. 

2   Stateful and Stateless Resources 

Web services are applications which support standardized, interoperable interaction 
over a network using well defined interfaces and messaging techniques which exploit 
XML [9]. The runtime environment responsible for hosting the web service is the ap-
plication server. The application server is responsible for accepting requests from cli-
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ent applications, invoking the service and if necessary providing a response to the cli-
ent [10]. Web services by nature are stateless services, that is, they do not natively 
provide any mechanisms to maintain the state of the resources they are using, or the 
state of the service itself. The Web Services Resource Framework introduces a stan-
dard which provides the ability for web services to access stateful resources. A state-
ful resource, in terms of the WSRF, is defined as a resource which has a specific set 
of state data, has a well defined lifecycle and is known to and acted upon by a web 
service [10]. A resource can be any system component, such as objects, files, data-
bases even printers or groups of other resources [10].  

The WSRF’s view on stateful resources implies that the web service representing 
the stateful resource to the client is still regarded as a stateless service and merely 
delegates responsibility of managing the stateful resource to another component or 
even the resource itself. By taking the approach where the web service itself remains 
stateless and the resource maintains its state, the location of the stateful resource must 
be provided either explicitly by the client or implicitly by a known location or system 
component known to the web service [10]. The WSRF uses the WS-Addressing stan-
dard for this. 

The WSRF takes advantage of several standards to provide mechanisms for web 
services to access stateful resources. The WS-Addressing standard is used to describe 
a web service in terms of its address, called an End Point Reference (EPR). The WS-
Addressing specification also allows additional properties to be described within its 
XML schema which is utilized by the WSRF which stores information about where 
the stateful resource is located within the XML schema [11]. The client specifies an 
EPR when invoking the web service, allowing the web service to locate the stateful 
resource. This is simply providing the address of a resource to the web service; the 
WSRF provides the web service with an interface to the resource allowing it to access 
and manipulate the resource on behalf of the client’s request [10]. 

Whilst the WSRF introduces a standard method for accessing stateful resources, 
this can be achieved by any web service by using database connectors to access a da-
tabase, store the data in a file or any other stateful storage mechanism. The WSRF ex-
tends the web service model to provide a simple way of accessing the resource while 
hiding the underlying mechanisms required access the resource and presenting simple 
functions to the user. The WSRF also provides a standard for describing the data type 
of the resource or the resource’s interface in the web service’s interface description 
document (WSDL) and providing the address of the resource through an EPR. 

Autonomic principles are focused on providing system wide mechanisms for in-
creasing reliability, scalability and robustness of systems and are seen as the next step 
in the evolution of computing [7]. Systems such as Holos address these principles at 
the operating system level and promote autonomic principles being applied to the sys-
tem as a whole [6]. To provide support for these principles in a Grid environment, the 
system must be viewed as a whole, where individual components interact with each 
other and providing mechanisms such as self healing and self configuration must ap-
ply to all components across the entire system. The WSRF implies that WSRF re-
sources are responsible for managing themselves, therefore providing self healing or 
self configuration properties for these resources is the responsibility of the resource it-
self. In an autonomic Grid environment, the system as a whole should address these 
principles rather than individual components. 
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3   Logical Design of an Auction Service 

To examine the design of the WSRF an auction service was developed to accept bids 
on an item from clients. This service uses the WSRF to maintain the state of the cli-
ent’s bid, allowing multiple clients to bid and outbid each other on items. The auction 
service must be implemented as a web service and will have a single attribute, the bid 
value, which is defined as a WSRF Resource. The service provider is responsible for 
hosting the service, this includes an application server which contains the web service 
and is responsible for its execution and a WSRF Resource. The location of the actual 
WSRF resource does not necessarily have to physically be on the same service pro-
vider as the auction service however is represented as such for simplicity. The interac-
tion between the client, the auction service and the WSRF Resource is shown in  
Figure 1. 

 

Fig. 1. Logical design of a WSRF Service 

The client is able to invoke the auction service’s bid method, which is the only 
publicly accessible method. The web service advertises this method in the WSDL 
document of the web service and provides an End Point Reference (EPR) to specify 
the location of the WSRF Resource it requires. When the client invokes the auction 
service, the auction service connects to the WSRF resource, retrieves the value for the 
current bid by using the EPR, checks the value and either returns false in the case 
where the bid is not a valid bid (i.e. bid <= current bid), or true, in which case the cli-
ent’s bid is accepted and the current bid value is set to the client’s bid and stored back 
as a WSRF Resource.  

Autonomic principles of self healing and self configuration can be applied to the 
WSRF web services model. By doing so and applying these principles system wide, 
reliability of the system is increased. Although the actual WSRF resource used by the 
auction service may be made reliable due to the underlying storage system used to 
store the value of the current bid, for example a cluster of distributed databases, the 
web service itself is still vulnerable to failure. For example, if the client is interacting 
with the auction service and before the auction service is able to save the state of the 
WSRF resource the service provider fails, the client’s bid is unsuccessful. In a busi-
ness environment, this could introduce service reliability issues, or legal problems in-
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volved in bidding systems. Although this is a simple example, and the auction service 
is not used to fully justify the incorporation of autonomic principles for web services, 
more complex services can apply these constructs in more applicable areas, such as 
high performance computing environments, mission critical applications, business or 
industry applications. Web services may perform a large number of operations be-
tween interactions with clients and if a failure occurs during this time, important in-
formation or processing time may be lost. 

 

Fig. 2. Self healing and self configuration in a WSRF environment 

To support self healing and self configuration in a WSRF environment, the auction 
service would have to create saved states of the service as well as the resources it is 
using at specific intervals. Therefore if the service fails it can be resumed from the 
last saved state and all interactions with resources restored. The information saved 
about a service must be stored in persistent storage to ensure the information is not 
susceptible to failure. In terms of providing a facility to support self configuration, 
this save state can be used to move the service from one machine to another within 
the Grid, if for example, the machine is being decommissioned, indefinitely fails, or 
to remove bottlenecks and increase performance of the Grid as a whole. Theoretically 
it would be possible to save an image of the entire service provider, thus preserving 
the web service and all of its interactions with other services and resources, however 
there would be a very large overhead associated with saving, updating and restoring 
an image of an entire service provider at given intervals. It is possible to introduce a 
protocol where the service providers notify a broker of their state. Therefore as the 
state of the web service or the WSRF resource changes, or at specific intervals, the 
service provider can update the state information with the broker. This provides a 
snapshot of the service at a given time and will allow a recreation of the service from 
this information, and only requires saving, updating and restoring a footprint of the 
service, rather than the entire provider. The frequency of taking a snapshot of a ser-
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vice should be configurable as it is a parameter which changes with each service de-
pending on the service’s requirements or quality of service agreements between the 
service and the client. 

As shown in Figure 2, it is possible to reconstruct the state of the auction service 
by using a broker to manage the state of both the service and the resources which the 
service is interacting with. Service providers within the system must periodically pro-
vide the broker with adequate information about each service’s state and interactions 
with other services and resources allowing any of these services to be reconstructed 
from this information. 

Instead of directly accessing the auction service, the client initially submits a re-
quest to the system management broker. The broker then provides the client with the 
address of the auction service. The client can then interact with the auction service di-
rectly, however if the auction service fails and is unreachable, as Service Provider 1 in 
Figure 2, the client then forwards its request to the system management broker. The 
system management broker is then responsible for providing the address of the auc-
tion service. This address may locate a copy of the original auction service which has 
been reconstructed from the saved states of the original auction service, or an address 
which locates the original auction service which has been moved to an alternate 
trusted location due to some reconfiguration of the system. The system management 
broker includes mechanisms to discover services which have failed by polling ser-
vices known to the broker at intervals to determine if they are available and respon-
sive. The broker reconstructs failed services either at the same location as it was pre-
viously executing, or at a different location. Doing so renders the service unreachable 
by clients and therefore the client must make a request to the broker for the service’s 
new location, ensuring that the client will always have the correct and most up to date 
location of the service. 

By providing the ability for services to save their state and not only the state of the 
resources the service is using, reliability is improved. Services are able to provide a 
reliable, robust service to clients in environments where a service’s interaction with 
clients is critical, in the case of the auction service, or where services may require 
large amounts of processing time between interacting with clients and stateful re-
sources. Introducing the principles of self healing and self configuration for Grid en-
vironments is possible and the system management broker provides the ability to offer 
these principles to the Grid as a whole. While the WSRF provides access to stateful 
resources by web services, the systems responsible for providing the resources are 
also responsible for their reliability. The Grid should provide system wide support for 
self healing and self configuration rather than each component in the system. This al-
lows services and resources to be resumed when components within the Grid fail or 
are moved when the system must be reconfigured to adapt to change. By introducing 
a system management broker responsible for self healing and self configuration, this 
is achieved. 

4   Implementation 

The auction service is implemented using the WSRF.NET implementation of the web 
services resource framework. WSRF.NET is developed for the Microsoft Visual  
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Studio .NET environment and uses the IIS application server to execute web services. 
The WSRF.NET extends the web services model offered by the Microsoft .NET lan-
guages by providing classes, methods and attributes for the web service resource 
framework in the .Net environment [8]. The WSRF.NET implementation uses the 
Apache Xindice database server to store data related resources, for example, vari-
ables, structures and classes which are serializable and converted into XML then 
stored in the database.  

To allow WSRF resources to be used in within Microsoft .Net web services, sev-
eral attributes are used to identify resources and methods which will be used to create 
the stateful resources. The auction service is implemented as a web service which ac-
cepts a bid from a client application. The bid is compared with the current highest bid 
(current bid) and if the client’s bid is higher, the current bid is updated to reflect the 
client’s bid and the service returns true, otherwise the service returns false. 

The single resource which is used for the auction service is the current bid variable 
which holds the value for the current highest bid. The current bid variable is attributed 
with the [Resource] attribute to signify that it is a WSRF resource as specified by the 
WSRF.NET developers guide [12]. The auction service implements several methods 
which are required by the language and the WSRF.NET implementation. These meth-
ods form the constructor for the auction service as well as some initialization meth-
ods. The auction service however contains only a single method available through its 
interface to clients: 

public bool bid(int clientBid) 

As previously discussed, the bid method is responsible for returning true or false 
based on the clients bid. Within the bid method however, the auction service must ac-
cess the WSRF resource. This is done by using the get {} and set {} attributes to re-
trieve and store the values of the resource to and from stateful storage. The interaction 
with the underlying database is transparent and handled by the WSRF.NET imple-
mentation. 

To allow the client application to exploit the WSRF.NET auction service, it re-
quires the ability to get resource properties from the auction service, create end point 
references and access the auction service’s bid method via SOAP. The WSRF.NET 
implementation allows the majority of this functionality to remain hidden from the 
developer.  The client application is written in C# and includes the libraries required 
by WSRF.NET. The client application implements a single function, itembid() which 
is responsible for connecting to the web service, placing a bid on behalf of the client 
and printing the result of the bid. The itembid() function simply creates a proxy which 
is responsible for the connection to the auction service, calls the auction service’s bid 
function and prints the result of the bid to the screen. 

5   Testing 

To test the implementation of the auction service and the ability for the WSRF.NET 
implementation to maintain stateful resources, several auctions were set up for client 
bids. The testing environment consisted of two machines, one being the service pro-
vider and the other executing the client applications. The first test involved starting a 
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bid where only a single client invoked the auction service and executed several bid at-
tempts, while the second test involved two client applications accessing the auction 
service in succession. 

 
Test 1 

Client 1: 
 Client bid: 25 
 Bid Successful 
 Current Bid is $25 
 
 Client bid: 75 
 Bid Successful 
 Current Bid is $75 
 
 Client bid: 15 
 Bid Unsuccessful 
 Current Bid is $75 

 

 
Test 2 

Client 1: 
 Client bid: 25 
 Bid Successful 
 Current Bid is $25 
Client 2: 
 Client bid: 10 
 Bid Unsuccessful 
 Current Bid is $25 
 Client bid: 35 
 Bid Successful 
 Current Bid is $35 
Client 1: 
 Client bid: 30 
 Bid Unsuccessful 
 Current Bid is $35 
 Client bid: $40 
 Bid Successful 
 Current Bid is $40 

Fig. 3. Testing of the auction service 

As can be seen in Figure 3, Test 1 shows the single client performing several bids 
and thus invoking the auction service several times. The client invokes the auction 
service with the itembid() method passing values of 25, 75 and 15. Each of these bids 
is an individual invocation of the auction service, showing the ability for the auction 
service to maintain the state of the current bid across interactions with the client. The 
client’s bid is successful the first two times the auction service is invoked , this is due 
to the bid initially beginning at zero when the resource is initiated and as each bid is 
greater than the previous bid, the result is successful. The final bid however invokes 
the auction service with a bid that is less than the current bid and therefore is  
unsuccessful. 

To test the WSRF.NET implementation to retain the state of the current bid re-
source across multiple clients, two clients were used to access the auction service, as 
shown in Test 2. The auction service is reinitialized to contain a current bid of zero. 
This test begins with client 1 initiating a bid which is successful as it is greater than 
zero. Client 2 attempts submit a bid to the auction service with a lower bid than client 
1 has previously bid, as the current bid resource has already been updated to reflect 
the bid of client 1, the bid is unsuccessful. Client 2 then invokes the service with a  
larger bid, this time the bid is successful. Client 1 imitates this behavior by first at-
tempting to invoke a bid of a smaller value than that of client 2, then a second suc-
cessful bid which is greater than the bid of client 1. 
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The tests performed on the auction service show the ability of the WSRF.NET im-
plementation to maintain the state of the current bid resource across client  
interactions. The WSRF.NET implementation transparently retrieves the current bid 
value from a database at each invocation of the service and saves the state of the cur-
rent bid variable to a database at each successful client bid. While this provides the 
ability to use stateful resources, the web services, application servers and service pro-
viders have no means to provide state, or provide any reliability. If the underlying da-
tabase makes no attempt to provide reliability, the system as a whole does not ensure 
the reliability of the WSRF resource. Therefore, without introducing any self healing  
or self configuration mechanisms to support the auction service, reliability cannot be 
guaranteed. 

6   Conclusion and Future Work 

Grid computing is moving towards web services as the architecture for applications 
within the system. By introducing web services, the problem of state is generated and 
to address this WSRF was developed to deal with the access of stateful resources by 
web services. The WSRF however, implies that the responsibility of managing state-
ful resources is that of the resource itself rather than the web service. By taking this 
approach, the WSRF does not provide a system wide approach to addressing reliabil-
ity and application developers must be experts in the field of Grid computing to create 
reliable Grid applications. 

The introduction of autonomic principles for Grid computing has addressed the 
ability for a Grid system to adapt and change as a whole, improving reliability and re-
ducing the complexity of the system. The WSRF does not support the ability to pro-
vide reliability to the system as a whole, therefore the introduction of self healing and 
self configuration must be addressed. The logical design of a self healing and self 
configuration broker for web services in a WSRF Grid environment outlines the abil-
ity to provide reliable web services which are able to be manipulated by the system 
and adapt to change. The system management broker shows that it is possible to ad-
dress the issue of stateless web services while providing reliable access to web ser-
vices and stateful resources. The broker also highlights the ability to improve the cur-
rent WSRF specification. 

The development of an auction service exploiting the WSRF.NET implementation 
of the Web Services Resource Framework highlights the features of the WSRF speci-
fication as well as a need to address the reliability of web services and not simply 
WSRF resources. The introduction of autonomic principles in a WSRF Grid environ-
ment will provide a robust, reliable system which is able to dynamically adapt as the 
system changes. 

Future work on autonomic principles for Grid computing would involve the inves-
tigation of new techniques to provide autonomic principles to web services. There are 
many ways in which self healing and self configuration can be applied holistically to 
web services and resources within the Grid. Additionally, there are other autonomic 
principles which may be investigated for their application in a web service environ-
ment and their affect on Grid computing. 
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Abstract. Modern requirement of dynamic Web Services rely increasingly on 
composing concurrent, distributed, mobile, re-configurable and heterogenous 
services, and substantial progress has already been made towards composed 
Web Services. In this paper, first, we proposed a life cycle of composed Web 
services, then designed a model named Service-Cloud model based on the 
process of forming clouds in nature. Finally, based on Service-Cloud model, we 
design and implement a prototype. 

Keywords: Service management, dynamic Web service composition, life cycle 
model of composed Web services. 

1   Introduction 

The real challenge in Web Services composition lies in how to provide a complete 
solution. This means to develop a tool that supports the entire life cycle of service 
composition, i.e., discovery, consistency checking and composition in terms of reuse 
and extendibility. This paper proposes a whole life cycle of composed Web Services, 
and then provides a Service-Cloud model, which provides a metaphor for composed 
Web Services to provide. Through the Service-Cloud model, we can not only describe 
the picture of composed Web Services better but also give the whole life cycle of 
composed Web Service. 

2   Life Cycle of Composed Web Services 

W3C provided a life cycle of Web Service, but dynamic composed Web Services are 
more complex than use pre-existing Web Services directly, and the courses of 
providing a composed Web Service are also different of providing a pre-existing Web 
Service. So, here based on the life cycle of Web Services in [2]. We present a whole 
life cycle of composed Web Services. 
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States: 

getReq: the provider agent has accepted a request to provide a service. 
doReq: the provider agent does some process to fulfill the requests. 
 done: the provider agent successfully completed the requests and return the 
results to request agent. 
failed: the provider agent encounter some errors and cannot fulfill the request, 
and return errors to request agent. 

getReq doReq

done

failed

{OR} {OR}

 

Fig. 1. State transition diagram of request processing of a composed web service 

Transitions: 

A composed service starts getReq when it accepts a request. 
A composed service starts execution after it received a request. 
A composed service transitions to either done or failed state depending on the 
outcome of the doReq stage.  

A composed service exits doReq from either done or failed state. 

Substrates transition diagram of doReq is given in figure 2. 

{OR}

{OR}

{OR}
doSea doComp doChe doPub

seaFail

compFail

cheFail

pubFail

{OR}{OR}

 

Fig. 2. Substate transition diagram of doReq 

States: 

doSea: the provider agent is doing searching to fulfill the requests. 
doComp: the provider agent is doing composition to fulfill the requests. 
doChe: the provider agent is doing checking to meet the requests. 
doPub: the provider agent is doing publication for reuse. 
seaFail: the provider agent encountered a searching error and didn’t complete 
the requested functions, returning a searching error to the request agent. 
compFail: the provider agent encountered a composing error and didn’t 
complete the composition, returning a composing error to the request agent. 
cheFail: the provider agent encountered a checking error and didn’t complete 
the requested functions, returning a checking error to the request agent. 
pubFail: the provider agent encountered a publishing error and didn’t complete 
the publication, returning a publishing error to the request agent. 
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Transitions: 

A composed service starts execution doSea after it accepts a request. 
A composed service transitions to doComp, compFail, or doSea depending on 
the outcome of the doSea stage. 
A composed service transitions to either doChe or compFail depending on the 
outcome of the doComp stage. 
A composed service transitions to either doPub or cheFail depending on the 
outcome of the doChe stage. 
A composed service exists doReq from doPub, failed, or  doSea state which are 
mutually exclusive. 

3   Metaphorizing Composed Web Services into Clouds  

There are following reasons we metaphorize the Service-Cloud model into clouds in 
nature. In conclusion: the aim of Service-Cloud model is to describe the all phases in 
a composed Web Services life cycle. This model possesses the ability to rapidly and 
autonomously adapt even to change situations that were not envisioned during the 
design time and keeping the running software system constantly available to users, 
and also makes the creation, reusing, and deployment become even simpler. 

Based on the above features of clouds we present a Service-Cloud model. In this 
Service-Cloud model, the way to compose Web Services is similar to the process of 
forming clouds on the following five aspects: 

Pre-existing services in Internet corresponds to water in the earth, 
Discovery the needed services from Internet corresponds to the course of water 
evaporation, 
Web Services in a composed service corresponds to the water drips in  
a cloud, 
Composition logic of composed service corresponds to the course of service 
drips augment, and 
The way of decomposition a Web Service into several element services is 
similar to rains in nature. 

4   The Service-Cloud Model 

4.1   Types of Services  

In our Research, Service-Cloud distinguishes two types of services: service drips and 
service clouds: 

  Service Drip. A service drip is an individual accessible Internet application that 
provides some functions by itself. An example of a service drip might be a Web 
flight-verification interface in a travel-mark information system. The details about 
Service Drip are given in [3,4] in this paper we only give details about Service Cloud. 

 Service Cloud. The concept of service cloud is a solution to the problem of dynamic 
composing a potentially large number of Web Services. At runtime, when a provider 
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agent receives a request for a new Web Service, then it can composing several pre-
existing services to fulfill the requirements. 

4.2   Service Cloud 

In the Service-Cloud model, the composed service is named as a service cloud. The 
service cloud is a service container, and it can provide both a whole application and 
parts of its functions through a standard interface. 

4.2.1   Characters 
Specially, a service cloud also can be looked as a special service drip when it is being 
used. So, a service cloud has all the characters of the service drip, and a Service cloud 
also has the following features besides the characters of a service drip:  

A service cloud can be dynamically composed at run time, 
A service cloud is mainly created for an unanticipated and critical requests,  
A service cloud can be decomposed into several service drips when needed. 

4.2.2   Description 
A reusable service cloud is a container of certain functions and management, and it 
includes three main parts: input functions, output functions, and internal composition 
logic. 

Definition 1.   Let Service Cloud has the form ))(),(),(),(()( iFiSiLiFiC outin= ,  

Where: inF is a set of input functions, which include parameters got from user 

directed, results from other service drips (clouds), or required functions from other 

service drips (clouds), L  is a set of internal composition logic (e.g. state Chart, 
TLA), the logic ensures the composition, S  is the state of this service cloud, and the 
value of S is one of {0,1,2}, where:0:  represents the service is idleness; 1:  represents 
the service is working correct at present,2:  represents the service run into a wrong 
state. This parameter will be changed with the perform instances of included service 

drips, outF   is a set of output functions, which include output to user directed, and 

results to other clouds. 

4.3   Service Cloud Generator  

There two kinds of service cloud generators: Forward Service Cloud Generator and 
Backward Service Cloud Generator. 

Forward service cloud generator (FCG) 
Forward service cloud generator is a black box, which inputs are divided into three 
types: static input parameters, dynamic input parameters, and an composition logic, and 
FCG outputs are only dynamic parameters. As to user, they need not to understand the 
details in the generator, and they care only for the outputs. Noted, the inputs and outputs 
are not only parameter values, but also service drips and service clouds. 



 Study on Life Cycle Model of Dynamic Composed Web Services 163 

Backward service cloud generator (BCG) 
Backward service cloud generator can decompose a complex service into several 
outputs according to decomposition logic, and the BCG is more complex than FCG. 
FCG and BCG can describe the reversible relationship between service cloud and 
service drips. Actually, our researches are emphasis on the designing and 
implementing the FCG at present because the BCG is more complex than the FCG. 

Figure 3 gives the graphical description of the forward and backward cloud generator. 

Forward Cloud
Generator

Composing
Logic

Output(s)

Static Input(s)

Dynamic Input(s)

Backward Cloud
Generator

Decomposing
Logic

Output(s)

Static Input(s)

Dynamic Input(s)
 

Fig. 3. Graphical description of the forward & backward cloud generator 

Definition 2. Let Forward Service Cloud Generator FCG has the form: 
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Where: sinP _ is a set of static inputs, )(_ outdindP is a set of dynamic inputs 

(outputs), linP _ is a set of input logic. 

4.4   Composition Logic 

Composition logic presents how the services functions can be synchronized and 
coordinated combined. Composition logic is beyond the conversation logic (which is 
modeled as a sequence of interactions between two services) and become a sound 
basis for expressing the business logic that underlies business applications.  

Definition 3. The composition depth has direct correlation with the composition 
length of the longest composition route.  

As clouds have high-cloud, mid-cloud, and low-cloud, there are also three kinds of 
composition levels  

High-level composition. There should exist at least one route which 
composition depth is no less than two. 



164 C. Yanping et al. 

Mid-level composition. There should exist at least one route which 
composition depth is no less than one and less than two. 
Low-level composition. Users use the service directly without composition. 
The composition depth is zero. 

5   Prototype Service-Cloud Based on SMN 

In this section, we give a prototype of Service-Cloud based on SMN. This 
implementation has shown that the ideas behind Service-Cloud fit together, are 
consistent with one another, and are realizable using existing technologies. 

The SMN (Service Management Network) is built on the Internet. The aim of SMN 
is to accomplish the following key functions of services: apply, create, run, supervise, 
and edit. SMN is composed of Service Proxies (SPs), Service Controllers (SCs), 
Service Management System (SMS), Service Create Environment (SCE), and 
Database etc. SMN offers five main functions: service logic management, service data 
management, user data management, service performance management and service 
quantity management, in addition, SMN maintenance a central DB. SMS 
communicate with Distributed Service Control Point (DSCP) and proxies, this 
implements the service management. Distributed Service Creation Environment 
(DSCE) permits manager to create a new service according to certain rules, after been 
tested, the new service will be imported into SMS and deployed by DSCP. Our 
fundamental ideas behind the Service-Cloud model are: SMN can realize rapid and 
auto adaptation even to changes that were not envisioned during design time. In SMN, 
the Service Create Environment (SCE) is used to create new services, and SCE based 
on Service-Cloud model prototype architecture is composed of a registry, service 
cloud generators, and service drips pool. 

6   Conclusions 

In this paper, we present a whole life cycle of composed Web services, and based on 
this whole life cycle, we present a Service-Cloud model by metaphorizing discovery, 
compose, publish, and terminate into evaporate, adhere, augment, and rain separately. 
We also give a way to plan dynamic compositions in Service-Cloud model. Finally, a 
prototype based on the concepts of Service-Cloud model is given. 
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Abstract. In this paper, we propose a scalable and fault-tolerant job
scheduling framework for grid computing. The proposed framework
loosely couples a dynamic job scheduling approach with the hybrid repli-
cations approach to schedule jobs efficiently while at the same time pro-
viding fault-tolerance. The novelty of the proposed framework is that
it uses passive replication approach under high system load and active
replication approach under low system loads. The switch between these
two replication methods is also done dynamically and transparently.

1 Introduction

The Grid [5] offers scientists and engineering communities high performance
computational resources in a seamless virtual organization (VO) capable of run-
ning the most demanding scientific and engineering applications required by
researchers and businesses today. However, a number of major technical hurdles
must be overcome before this potential can be realized. One of the main problems
to be addressed is that of efficient Grid jobs scheduling. A critical aspect of any
distributed processing system is the algorithm that maps jobs to resources. Poor
scheduling can leave most of the grid resources sitting idle while one bottleneck
application is performed.

A wide variety of scheduling approaches for grid computing are currently
available. While they all offer capabilities for resource allocation and distribu-
tion, they do not support integrated dynamic scheduling and fault-tolerance pro-
cessing of Grid applications. Also, all these systems use static scheduling policy
whereas we focus here on the dynamic fault-tolerant scheduling approach. With
the momentum gaining for grid computing systems and as grids are increasingly
used for applications requiring high levels of performance and reliability, the
ability to tolerate failures while effectively exploiting the variably sized pools
of grid computing resources in an scalable and transparent manner must be an
integral part of grid computing systems [7],[19], [6], [2], [16].

In this paper, we propose a fault-tolerant dynamic scheduling policy that
loosely couples dynamic job scheduling with job replication scheme such that
jobs are efficiently and reliably executed. The novelty of the proposed algorithm
is that it employs a hierarchical scheduler as well as hybrid replications approach
to schedule jobs efficiently while at the same time providing fault-tolerance to
the grid applications. A hierarchical scheduler is used to match a user’s job
requirements against grid resources at available grid sites, efficiently balancing
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the system load and provide scalability as well as fault-tolerance. The algorithm
uses passive replication approach under high system load and active replication
approach under low system loads. The switch between these two replication
methods is also done dynamically and transparently.

The rest of the paper is organized as follows. In Section 2, a formal definition
of the fault-tolerant scheduling problem is given. This section also establishes the
fact that, to a large extent, the problem considered in this paper has not been
fully addressed in the literature. Section 3 presents the proposed fault-tolerant
scheduling policy. Preliminary performance results of the proposed algorithm is
disucssed in Section 4. Finally, the conclusion and future directions are presented
in Section 5.

2 Problem Statement and Related Work

2.1 Problem Statement

The fault-tolerant scheduling problem (FTSP) addressed in this paper can be
formally stated as shown in Figure 1. Devising a proper schedule to satisfy a set
of constraints is fundamental to effective utilization of grids resources, efficient
resource sharing, and improved user job response time. However, the problem of
scheduling parallel jobs on a set of nodes is NP Complete problem and heuristics
are commonly used to solve it.

Given: A set of n jobs, J={J1, ...,Jn}, where each job, Ji, arrives in a stochastic
manner into a system composed of m independent clusters, S= {C1,...,Cm}.

1. Each job, Ji, can be decomposed into t tasks, T={T1,...,Tt}. Each task Ti executes
sequential code and is fully preemptable.

2. Each site, Sj , is composed of R shareable (i.e., community-based) resources. Each
resource may fail with probability f, 0 ≤ f ≤1, and be repaired independently.

Objective: Our goal is to design an on-line scheduling policy such that:

1. applications are efficiently and reliably executed to their logical termination;
2. mean response time is minimized; and
3. the scheduler has no knowledge of: (1) the service time of the jobs or the tasks;

(2) the job arrival times; (3) how many processors each job needs until the job
actually arrives; (4) and the set of processors available for scheduling the jobs.

Fig. 1. Fault-tolerant grid scheduling problem

Access to remote resources was the main motivation for building Grid com-
puting, and it remains the primary goal today. To this end, a variety of successful
Grid infrastructures that focuses on simplifying access and usage of Grid comput-
ing has been developed over the past few years (e.g., [8]). However, the ability to
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execute applicationswhose computational requirements exceed local resources and
the reduction of job turnaround time through workload balancing across multiple
computing facilities requires efficient Grid job scheduling. Also, as the system in-
creases both in size and complexity, the possibility of a component (e.g., a node,
link, scheduler) failure also increases. Thus, the ability to tolerate failures while
effectively exploiting the Grid computing resources in a scalable and transparent
manner must be an integral part of Grid computing infrastructure. In the following
section, we establish the fact that, to a large extent, the problem considered in this
paper has not been fully addressed in the literature.

2.2 Related Work

Although job scheduling and fault-tolerance are active areas of research in Grid
computing environments, these two areas have largely been and continue to
be developed independent of one another each focusing on a different aspects
of computing. Research in scheduling has focused on efficiency by exploiting as
much parallelism as possible while assuming that the resources are 100% reliable
[1],[12]. Also, existing solutions for grid computing systems, to a large extent, are
based on requiring static and dynamic application and system resource informa-
tion, and performance prediction models. This kind of information is not always
available and is often difficult to obtain. Moreover, most of the conventional
grid-based systems use a static scheduling model (e.g., LSF [20]).

Recently, interest in making Grid computing systems fault tolerant has been
receiving attention [3], [7], [19], [18]. For example, several fault detection service
architecture have been developed for grid computing systems (e.g., [4], [14], [15].
Similarly, checkpoint-recovery [9] and job replication [18] techniques are popular
fault-tolerance approaches on distributed systems. However, as noted in [10],
these fault-tolerant approaches typically ignore the issue of processor allocation.
This can lead to a significant degradation in response time of the applications
[10] and to counter this effect an efficient job scheduling policy is required.

In this paper, we assume that the system components may fail and can
be eventually recovered from failure. Also, we assume that both hardware and
software failures obey the fail-stop [13] failure mode. As in [9], we assume that
faults can occur on-line at any point in time and the total number of faulty
processors in a given site may never exceed a known fraction. We also assume
that node failures are independent from each other [19]. In addition, we assume
that every grid scheduler in the system is reachable from any other grid scheduler
unless there is a failure in the network or the node housing the grid scheduler.
A scheme to deal with node, scheduler and link failures is discussed in [3].

3 Dynamic Fault-Tolerant Scheduling Policies

The proposed scheduling policy is called Dynamic Fault-Tolerant Scheduling
(DFTS) policy. In DFTS, the core system architecture is designed around N-
levels of virtual hierarchy as shown in Figure 2. At the top of the hierarchy, there
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is a grid super scheduler (GSN,1) while at the leaf level there is a local scheduler
(LS) for each site. In between the grid super scheduler and the local schedulers,
there exists a hierarchy of grid schedulers (GSs). The GSs at level 1 are solely
responsible for scheduling jobs whereas the (GSN,1) and the GSs above level 1
are responsible for load balancing.
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Fig. 2. Basic blocks for a Grid scheduling architecture

Each grid scheduler in the hierarchy is uniquely identified as GSi,j where
0 ≤ i ≤ N denotes the level in the hierarchy and j denotes the grid scheduler
id (GID). For example, GS1,1 denotes grid scheduler 1 located at level 1. Each
GSi,j in the hierarchy also controls a set of sites in the system. For example,
sites 1 and 2 in Figure 2 are under the control of GS1,1 scheduler. In this case,
we say that GSi,j is the parent of LS1 and LS2. Similarly, GSN−1,2 is the parent
of GS1,1, GS1,2 and GS1,3. Finally, when jobs directly submitted to GS1,1 are
assigned to sites 1 or site 2 or both, we say that the assignment is a local job
placement.

As shown in Figure 2, the DFTS policy has three main components namely;
Resource Selection and Scheduling Algorithm (RSSA), Replica Management and
Failover (RMF), and Job Replication Algorithm (JRA). These three compo-
nents collectively schedule parallel jobs on the appropriate sites, automatically
replicate jobs and tasks over several sites and processors, keep track of the num-
ber of replicas, instantiate them on-demand and delete the replicas when the
primary copies of the jobs and tasks successfully complete execution. DFTS
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maintains some state information for failure and recovery detections in Ap-
plication Status Table (AST ). Also, a fail-over strategy is used when a link
or a node failure is detected. A detailed discussion of the fail-over strategy is
given in [2], [3]. In the following subsections, we describe these three components
in detail.

3.1 Resource Selection and Scheduling Algorithm

The Resource Selection and Scheduling Algorithm (RSSA) is responsible for
scheduling grid jobs on sites that match the resource request of the jobs. Without
lose of generality, we assume that all incoming jobs are submitted to the GS1,j

grid scheduler (i.e., GSs at level 1) where j denotes GID of the the submitting
node. We assume the existence of Resource Specification Language (RSL) that
provides a common interchange language to describe resources required by the
jobs [8]. The code of the job, which has to be executable in the remote resource
environment as well as other information such as stdin, stdout, and the name
and port used on the remote node, are specified in the job request, written using
the RSL.

When a job arrives at a GS1,j for execution, it can either be scheduled to run
locally or remotely. The decision to run the job locally or send it to a remote
site is made by GS1,j based on the job requirements and the load level of the
local sites. For example, if GS1,1 receives a job for which the required resources
and services is not present within the scope of its control (i.e., site 1 and site
2), it flags the job as possible for remote execution. It then sends a Request for
Execution (RFE) message on behalf of the job to its parent at the next level of
the hierarchy (i.e., GSN−1,2). After sending RFE message to its parent, GS1,1
updates its base load level to ensure that jobs with similar requests will not be
sent to the appropriate site.

When GSN−1,2 receives the REF request, it tries to see if the request can be
satisfied by any of GSN−1,2 children excluding GS1,1. This process is recursively
followed up the hierarchy until a site with the required services or resources
is found or no sites can satisfy the request. If a site that can satisfy the REF
request is found, the candidate site makes arrangement with GS1,1 for the job
to be sent over for execution. Upon receiving the message, GS1,1 will send the
job details to the candidate site.

After dispatching the job request to the candidate site, GS1,1 then informs
the backup GS scheduler about the assignment and then updates the application
status table (AST) to reflect the new assignment.

3.2 Job Replication Algorithm

The replica creation and placement ensures that a job and its constituent task
are stored in a number of locations in the hierarchy. Jobs are replicated over sites
while tasks are replicated over processors. Specifically, When a job with fault-
tolerance requirement arrives into the system, DFTS undertakes the
following steps:
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1. create a replica of the job;
2. keep the replica and send the original job to a child that is alive and reach-

able; and
3. update the application status table (AST ) to reflect where the job replicas

are located. This process recursively follows down the cluster tree until we
reach the lowest level cluster scheduler (LCS) at which point the replica
placement process terminates.

3.3 Replica Management and Failover

The DFTS monitors applications at job-level (between non-leaf nodes and their
parents) and at task-level (between leaf nodes and their parents). A monitoring
message exchanged between a parent and a leaf-level node is called a report while
that between non-leaf nodes is called a summary. A report message contains sta-
tus information of a particular task running on a particular node and sent every
REPORT-INTERVAL time units. In contrast, the summary message contains a
collection of many reports and sent every SUMMARY-INTERVAL time periods
such that REPORT-INTERVAL < SUMMARY-INTERVAL.

When a processor completes execution of a task, the report message contains
a FINISH message. In this case, the receiving scheduler deletes the corresponding
replica and informs the backup scheduler to do the same. When the last replica
of a given job is deleted, the job is declared as successfully completed. In this
case, the cluster scheduler immediately sends a summary message that contains
the COMPLETED message to the parent scheduler, which deletes the copy of
the job and forward the same message to its parent. This process continues
recursively until all replicas of the job are deleted.

After each assignment, the children periodically inform their parents the
health of the computations as discussed above. If the parent does not receive
any such message from a particular child in a given amount of time, then the
parent suspects that the child has failed. In this case, it notes this fact in the
AST and sends a request for report message to the child. If a reply from the
child has not been received within a specific time frame, the child is declared
dead. The replica of a job is then scheduled on a health node.

4 Performance Analysis

We used simulation to study the performance of the proposed fault-tolerant
scheduling policy. We compared the proposed DFTS scheduling policy with
FTSA policy [18] and AHS policy [1].

4.1 Experimental Setup

We used a Grid system composed of eight sites and each site is managed by a
grid scheduler. We then create a 4-level hierarchy with the root as the super
scheduler, four second-level grid schedulers that act as children of the super
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scheduler, and 8 local schedulers at the bottom. The workload used is a synthetic
matrix multiplication application characterized by arrival time, service demand
time in a dedicated environment, maximum parallelism, and size in Kbytes. The
cumulative service demand is generated using hyper-exponential distribution
with mean 14.06 [1] and the maximum parallelism is uniformly distributed over
the range of 1 to 64. The default arrival CV is fixed at 1 and the default service
time CV is fixed at 3.5 as empirical observations at several supercomputer centers
indicated this to be a reasonable value. In all experiments, we configured the
system with two replicas as in [18].

We set processor and link time-to-failure to 0.00321 hours and 0.005 hours,
respectively. The time-to-repair the link is set to 30 seconds while that of the
processors is set to 0.00321 hours. The processor failure and recovery figures
are based on the data collected on the experimental assessment of workstation
failures in [10]. As in [18], [11], [10], we assume that inter-occurrence times of
failures for each processor are independent and identically distributed as expo-
nential random variables with the same failure rate. Also, we assume that the
times to failure of workstations and their repair times are mutually independent
random variables [10]. As in [1],[17], we used a simple model to capture the
communication overhead as follows:

Tcomm = Startup +
Message size
Bandwidth

(1)

In all the experiments discussed here, the communication network latency to be
50μsec with the transfer rate of 100Mbits/sec. These values are typical of modern
light-weight messaging layers running on top of gigabit switched LANs [17].

4.2 Validation

A batch strategy is used to compute confidence intervals (at least 30 batch runs
were used for the results reported in this paper).

4.3 Results and Discussion

Figures 3 shows the mean response time of the jobs for the three scheduling
policies. In the experiments, we assumed that the probability of network failure
is zero and the case in which network failure is an issue will be addressed in
the extended version of the paper. Also, every 3000 seconds, a non-idle node is
randomly selected in each site and made to fail for 6 seconds.

From the data on the graph, we observe that at low system load, FTSA and
DFTS are marginally better than AHS policy. This is because of the fact that
at this load level, there are many idle processors. This means both FTSA and
DFTS can schedule a job on several clusters and at least one of the replicas
could finish without being interrupted by a node failure. However, as the load
increases, performance of FTSA deteriorates in all three environments while
DFTS performs marginally worse (about 4%) than the AHS policy in most
instances. This can be explained by the fact that as load increases the number
of idle processors decreases. As a result, finding n idle clusters for FTSA to
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Fig. 3. Performance of the policies in dedicated heterogeneous environments

schedule jobs becomes harder. In contrast, DFTS uses demand-driven approach
as in AHS and multiple replicas of a job are only scheduled when there are
ample free processors. For the workload type we studied, it seems that the DFTS
approach is better than the active replication approach used in FTSA.

5 Conclusion and Future Directions

In this paper, we presented a scalable framework that loosely couples the dy-
namic job scheduling approach with the hybrid (i.e., passive and active repli-
cations) approach to schedule jobs efficiently while at the same time providing
fault-tolerance. The main advantage of the proposed approach is that fail-soft
behaviour (i.e., graceful degradation) is achieved in a user-transparent manner.
Furthermore, being a dynamic algorithm estimations of execution or communi-
cation times are not required. An important characteristic of our algorithm is
that it makes use of some local knowledge like faulty/intact or busy/idle states
of nodes and about the execution location of jobs.

Acknowledgement. I appreciate the help of Maliha Omar without whom this
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Deakin University.
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Abstract. Random stealing is a well-known dynamic load-balancing al-
gorithm. However, for a large-scale cluster, the simple random stealing
policy is no longer efficient because an idle node must randomly steal
many times to obtain a task from another node. This will not only in-
crease the idle time for all nodes but also produce a heavy network com-
munication overhead. In this paper, we propose a novel dynamic load-
balancing algorithm, Transitive Random Stealing (TRS), which can make
any idle node obtain a task from another node with much fewer steal-
ing times in a large-scale cluster. A probabilistic model is constructed to
analyze the performance of TRS, random stealing and Shis, one of load
balance policies in the EARTH system. Finally, by the random baseline
technique, an experiment designed to compare TRS with Shis and ran-
dom stealing for five different load distributions in the Tsinghua EastSun
cluster convinces us that TRS is a highly efficient dynamic load-balancing
algorithm in a large-scale cluster.

Keywords: Dynamic load balancing, large-scale cluster, transitive ran-
dom stealing, probabilistic model.

1 Introduction

Large-scale clusters are playing an important role in the supercomputing field.
The scale of the clusters is becoming more and more large, which is up to hun-
dreds of or thousands of nodes. In order to achieve scalable performance, it is
important to evenly distribute the workload among the processing nodes. Two
basic approaches [5] to dynamically schedule task loads can be found in current
literature - random stealing and work sharing.

Random Stealing (RS) attempts to steal a task from a randomly selected
node when a node finds its own task queue empty, repeating steal attempts until
it succeeds. Random stealing is provably efficient in terms of time, space, and
communication for the class of fully strict computations [3,11], and the natural
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random stealing algorithm is stable [1]. Communication is only initiated when
nodes are idle. When the system load is high, no communication is needed,
causing the system behave well under high loads.

Previous works [2,7] have shown that simple random stealing policy can bal-
ance load efficiently for a fine-grain multithreaded execution model in a parallel
computer or in a small-scale cluster with high speed networks. Cilk [2] provides
an efficient C-based runtime system for multithreaded parallel programming
with a random stealing scheduler on the Connection Machine CM5 MPP, the
Intel Paragon MPP, the Sun Sparcstation SMP, and the Cilk-NOW network of
workstations. The EARTH runtime system [7] supports several dynamic load
balancer policies, whose goal is to design simple balancers that deliver good load
distribution with minimum overheads for a fine-grain multithreaded execution
model on the high-performance distributed memory machine MANTA [6].

Satin [8,9] presents a system for running divide-and-conquer programs on
wide-area systems with an efficient load balancing algorithm, Cluster-aware Ran-
dom Stealing (CRS). CRS mainly focuses on the performance optimization for
wide-area networks with high latency and low bandwidth, yet simple random
stealing policy is still used in single cluster systems.

In this paper, we focus on the dynamic load balancing policies in a large-scale
cluster. For simple random stealing policy, there exists a problem that an idle node
must randomly steal many times to obtain a task from another node. To solve
this problem, some policies have been developed. Shis, one of load balance poli-
cies based on RS in the EARTH system [4] slightly modifies random stealing by
remembering the originating node (history information) from which a task was
last received, and sending requests directly to that node (the short-cut path). The
authors of the paper [10], present two relatively complicated adaptive location poli-
cies which record more history information for global scheduling algorithms.

Here we propose a dynamic load-balancing algorithm, Transitive Random
Stealing (TRS), which further improves Shis with a transitive policy. With its
transitive policy, TRS can make any idle node obtain a task from another node
with much fewer stealing times in a large-scale cluster, so as to reduce the idle
time for all nodes and the network communication overhead, and to improve the
scalable performance of the system.

In the rest of this paper, we present the transitive random stealing algorithm
in the next section. Section 3 constructs a probabilistic model to analyze the
performance of TRS, Shis and RS. We evaluate the performance of TRS, Shis
and RS by the random baseline technique in the Tsinghua EastSun cluster in
Section 4 . Finally, Section 5 concludes our works.

2 Transitive Random Stealing Algorithm

Our design philosophy for dynamic load balancing algorithms is to reduce the
idle time for all nodes, rather than balancing work loads equally on all nodes. A
node is said to be in the idle state when it has no tasks to execute. Distributing
the workload during application execution is achieved by sending the tokens to
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the schedulers on the other nodes. A token contains all the necessary information
to create a new task. A Task is a piece of code which is to be executed, possibly
in parallel with other tasks. Tokens are stored in the task queue on each node.

Here we present our dynamic load-balancing algorithm, Transitive Random
Stealing (TRS), which not only remembers the originating node (history infor-
mation) from which a task was last received and sends requests directly to that
node (the short-cut path), but also forwards this history information to other
nodes which want to steal a task from it (the transitive policy).

Pseudo code for the algorithm is illustrated in Figure 1. (The transId is a
variable which remembers the history information, the nodeId of another node.
Every node has a local task queue which stores the tokens.)

/* The main-loop function for TRS: */
void transitive random stealing(){
While(NOT exiting){

if(idle of node){
if(local task queue has tokens){

get a token to execute;
}else{

if(transId is blank){
select a node from other nodes uniformly at random,
and request for a token from it;

}else{
request for a token from the node whose nodeId is transId;

}
wait to receive an replying message;
update its transId with the transId in the replying message;
if(the replying message includes a token){
execute the token;

}
}

}else{
wait for some task running over;

}
}

}
/* The function for handling the request: */
Message handle_request(){
if(local task queue has tokens){

return a message with its own nodeId as transId and a token
from its local task queue;

}else{
return a message with its transId and no tokens;

}
}

Fig. 1. Pseudo code of the transitive random stealing algorithm
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In TRS, a simple request-reply-update protocol is implemented between the
thief and the victim. Whenever an idle node has no tokens in its local task
queue, it becomes a thief. The thief selects a victim by its history information or
randomly selects a victim if no history information available (transId is blank),
then it requests for a token from this victim. If the local task queue of the
victim has tokens, the victim replies a message which contains a token from its
local task queue and its own nodeId as transId. Otherwise, the victim replies
a message which only contains its transId (if no history information, a blank
transId is included). When the replying message arrives, the thief updates its
transId with the new one (a blank transId is permitted) in the replying message
and execute the token if a token is included in the replying message.

The transitive policy is simple and TRS can be easily implemented. But with
this simple transitive policy, TRS can make any idle node obtain a task from
another node with fewer stealing times in a large-scale cluster. As a result, this
will greatly reduce the idle time for all nodes and the network communication
overhead, and improve the scalable performance of the system. At the same
time, TRS inherits the advantages of simple random stealing policy: communi-
cation is only initiated when nodes are idle. When the system load is high, no
communication is needed, causing the system behave well under high loads.

As we can see, a few more bytes (transId) is sent in the replying message
for TRS than Shis and RS. But the time and bandwidth of the communication
are very similar for those messages with little different sizes. In a sense, the
key factor which influences the network communication overhead is the times of
sending messages.

Note. In some very special conditions, there may be a loop transition of the
transId. In order to avoid this case, the implementation of the algorithm can
limit the times of transition of the transId. In fact, in the later experiments, we
empirically limit the times of transition of transId by max{[log2n−3], 1}, where
n is the number of the nodes in the cluster.

3 Probabilistic Model for System States

In this section, we construct a probabilistic model for system states to analyze
the performance of TRS, Shis and RS.

The probabilistic model.

1. There are N + 1 nodes which are connected by some network topology and
can exchange messages with each other.

2. Assume that there are m nodes with nodeId 1, 2, . . . , m which are busy and
their task queues have enough tokens. Other nodes with nodeId m + 1, m +
2, . . . , N + 1 are idle and no tokens in their task queues.

3. Assume that all the nodes have no history information in the initial state
and no new tasks are spawned dynamically in the whole process.
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4. Assume that once one node becomes busy, it will not become idle in the
whole process.

5. The evolution of the system can be described by a probabilistic chain X ,
the chain state Xt after step t is a tuple (Xt(1), Xt(2), . . . , Xt(N + 1)) in
which Xt(i) represents the probability that the i’th node is busy after step
t. Initially, only m node is busy and other nodes are idle, so the start state
X0 is (1, . . . , 1︸ ︷︷ ︸

m

0, . . . , 0︸ ︷︷ ︸
N−m+1

).

From the assumption 3 and 4, one idle node only needs to steal one task to
become busy in the whole process. The history information, preserved by Shis
when the node becomes busy, will not be used again, hence Shis is identical to
RS for this probabilistic model.

In the following, we give the transition from the state Xt to the state Xt+1
for TRS and Shis, then compare their performance.

Transition from the state Xt to the state Xt+1 for Shis: Each idle node
chooses a requested destination uniformly at random from other N nodes (From
the assumption above, we know that each idle node has an empty task queue
and no initial history information). Every node that receives a request replies a
message of no tasks except that one of the nodes with nodeId 1, 2, . . . , m replies
a token from its task queue. Every node that receives a token from one of the
nodes with nodeId 1, 2, . . . , m becomes busy.

Formally, since the node with nodeId m+1, m+2, . . . , N +1 is symmetric, all
Xt(i) are equal for m + 1, m + 2, . . . , N + 1. The probability that an idle node can
choose one of the nodes with nodeId 1, 2, . . . , m and becomes busy is m/N , so

Xt+1(i) = Xt(i) + (1 − Xt(i)) · m

N
(1)

for i = m + 1, m + 2, . . . , N + 1.
Transition from the state Xt to the state Xt+1 for TRS: Each idle node

chooses a requested destination uniformly at random from other N nodes (From
the assumption above, each idle node has an empty task queue and no initial
history information). Every node that receives a request replies its transId except
that the nodes with nodeId 1, 2, . . . , m reply a token from its task queue and its
own nodeId as transId. Every node that receives a token from one of the nodes
with nodeId 1, 2, . . . , m becomes busy and records the transId. At the same time,
every node, that receives a message only including a non-blank transId, requests
for a token from the node with nodeId (non-blank transId), then becomes busy
and records the transId (from the assumption above, the non-blank transId must
be one of 1, 2, . . . , m).

Formally, as the same above, since the node with nodeId m+1, m+2, . . . , N+
1 is symmetric, all Xt(i) are equal for m + 1, m + 2, . . . , N + 1. The probability
that an idle node can choose one of the nodes with nodeId 1, 2, . . . , m is m/N ,
the probability that an idle node can obtain a non-blank transId from other
nodes except the nodes with nodeId 1, 2, . . . , m is

N − m

N
· Xt(i).
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Thus

Xt+1(i) = Xt(i) + (1 − Xt(i))
(

m

N
+

N − m

N
· Xt(i)

)
(2)

for i = m + 1, m + 2, . . . , N + 1.
We reform the formulas (1) and (2) to the following form

Xt+1(i) =
(N − m)Xt(i) + m

N
for Shis and RS,

Xt+1(i) =
(2 − Xt(i))(N − m)Xt(i) + m

N
for TRS,

for i = m + 1, m + 2, . . . , N + 1.
Comparing the two recurrence formulas for Xt(i) of Shis and TRS, we easily

find that the probability that an idle node becomes busy increases more rapidly
by ascending step t for TRS than Shis, because there is an extra factor (2−Xt(i))
in the numerator for TRS.

In the following, we compute two examples by the two recurrence formulas
to compare the performance of TRS, Shis and RS.

For N = 128, m = 4, we compute the probability according to the two
recurrence formulas, and have for i = m + 1, m + 2, . . . , N + 1

Step t 1 2 3 4
Shis Xt(i) 0.031 0.062 0.091 0.119
TRS Xt(i) 0.031 0.091 0.199 0.379

Step t 5 6 7 8
Shis Xt(i) 0.147 0.173 0.199 0.224
TRS Xt(i) 0.626 0.865 0.982 0.999

For N = 256, m = 4, we compute the probability according to the two
recurrence relations, and have for i = m + 1, m + 2, . . . , N + 1

Step t 1 2 3 4
Shis Xt(i) 0.016 0.031 0.046 0.061
TRS Xt(i) 0.016 0.046 0.104 0.210

Step t 5 6 7 8
Shis Xt(i) 0.076 0.090 0.104 0.118
TRS Xt(i) 0.386 0.629 0.865 0.982

As we can see, the probabilities that an idle node obtains a task from another
node rapidly increase for TRS by ascending step t. This means that TRS can
make an idle node obtain a task from another node with much fewer stealing
times than Shis and RS. At the same time, comparing the cases between N = 128
and N = 256, it shows that the larger the scale of the cluster is, the more efficient
TRS is than Shis and RS.
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4 Performance Evaluation Based on Random Baseline
Technique

In this section, using the random baseline technique, we experimentally com-
pare TRS with Shis and RS for five different load distributions in the Tsinghua
EastSun cluster which has 32 nodes (4×Xeon III 700s, Fast Ethernet, Redhat
8.1). Here we implement each of the three algorithm in an MPI application in
which a process simulates a node. The processes implement two threads except
the process with rank 0, one thread for dealing the main loop, the other for han-
dling the request. The process with rank 0, by the random baseline technique,
implements a task generator which distributes the same load distributions to the
other processes for the three algorithms respectively.

In order to stress to test the performance of these algorithms on different load
distributions, we make use of the task generator randomly generating five dif-
ferent load distributions instead of scheduling some real parallel programs. The
task generator generates three types of load distributions uniformly distributed
on all nodes, half of all nodes and 1/8 of all nodes, two types of binomial dis-
tributions, Bi(n, 1/3) and Bi(n, 1/8), where n is the number of the nodes. From
the knowledge of Statistics, the binomial distribution Bi(n, p) approaches the
Poisson distribution, when the number n is large and the probability p is small.
All of the five types of load distributions distribute 5n tasks to the nodes of 10
times in the runtime. We assume that every task has the same executing time.

We compare the performance of the three algorithms by counting the total
times of stealing from other nodes for each algorithm (the total times includes the
times of stealing nothing from other nodes). The experiments are implemented
in the Jcluster environment [12], a high performance Java parallel environment
which provides the MPI-like message passing interface. Figure 2,3,4,5,6 illustrate
the results for the five type of load distributions.
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For the task load distribution uniformly distributed on all nodes, the difference
of the performance for the three algorithms is not so distinct in the small-scale clus-
ter. However, along with the increase of the size of the nodes, TRS behaves a good
performance. For the other four task load distributions, several ten thousands of or
several hundred thousands of stealing times are economized for TRS than Shis and
RS in the large-scale clusters. This greatly reduces the idle time for all nodes and
the network communication overhead, so as to improve the scalable performance
of the system. These experimental results convince us that TRS is a highly efficient
dynamic load balancing algorithm in a large-scale cluster.
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5 Conclusions

In this paper, we propose the Transitive Random Stealing algorithm (TRS)
which provides an efficient dynamic load balancing policy, the transitive policy.
With this policy, TRS can make any idle node obtain a task from another node
with much fewer stealing times in a large-scale cluster. Consequently, this will
greatly reduce the idle time for all nodes and the network communication over-
head, so as to improve the scalable performance of the system. Both analytical
and experimental results convince us that TRS is a highly efficient dynamic load
balancing algorithm in a large-scale cluster.
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Job Scheduling Policy for High Throughput
Grid Computing
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Abstract. The growing computational power requirements of grand
challenge applications has promoted the need for merging high through-
put computing and grid computing principles to harness computational
resources distributed across multiple organisations. This paper identifies
the issues in resource management and scheduling in the emerging high
throughput grid computing context. We also survey and study the perfor-
mance of several space-sharing and time-sharing opportunistic scheduling
policies that have been developed for high throughput computing.

Keywords: Grid computing, high throughput computing, resource man-
agement, job scheduling, opportunistic scheduling.

1 Introduction

Grid computing [6] is emerging as a new paradigm for Internet-based parallel and
distributed computing. Until recently, the focus of high throughput computing
(HTC) [11] have been to provide convenient access to a pool of remote machines
within a single administrative domain for execution of batch jobs while fully
preserving the rights of their owners [3].

However, the demand for more computing resources coupled with advances
in Grid middleware technologies have mandated the marriage of HTC and grid
technologies resulting in High Throughput Grid Computing (HTGC). Condor-
G [7] and Nimrod/G [5] are examples of resource management and scheduling
systems built using the Globus toolkit services [10]. The result is very beneficial
for the end user, who is now enabled to utilize large collections of resources that
span across multiple domains as if they all belonged to the personal domain of
the user [12].

The focus of this paper is on the job management and scheduling problem
for high throughput grid computing platforms. The motivation for this work is
that the distributed systems that solve large-scale problems will always involve
aggregating and scheduling many resources. Also, the number of jobs to be exe-
cuted in high throughput grid computing nearly always outnumbers the available
resources [12]. A wide variety of scheduling approaches for grid computing are
currently available [2]. As the main goal of grid scheduling is to find an optimal
or near optimal schedule to allocate jobs to computational resources for execu-
tion to achieve a high performance, they are not suitable for high throughput
platforms, which we are interested in.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 184–192, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Therefore, an effective and efficient resource management and job scheduling
mechanisms that decide how to allocate resources to jobs in a fair manner is
a key requirement for the success of high throughput grid computing. In this
paper, we survey several space-sharing and time-sharing opportunistic schedul-
ing policies that have been developed for high throughput computing. Using
simulation, we study the performance of these policies. Our results demonstrate
that timesharing scheduling policies can be used in an opportunistic setting to
improve both mean job slowdowns and mean response times with little or no
throughput reduction.

The remainder of this paper is organized as follows. In Section 3, we present
the system model used in this paper. The scheduling problem and related works
are discussed in Section 3. A detailed description of five opportunistic schedul-
ing policies are discussed in Section 4. The performance evaluation models are
discussed in detail in Section 5. The simulation results and performance compar-
isons of the five scheduling policies is presented in Section 6. concluding remarks
and future directions are discussed in Sections 7.

2 High Throughput Grid Computing

Figure 1 shows the high throughput grid computing architecture used in this
paper. The core of the system includes a set of independent distributed storage
and computing resources, job and resource management services, a broker, a grid
middleware infrastructure, local resource management and scheduling. These
services collectively allow users to execute large-scale applications over many
resources in the grid.

The system has N independent and autonomously administered sites (i.e,
Site1, Site2,..., SiteN). Each site, Sitei, has one or more clusters. Each cluster is
composed of high performance commodity hardware, software, and networking
designed to provide the most economic computing power for a large number
of users at a single site. Access to the resources is abstracted via a common
interface. Different individuals or organizations own each one of them and they
have their own access policy, cost, and mechanism. An example of common usage
policy states that external jobs are only run in a cluster or workstation when
resources are not in use by the local users [4].

The resource owners manage and control resources using their favorite re-
source management and scheduling system such as PBS [9], Condor [4] and
LSF [13]. These systems are collectively referred to as local resource manage-
ment and scheduling in Figure 1. These software are completely under the control
of the local site administrators. The resources, depending upon a site policy and
capabilities, can be run and configured to operate in a variety of different ways.

The information management service keeps track of resource specific informa-
tion such as machine availability. It also perform resource status detecting and
recruiting. It can also interact with the Grid Information Service (GIS) to receive
resource specific information (such as hardware and software capabilities).
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Fig. 1. High throughput grid computing architecture

The job management service (JMS) provides services such as accepting job
submissions from users, registers them to the job wait queue, forwarding jobs
to resources, monitoring of jobs and prioritizing jobs in queues using a range of
techniques. Users interact with the system via the client components. The user
generates a request and submits it to the job management service, which in turn
invokes the scheduling broker service.

The main task of the broker service is to to find a suitable allocation of resources
to the applications by utilizing information from job parameters, resource status,
file locations, and system state. Once an application schedule has been chosen, the
job scheduling service map it onto the selected resource configuration.

The broker also interacts with grid middleware infrastructures that sit between
the users environment and the actual resources. The purpose of the grid middle-
ware infrastructures is to expand the reach of a user to any sort of batch system
such as Condor [4] and LSF [13]. The aim is to achieve the same objectives as ex-
isting grid computing (e.g., [10]), which is to present users and developers with a
simple, uniform, interface to distributed, heterogeneous computing resources.

3 Scheduling Problem

The scheduling problem can be formulated as follows:
Given: A set J = {j1, j2, ..., jm} of applications in ready queue and a set R =
{r1, r2, ..., rn} of available grid resources.
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Objectives: The goal of the scheduler is to construct a mapping from elements
of J onto elements of R with the goal of optimizing throughput.

The scheduling problem is well known to be intractable and heuristics are
commonly used to find a scheduling algorithm that is guided by an objective
function that it tries to optimize. Regardless, the solution for the scheduling
problem in high throughput grid computing must encompasses the following
phases:

1. Brokering - this enables the selection of appropriate resources to each re-
quests.

2. Selection - as high throughput computing allows each user to submit many
jobs at the same time, the scheduler must ensure that each user receives a
fair allocation of service. Therefore, a good selection algorithm is required
to implement a fair allocation of service among the users.

3. Placement - the placement decision is based upon a policy governing the
usage of the resources. In high throughput computing, the owners of the
resources will rightfully retain ultimate control over their own machines.
In addition, the owners may change scheduling policies according to local
decisions. For this reason, an opportunistic placement of batch jobs on idle
machines for execution is used.

4. Rescheduling - high throughput grid computing resources are shared and
their availability and load varies from time to time. Based on the usage
policy, an executing job can be suspended and must be re-assigned to the
next available resource.

In the rest of thepaper,we focus on the jobplacement componentof the schedul-
ing problem. Although HTC is quite an active area of research and opportunistic
scheduling policies are in common use in real installations, very little work address-
ing opportunistic scheduling of batch jobs exist other than ensuring that eachbatch
user receives a fair allocation of service. Recently, a number of opportunistic batch
job scheduling approaches have beenproposed [8] [3] [1]. The following section gives
details of five opportunistic batch job placement approaches.

4 Opportunistic Job Scheduling Policies

Opportunistic scheduling policies for high thrughput computing can be generally
divded into space-sharing and time-sharing approaches. In time-sharing policies,
processors are temporally shared by jobs. In space-sharing policies, however,
processors are exclusively allocated to a single job until its completion. In this
section, we review some of the existing opportunistic policies.

4.1 Space Sharing Policies

First Come First Served Scheduling Policy. - The FCFS policy is the
most commonly used opportunistic scheduling policy in HTC environments (e.g.,
Condor [4]). In the FCFS scheduling policy, all new jobs are added to the job
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wait queue in the order of their arrival. At scheduling point, a job at the head of
the queue is assigned to the idle processors where it executes until completion
or until it is evicted by the arrival of the workstation owner process. When a job
is evicted from the workstation, it is checkpointed and placed at the head of the
job wait queue where it waits for re-scheduling.

FCFS is very easy to implement and incurs very little scheduling overheads.
Moreover, allocating resource to jobs in the order that the jobs arrive is fair and
predictable, but suffers from severe performance degradation, as large jobs may
block the execution of the small jobs.

Job Rotate Scheduling Policy. - The job rotate (JR) scheduling policy [8] is
essentially the same as as the FCFS policy described above with the exception
that when an executing job is evicted, it is placed at the end of the job wait
queue. The JR algorithm offers low overhead like FCFS and has shown to be
better able to serve short jobs in preference to long jobs regardless of arrival
order [8]. It is also easy to implement given existing opportunistic scheduling
mechanisms. The problem with this policy is that its based on the frequency of
the workstation owner activity. Note that in the absence of eviction, this policy
reduces to the FCFS policy.

Multilevel Opportunistic Feedback Policy. - In the Multilevel Opportunis-
tic Feedback (MQF) [1] policy, jobs that have arrived to the system for execution
are classified into new jobs and evicted jobs where new and evicted mean that
the new job has not received any service since arrival while evicted refers to the
fact that the job has received services already. To represent these two classes of
jobs, MQF keeps two queues one for holding new jobs that has arrived to the
system but not yet scheduled and another queue for holding evicted jobs. We
refer to these queues as New and Evicted respectively.

The New queue entries are sorted in the order of the arrival while entries in the
Evicted queue are sortedbased on the size of the CPUconsumption of the jobs from
the arrival point in descending order. The job at the head of the Eviction queue is
with the smallest CPU consumption while the job at the tail of the queue is with
the largest CPU consumption. Scheduling is done such that the job at the head of
the New queue is always scheduled first and only if the New is empty then the job
at the head of the Evicted queue is assigned to the workstations.

4.2 Time Sharing Policies

Global Round Robin Scheduling Policy. - The Global Round Robin [8]
policy uses a central global batch queue, hence the name global round robin,
where ready batch jobs are held and scheduling is done round robin on this
queue. All new jobs are added to the job wait queue in the order of their arrival.
There is a fixed quantum length per job and at each scheduling point the job at
the head of the global queue is assigned to an idle workstation where it executes
for one-time quanta. When a job completes its quantum of service on a processor,
the job is preempted and placed at the tail of the global queue. Then the job
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at the head of the global queue is scheduled. This process is repeated until all
the jobs in the global queue complete execution. When a job is evicted from the
workstation before completion, it is checkpointed and placed at the tail of the
job wait queue where it waits for re-scheduling.

Proportional Local Round Robin Scheduling Policy. - The Proportional
Local Round Robin policy [3] combines the best features of both JR policy [8]
and the global RR [8] policy while avoiding their shortcomings. Moreover, it can
be used in both dedicated and shared environments, as it is not dependent on
the frequency of the evictions.

The proportional local round robin policy is similar to the global RR [8]
policy in that there is a central queue for holding unscheduled jobs. Also, all
new jobs are added to the job wait queue in the order of their arrival. Similarly,
evicted jobs are added at the tail of the user’s batch queue. However, proportional
local round robin policy differs from global RR [8] policy in that the policy
associates with each processor a local ready queue, a quantum length and a
multiprogramming level (MPL). The MPL parameter controls the number of jobs
that can be actively executing in the workstation at any given time. Moreover,
jobs from the user’s batch queue are assigned to each idle workstation in groups
of equal in number to workstations multiprogramming level.

Each processor applies the RR policy only on the jobs that are in their local
queues and preempted jobs are inserted back in the processor’s local ready queue
and not to the central queue. In addition, we assign variable quantum length to the
jobs in the local ready queue based on the proportion of CPU consumption since
the arrival of the job to the system. The quantum size, , of the job j is computed as
follows:

qj =
Tmax

max(1, T j
usage

× qlocal (1)

where qlocal is the default workstation quantum size, Tmax is the maximum CPU
time used by resident batch job and is the CPU time so far consumed by job j.

Note that whenever the number of jobs in a workstation falls beyond the
multiprogramming level, the workstation can be assigned another job from the
user’s batch queue. This allows overlapping the execution and the communication
processes as such increasing the utilization of the workstation while decreasing
scheduling overheads as opposed to the global RR [8] policy.

5 Performance Analysis

We used a discrete event simulation to evaluate the performance of the five
scheduling policies. We used the same system and workload models as in [8] [3]
which fairly represents the actual activities of the high throughput system. The
workload essentially consists of a mix of small and large jobs while the com-
puting resources consist of a mixture of interactive workstations and clusters
controlled by batch schedulers (i.e., Condor). If a local job arrives while grid
job is executing, the grid job will be preempted and will be moved to another
available resource in the pool.
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We used the mean slowdown time as chief metrics to compare the perfor-
mance of the scheduling policies discussed in this paper. We define the mean
slowdown time as follows:

Slow down =

∑N
j=1 SD(j)

N
(2)

wher SD(j) is the slowdown of job j and defined as the response time of a job j
(i.e., the difference between completion and submission times of the job) divided
by the service demand of job j as follows:

SD(j) =
Tfinish(j) − Tsubmit(j)

Tservice
(3)

where Tfinish(j) completion and submission times of the job, Tsubmit(j) is the
submission time of the job and Tservice is the service demand of job.

In all experiments performed in this paper, a batch strategy is used to com-
pute confidence intervals (at least 31 batches used, each batch contains 3000
jobs). At 90% confidence level, this strategy produced between 4.5% - 10.2%
confidence intervals for the five policies. For the sake of clarity, we have not
included the confidence interval information on the plots. However, wherever
possible, we verified the results in this paper with previously published results.
The next section discusses the results of the simulation.

6 Results and Discussion

In this section, we report the preliminary set of results obtained with the aim
of testing the effectiveness of the proposed scheduling strategy. Due to space
limitations, only a subset of the results is presented.

Figure 2 shows the mean slowdown (vertical axis) as the function of the batch
size (horizontal axis) for the five policies. In the figure, ”CG” refers to FCFS
policy, ”Local” refers to Proportional Local Round Robin Scheduling Policy,
”Global” refers to Global Round Robin Scheduling Policy, ”JR” to the job rotate
policy, and ”MQF” refers to the multilevel feedback policy.

From the data on the graph we observe that as the batch size increases, the
mean slowdown of all the policies also increases. Note that there is no difference
between the two policies with respect to the MRT but the slowdown under the
MOP policy is much better especially as the batch size increases. The poor
performance of the RR policy can be explained by the fact that as the batch
size increases the queue length also increases and hence the wait times for short
jobs is much greater than the other policies.

The result also demonstrates that timesharing scheduling policies can be
used in an opportunistic setting to improve both mean job slowdowns and mean
response times with little or no throughput reduction. Also we observed that
timesharing scheduling policies performs better than the exiting scheduling poli-
cies. Furthermore, this improved slowdown can be achieved without a significant
loss of throughput results in a more interactive nature of the system thus in-
creasing its appeal.
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Fig. 2. An Architecture of the job scheduling policy

7 Conclusion and Future Directions

The purpose of high throughput grid computing is to enable community of users
(e.g., scientific and engineering) to solve large-scale problems on a pool of shared
resources by offering high throughput computational resources [11] in a seamless
virtual organization (VO). However, high throughput grid computing is evolv-
ing and will ultimately require the support of efficient scheduling strategies.
This paper have identified the issues in resource management and scheduling
in the emerging high throughput grid computing context. It also surveyed and
studied the performance of several space-sharing and time-sharing opportunistic
scheduling policies that have been developed for high throughput computing.

Although we have looked at one facet of the scheduling problem of the high
throughput grid computing, solutions that encompasses all four aspects (i.e.,
Brokering, Selection, Placement and Rescheduling) are needed for effectively
utilizing the resources while optimizing throughput. We are currently working
to achieve this goal.
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Abstract. A key issue in obtaining high performance from a parallel program 
represented by a Directed A-cyclic Graph (DAG) is to efficiently mapping it 
into the target system. The problem is generally addressed in terms of task 
scheduling, where the tasks are the schedulable units of a program. The task 
scheduling problems have been shown to be NP-complete in general as well as 
several restricted cases. In order to be of practical use for large applications, 
scheduling algorithms must guarantee high performance by minimizing the 
schedule length and scheduling time. In this paper we propose a new task-
scheduling algorithm namely, High Performance task Scheduling (HPS) 
algorithm for heterogeneous computing system with complexity O (v + e) (p+ 
log v), which provides optimal results for applications represented by DAGs. 
The performance of the algorithm is illustrated by comparing the schedule 
length, speedup, efficiency and the scheduling time with existing algorithms 
reported in this paper. The comparison study based on both randomly generated 
graphs and graphs of some real applications shows that HPS algorithm 
substantially outperforms existing algorithms. 

1   Introduction 

Heterogeneous Computing (HC) system is a suite of distributed processors 
interconnected by high-speed networks, thereby promising high speed processing of 
computationally intensive applications with diverse computing needs. A well-known 
strategy behind efficient execution of a huge application on HC system is to partition it 
into multiple independent tasks and schedule such tasks over a set of available 
processors. A task-partitioning algorithm takes care of efficiently dividing an 
application into tasks of appropriate grain size and an abstract model of such a 
partitioned application can be represented by a Directed A-cyclic Graph (DAG). This 
paper deals with DAG structured parallel applications. Each task of a DAG corresponds 
to a sequence of operations and a directed edge represents the precedence constraints 
between the tasks. Each task can be executed on a processor and the directed edge 
shows transfer of relevant data from one processor to another. Task scheduling can be 
performed at compile-time or at run-time. When the characteristics of an application, 
which includes execution times of tasks on different processors, the data size of the 
communication between tasks, and the task dependencies, are known a priori, it is 
represented with a static model. The objective function of this problem is to map the 
tasks on the processors and order their execution so that task precedence requirements 
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are satisfied and a minimum overall completion time is obtained. The problem of 
scheduling of tasks with required precedence relationship, in the most general case, has 
been proven to be NP-complete [1] [2] and optimal solutions can be found only after an 
exhaustive search. The motivation behind our work is to develop a new task-scheduling 
algorithm to deliver high performance in terms of both performance metrics (schedule 
length ratio, speedup, efficiency) and a cost metric (scheduling time). We have 
improved the work done in [5] [6] and proposed a new task scheduling algorithm. 

The rest of the paper is organized as follows: In the next section, we define the task 
scheduling problems. In Section 3 we present the related works, Section 4 introduces 
HPS algorithm and Section 5 provides performance analysis and discussions. Finally 
Section 6 concludes the paper with some final remarks. 

2   Task Scheduling Problems 

A scheduling system model consists of an application, a target computing system and 
criteria for scheduling. An application program is represented by a Directed Acyclic 
Graph (DAG), G=(V, <, E), where V={vi, i=1…n) is the set of n tasks. < represents a 
partial order on V. For any two tasks vi, vk ∈ V, the existence of the partial order vi < 
vk means that vk cannot be scheduled until task vi has been completed, hence vi is a 
predecessor of vk and vk is a successor of vi. The tasks executions of a given 
application are assumed to be non-preemptive.  E is the set of directed edges. Data is 
a n x n matrix of communication data, where datai,k is the amount of data required to 
be transmitted from task vi to task vk.  In a given task graph, a task without any parent 
is called an entry task and a task without any child is called exit task. Without loss of 
generality, it is assumed that there is one entry task to the DAG and one exit task from 
the DAG. In an actual implementation, we can create a pseudoentry task and 
pseudoexit task with zero computation time and communication time. 

Heterogeneous computing system consists of a set P = {pj : j =0,…, m-1} of m 
independent different types of processors fully interconnected by a high-speed 
arbitrary network. The bandwidth (data transfer rate) of the links between different 
processors in a heterogeneous system may be different depending on the kind of the 
network. The data transfer rate is represented by an m x m matrix, Rm x m. The data 
transfer rate for each link is assumed to be 1.0 and hence communication cost and 
amount of data to be transferred will be the same. W is a n x m computation cost 
matrix in which each wij gives the Estimated Computation Time (ECT) to complete 
task vi on processor pj where 0<=i<n and 1<=j<=m. The ECT value of a task may be 
different on different processor depending on the processors computational capability. 
The communication cost between two processors px and processor py, depends on the 
channel initialization at both sender processor px and receiver processor py in addition 
to the communication time on the channel. This is a dominant factor and can be 
assumed to be independent of the source and destination processors. The channel 
initialization time is assumed to be negligible.  The communication cost of the 
edge(i,k), which is for transferring data from task vi (scheduled on processors px) to 
task vk (scheduled on processor py) is defined by 

 Ci,k = data i,k / R x,y                                                                                            (1) 
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Otherwise, Ci,k = 0 when both the tasks vi and vk  are scheduled on the same 
processor. A task graph with 10 tasks, and its computation cost matrix given in [6] are 
shown in Fig.1 and Table 1. 

 

Fig. 1. Task graph with 10 tasks given in [6] 

Table 1. Computation cost matrix 
given in [6] 

Task P1 P2 P3 

1 14 16 9 
2 13 19 18 
3 11 13 19 
4 13 8 17 
5 12 13 10 
6 13 16 9 
7 7 15 11 
8 5 11 14 
9 18 12 20 
10 21 7 16 

 

Let ST(vi,pj) and EFT(vi,pj)  are the Earliest Start Time and Earliest Finish Time of 
task vi on  pj, respectively. For the entry task ventry, EST(ventry, pj) = 0, and for the other 
tasks in the graph, the EST and EFT values are computed recursively, starting from 
the entry task, as shown in Eq. (2) and (3). In order to compute the EFT of a task vi, 
all immediate predecessor tasks of vi must have been scheduled.  

     EST(vi,pj) = max {avail[j], max (AFT(vt+Ct,i))} , Where v
t  
∈ pred(

 
v

i 
)            (2)                 

     EFT(vi,,pj)=Wij+EST(vi,pj)                                                    (3)   

Where pred(vi) is the set of immediate predecessor tasks of task vi and avail[j] is the 
earliest time at which processor pj is ready for task execution. If vk is the last assigned 
task on processor pj, then avail[j] is the time that processor pj completed the 
execution of the task vk and it is ready to execute another task when we have a non 
insertion-based scheduling policy. The inner max block in the EST equation returns 
the ready time, i.e., the time when all the data needed by vi has arrived at processor pj. 
After a task vt is scheduled on a processor pj, the earliest start time and the earliest 
finish time of vt on processor pj is equal to the actual start time AST(vt) and the actual 
finish time AFT(vt) of task vt, respectively. After all tasks in a graph are scheduled, the 
schedule length (i.e. the overall completion time) will be the actual finish time of the 
exit task vexit. Finally the schedule length is defined as  

     max{ ( )}exitSchedule Length AFT v=                                                      (4)      

The objective function of the task-scheduling problem is to schedule the tasks of an 
application to processors such that its schedule length is minimized. 
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3   Related Works 

Efficient application scheduling is critical for achieving high performance in 
heterogeneous computing system, because of its key importance on performance, the 
scheduling problem has been extensively studied and various heuristics have been 
proposed in the literature [3-12]. These heuristics are classified into a variety of 
schemes such as priority-based [4,5,6], cluster-based [7], guided random search based 
[8] and task duplication based schemes [9,10,11]. 

Priority-based schemes [5,6,7] assume a priority for each task that is utilized to 
assign the tasks to the different processors. Priorities based scheduling algorithms, 
such as Mapping Heuristics (MH) [4], Levelized Min Time (LMT) [5], 
Heterogeneous Earliest Finish Time (HEFT) [6] and Critical-Path-On a Processor 
(CPOP) [6] have been proposed in the literature for heterogeneous systems. The 
complexity of MH, LMT, HEFT, and CPOP algorithms is O (v2 x p), O (v2 x p2), O 
(v2 x p) and O (v2 x p) respectively. HEFT and CPOP algorithms are proved to be 
improvement over MH and LMT algorithms in terms of average Schedule Length 
Ratio (SLR), speedup, and run time. We have chosen the recently proposed 
algorithms [5,6] for improvement. 

4   High Performance Task Scheduling (HPS) Algorithm 

In this section we present the proposed HPS algorithm. The framework of the HPS 
algorithm is shown in Fig. 2. The algorithm consists of three phases, namely, level 
sorting, task prioritization, and processor selection. The detailed explanation of the 
HPS algorithm is given below:  

In the level-sorting phase, the given DAG is traversed in a top-down fashion to sort 
task at each level in order to group the tasks that are independent of each other. As a 
result, tasks in the same level can be executed in parallel. Given a DAG G = (V, E), 
level 0 contains entry tasks. Level i consist of all tasks vk such that, for all edges 
(vj,vk), task vj is in a level less than i and there exists at least one edge(vj,vk) such that vj 
is in level i-1. The last level comprises of some of exit tasks. 

In the task prioritization phase of the algorithm, priority is computed and assigned 
to each task. The attributes used to calculate the priority of a task are Down Link Cost 
(DLC), Up Link Co st (ULC) and Link Cost (LC) of the task. The DLC of a task is the 
maximum communication cost among all the immediate predecessors of the task.  
The DLC for all task at level 0 is 0; for all other tasks at level l, the DLC is computed 
by using Eq. (5) 

DLC(vj)=Max{Ci,j}, where i=1 to x, and ’x’ is the number of immediate parents vj   (5) 

The ULC of a task is the maximum communication cost among all the immediate 
successors of the task. The ULC for exit task is 0; for all other tasks at level l, it is 
computed by using Eq. (6) 

ULC(vj)=Max{Cj,k} where k=1 to x, and ’x’ is the number of immediate child’s vj    (6)                
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       1. Read the DAG, associated attributes values, and the number of processor P; 
2. For each level Li do 
3. Begin 
4.     Initialize the priority queue with entry tasks in level (Li); 
5.     For all tasks vk in the queue do  
6.       Begin 
7.          LC(vk) = max {LC(vj)} + ULC(vk) + DLC(vk),                  
                                   Where vj  pred(v pred(vk); 
8.          Update the tasks in priority queue based on LC; 
9.       End; 
10.     While there are unscheduled tasks in the queue do  
11.       Begin 
12.          Select the highest priority task, vk from the queue for scheduling; 
13.          For each processor pk in the processor set P do  
14.            Begin 
15.                Compute EFT (vk,pk) value using insertion based   
                            Scheduling policy; 
16.                Assign the task vk to the processor pk, which minimizes the EFT; 
17.            End; 
18.       End; 
19.   End 

Fig. 2. HPS Algorithm 

The LC of a task is the sum of DLC, ULC and maximum LC of all its immediate 
predecessor tasks. The LC of a task is calculated by using Eq. (7) 

         

( )

max{ ( )} ( ) ( )( )
( )

j

j jj

ULC v For entry task

LC v ULC v DLC v ForallothertasksLC v i
v pred vi jε

+ +=                    (7)     

Priority is assigned to all task at each level i, based on its LC value. At each level, the 
task with highest LC value receives the highest priority followed by task with next 
highest LC value and so on in the same level. While assigning priority if two tasks are 
having same LC, priority will be given according to the order in queue. For example, 
for the task graph in Fig. 1, the LC value for task 1 is 18 and for task 2, it is {max 
(18)+18+19}=55. For task 8, LC value is {max (55,54,47)+27+11}= 93. Similarly LC 
value is calculated for all the tasks of the graph given in Fig. 1.  

In the processor selection phase, the processor, which gives minimum EFT for a 
task is selected for executing that task. It has an insertion-based policy, which 
considers the possible insertion of a task in an earliest idle time slot between two 
already scheduled tasks on a processor. At each level, the earliest start time and 
earliest finish time of each task on every processor is computed using Eq. (2) and (3). 
Calculation of EST and EFT value for the task graph in Fig. 1 is illustrated below: For 
example, for  the  task  8,  EST (8, P1) = max {39,  max  (46,53,51)} = 53, EFT (8, P1) 
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 = 5+53=58, EST(8, P2) = max{39, max(46, 51, 39)}=51, EFT(8, P2) = 15+51=66,   
EST(8, P3) = max{36, max(36, 53, 36)}=53 and EFT(8, P3) =14+53=67. Similarly 
EST and EFT value for all task of the graph given in Fig. 1 is calculated.  

The tasks are selected for execution based on their priority value. Task with highest 
priority is selected and scheduled on its favorite processor for execution followed by 
the next highest priority task in that level. Similarly all the tasks in all the levels are 
scheduled on to the suitable processors. The processors selected for executing the 
tasks of task graph in Fig. 1 is as follows: For example, task 1 is the entry task; hence 
its data arrival time is 0 and P3 gives the minimum EFT for task 1. Hence processor P3 

is selected for executing task 1.  For task 2, the data arrival time from its predecessor 
(task 1 in P3) is 9 and the EFT of this task on P1, P2 and P3 are 40, 36, and 27. Since P3 
gives minimum EFT for task 2, it is selected for executing task 2. Similarly the 
processor best suited to execute every task in the graph given in Fig. 1 is determined.  
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        (a) CPOP Algorithm               (b) HEFT Algorithm                   (c) HPS Algorithm 

Fig. 3. The schedule length generated by CPOP, HEFT and HPS algorithms 

The time complexity of HPS algorithm is equal to O (v + e) (p + log v) where v is 
the number of tasks, e number of edges and p number of processors. For 
implementation, we used breadth first search for level sorting which takes O (v + e) 
time complexity. A binary heap was used to implement the priority queue, which has 
time complexity of O (log v). Each task in the priority queue is checked with all the p 
processors in order to select a processor that gives the earliest finish time. Hence the 
complexity of the algorithm is O (v + e) (p+log v).  As an illustration, Fig. 3 presents 
the schedules obtained by the CPOP, HEFT and HPS algorithms for the sample DAG 
of Fig. 1. The schedule length, which is equal to 76, is shorter than the schedule 
lengths of the related work; specifically, the schedule lengths of HEFT, CPOP and 
LMT Algorithms are 80, 86, and 91 respectively. 

5   Performance Analyses and Discussion 

In this section, we present the comparative evaluation of proposed HPS algorithm and 
the existing algorithms for heterogeneous systems such as LMT, HEFT and CPOP for 
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DAGs with various characteristics by simulation. For this purpose, we consider two 
sets of graphs as the workload for testing the algorithms: randomly generated task 
graphs and the graphs that represent some of numerical real world problems. 

5.1   Randomly Generated Application Graphs 

A random task graph generator has been developed, which allows the user to generate 
a variety of test DAGs with various characteristics that depends on several input 
parameters and they are number of tasks in the graph (v), out degree ( ), in degree ( ), ), in degree ( ), ), 
shape parameter of a graph ( ) and Communication to Computation Ratio (CCR) and 
Range percentage of computation cost (η). By varying  value we can generate  value we can generate 
different shape of the task graph. The height of the graph is randomly generated from 

a uniform distribution with a mean value equal to /v α  and the width for each 
level is randomly selected from a uniform distribution with mean value equal 

to *v α . A dense graph (shorter graph with high parallelism) and a longer graph 
(low parallelism) can be generated by selecting  >>1.0 and   >>1.0 and   <<1.0 respectively. 
CCR is the ratio of the average communication cost to the average computation cost. 
The computation intensive applications may be modeled by assuming CCR = 0.1, 
whereas data intensive applications may be modeled assuming   CCR = 10.0. Range 
percentage of computation costs on processors, (η). It is basically the heterogeneity 
factor for processors speeds. A high percentage value causes a significant difference 
in a task’s computation cost among the processors and a low percentage indicates that 
the expected execution time of a task is almost equal on any given processor in the 
system. The average computation cost of each task vi in the graph, i.e., Wi, is 
randomly selected from a uniform distribution with range [0 , 2*Wdag], where Wdag 
is the average computation cost of the given graph, which is set randomly in the 
algorithm. Then, the computation cost of each task vi on each processor pj in the 
system is randomly set from the following range: 

       Wi*(1-η/2)<=Wi,j<=Wi*(1+η/2)                                                                      (8) 

 For experiments, we set the following range of values for the parameters. v = 
{30,40,50,60,70,80,90,100},  = {0.5,1.0,2.0},  = {1,2,3,4,5},  = {1,2,3,4,5}, CCR=  = {0.5,1.0,2.0},  = {1,2,3,4,5},  = {1,2,3,4,5}, CCR=  = {1,2,3,4,5},  = {1,2,3,4,5}, CCR=  = {1,2,3,4,5}, CCR= 
{0.1,0.5,1.0,5.0,10.0} and η={0.1,0.5,1.0}. 

5.2   Experimental Results  

The experimental results are organized in two major test suites.  

Test Suite 1: In this test suite, we evaluated the quality of schedules generated by the 
algorithms with respect to the graph characteristics values given in section 5.1. We 
have generated around 620 random task graphs with different characteristics and 
scheduled these graphs on to a HC system consists of 15 processors. The average SLR 
and speedup generated by each of the algorithm are plotted and are shown in Fig. 4a 
and Fig. 4b. Each data point in the reported graph is the average of the data obtained 
in 30 experiments. The average SLR value based ranking (starting with minimum 
ending with maximum) of the algorithms is {HPS, HEFT, CPOP, and LMT} and the 
Speedup value based ranking (starting with maximum and ending with minimum) of 
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the algorithms is {HPS, HEFT, CPOP, and LMT}. The average SLR value of the HPS 
algorithm on all generated graphs is better than the HEFT algorithm by 6 percent, the 
CPOP algorithm by 13 percent and the LMT algorithm by 33 percent.  

The performance of the algorithm is also evaluated with respect to the graph 
structure, by varying the  value from 0.5, 1.0 and 2.0 and it is shown in Fig. 5a. The 
simulation studies confirm that HPS algorithm substantially outperforms reported 
algorithms. Further, we evaluated the efficiency of the algorithms by scheduling task 
graphs consists of fixed numbers of tasks (120) on to HC system consists of varying 
number of processors (4,8,12,16,20). For this experiment, we have used 100 numbers 
of randomly generated task graphs. The results obtained by this experiment are shown 
in Fig.5b. As expected the average SLR is reduced while increasing the number of 
processors and at the same time HPS outperforms LMT, CPOP and HEFT algorithms. 
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Fig. 4. Performance of the algorithms for random generated task graph 
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              (a) Average SLR for varying ( )                  (b) For varying number of processors  

Fig. 5. Performance of the algorithms for shape parameter and varying processors 

Test Suite 2: In this test suite, we are considering application graphs of three real 
world problems such as Gauss Elimination algorithm, Fast Fourier Transformation 
and molecular dynamics code given in [6][12]. For the experiment of Gauss 
elimination applications, heterogeneous computing systems with five processors and 
CCR and ECT value given in section 5.1 are used. Since the structure of the 
application is known, the parameters such as number of tasks, in degree and out 
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degree are not needed. A new parameter matrix size (m) is used in place on number of 
tasks (v). The total number of task in a Gaussian elimination graph is equal to (m2+m-
2)/2. We evaluated the performance of the algorithms at various matrix sizes from 5 
to 15 with an increment of one. The smallest size graph in this experiment has 14 
tasks and the largest one has 119 tasks. The simulation results are given in Fig. 6a and 
Fig. 6b for various matrix sizes shows that HPS outperforms other reported 
algorithms. For FFT related experiment the graph characteristic such as CCR, ECT 
value given in section 5.1 is used. Since the structure of the application is known, 
other parameters such as number of tasks, in degree and out degree are not needed. 
The number of data points in FFT is another parameter in our experiments, which 
varies from 2 to 32 incrementing powers of 2. Fig.7a and Fig.7b presents the average 
SLR values for FFT graphs at various sizes of input points.   
     The combined column shows the percentage of graphs in which the algorithm on 
the left gives a better, equal or worse performance than all other algorithms combined. 
The ranking of the algorithms based on the occurrences of best results is HPS, HEFT, 
CPOP and LMT. 
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Fig. 6. Average SLR and efficiency comparison for Gaussian Elimination Graphs 
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The task graph of the molecular dynamics code given in [6][12] is also part of our 
experiment since it has an irregular task graph. Since the number of task is fixed in 
the application and the structure of the application is known, the graph characteristics 
CCR and ECT values given in section 5.1 are alone used. Fig. 8a and Fig. 8b shows 
the performance of the algorithms (Average SLR and Efficiency) with respect to five 
different CCR values when the number of processor is equal to seven. The simulation 
results shows that HPS algorithm substantially outperforms HEFT, CPOP and LMT 
algorithms.  

With respect to the experiments conducted for the above study, we have counted 
the number of times that each scheduling algorithm in the experiments produced 
better, worse or equal schedule length than every other algorithm. Each cell in Table 2 
indicates the comparison results of the algorithm on the left with the algorithm on  
the top. 

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

0.1 0.5 1.0 0.5 10.0
CCR

A
ve

ra
ge

 S
L

R

HPS

HEFT

CPOP

LMT

0.00

0.20

0.40

0.60

0.80

1.00

2 3 4 5 6 7
Number of Processors

E
ff

ic
ie

nc
y

HPS

HEFT

CPOP

LMT

 
                  (a) Average SLR                                                  (b) Efficiency 

Fig. 8. Average SLR and efficiency comparison for Molecular dynamics code 

Table 2. Pair-Wise Comparison of the Scheduling Algorithms 

Algorithm  HPS HEFT CPOP LMT COMBINED 
HPS Better 

Equal 
Worse 

* 441 
198 
81 

498 
140 
82 

607 
72 
41 

71% 
19% 
10% 

HEFT Better 
Equal 
Worse 

81 
198 
441 

* 556 
38 

126 

657 
27 
36 

61% 
12% 
27% 

CPOP Better 
Equal 
Worse 

82 
140 
498 

126 
38 

556 

* 634 
40 
46 

39% 
10% 
51% 

LMT Better 
Equal 
Worse 

41 
72 

607 

36 
27 

657 

46 
40 

634 
* 

7% 
9% 

84% 

6   Conclusion  

The HPS algorithm proposed here has been proven to be optimal for DAGs by 
reducing the schedule length with low complexity. The performance of this algorithm 
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has been observed experimentally by using large set of randomly generated task 
graphs with various characteristics and application graphs of several real world 
problems such as Gaussian Elimination, Fast Fourier Transformation and Molecular 
dynamics code. The simulation result confirms that HPS algorithm substantially better 
than the existing algorithms such as LMT, CPOP and HEFT in terms of performance 
matrices (average schedule length ratio, speedup, efficiency, frequency of best results) 
and scheduling time. The complexity of HPS algorithm is O (v + e) (p+log v), which 
is less when compared with other scheduling algorithms reported in this paper. We 
have planned to extend this algorithm for arbitrary-connected networks and also for 
the dynamic networks. 
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Abstract. In this paper, we have demonstrated how the existing programming 
environments, tools and middleware could be used for the study of execution 
performance of parallel and sequential applications on a non-dedicated cluster. 
A set of parallel and sequential benchmark applications selected for and used in 
the experiments were characterized, and experiment requirements shown. 

1   Introduction  

Many parallel applications can be executed on very cost-effective parallel computer 
systems, non-dedicated clusters, which are already owned by many universities, and 
business and industry institutions. To do this, they can be used of course as dedicated 
clusters during weekends and at nights. Although individual PCs of such clusters are 
normally used by their owner users to run sequential applications (local jobs), the 
cluster as a whole or its subsets could also be employed by users to run parallel 
applications (cluster jobs) even during working hours. The reason is that PCs in their 
working environments are on average idle for much more than 50% of time [2, 5, 19]. 
Therefore, a cluster has the potential of supporting the concurrent execution of a 
mixture of parallel and sequential applications or a set of parallel applications, which 
could lead to the improvement of the overall execution performance of applications.   

When multiple parallel applications need to share a cluster, both space- and time-
sharing scheduling approaches can be used. Static space-sharing [8, 23] is a simple 
approach that involves finding enough idle computers in a cluster and mapping 
processes of a parallel application onto these computers. Although owner-users would 
be protected from any possible performance loss, utilization of cluster computers is 
usually far from optimal because of fragmentation. For instance, a parallel application 
needs to wait until enough idle computers are available before it can be started; 
otherwise, it has to sacrifice the level of its parallelism. Even worse, a sacrificed 
parallel application cannot utilize the excessive computational power from any 
occupied but lightly loaded computer where a sequential application is running. 

Time-sharing is intrinsically supported in a cluster via local scheduling. In this 
case, the local scheduler is responsible for time sharing of the CPU among all the 
processes which have been allocated to that computer. Processes from a parallel 
application can be placed into some or all of the computers in the cluster depending 
on the required parallelism. However, processes belonging to the same parallel 
application would not be guaranteed to execute at the same time across the computers 
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in the cluster. Previous studies [1, 3, 21, 24] have found that if the parallel application 
is communication intensive, this uncoordinated scheduling of processes would lead to 
a great loss of performance in the cluster since a process stalls when it communicates 
with a non-scheduled process. [21] and [17] have presented the results of co-
scheduling of multiple parallel applications on a cluster using local scheduling but the 
results are quite different. [21] shows that co-scheduling of parallel applications on a 
cluster worsens their execution performance. That result is difficult to assess as the 
experiment is not described and applications used in the experiment are not defined.  

Our research shows that concurrent execution of parallel and sequential 
applications and concurrent execution of multiple parallel applications on a non-
dedicated cluster improves the execution performance of parallel applications, and 
makes the execution performance of sequential applications only slightly worse [22, 
12]. We carried out the study by using the well known and widely used benchmarks: 
NAS Parallel Benchmarks [15] and BYTE’s Unix Sequential Benchmarks [7]. 
However, [22, 12] mainly address execution aspects, experiments carried out, 
experimental results achieved and their interpretation. The execution environment and 
benchmark preparation was only addressed to satisfy the aims of those papers. 
Because these two elements have formed a wide and general platform of benchmark-
based study of high-performance computing on clusters and could be useful to other 
researchers, we decided to describe them in detail.  

The aim of this paper is to show (i) how the existing programming environments, 
tools and middleware could be used for the study of execution performance of parallel 
and sequential applications and multiple parallel applications executing concurrently 
on a non-dedicated cluster; and (ii) the way how the publicly available and frequently 
used benchmarks should and could be adapted to carry out such performance study. 

2   The Performance Study Results Achieved  

The results of executing NAS parallel applications with BYTE-based sequential 
applications of various workloads on a non-dedicated cluster have demonstrated that 
parallel applications benefit from having its processes migrating from heavily loaded 
computers to lightly loaded computers which are executing sequential applications 
[12]. Such a dynamic load-balancing based scheduling of a mixture of parallel and 
sequential applications works particularly well for both the owner-users and the 
cluster-user of a non-dedicated cluster when the workload of the computers generated 
by their corresponding owner-users is low (I/O-Bound sequential workload) and the 
number of such computers is large. By sharing the computers of owner-users, which 
are normally not accessible in a dedicated cluster, parallel applications can gain extra 
processing power to perform `CPU-hungry’ computations. On the other hand, owner-
users of their computers could suffer from a slight degradation of the execution 
performance, which tends to be insignificant when the sequential workload of the 
computers move towards I/O-bound applications and the number of owner-users is 
large in the cluster. Although the relative slowdown generated in each case may be 
noticeable to an owner-user, we think that it would be acceptable to most of the users, 
whose computers are sitting idle for more than 50% of time during working hours.   
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Contrary to the results obtained by other researchers, we have found that even if a 
parallel application is communication intensive, there is no performance loss of the 
parallel application due to uncoordinated communications and synchronizations of 
processes. Our study of the scheduling of a parallel application executing 
concurrently with sequential applications does not confirm the results reported in [3, 
21, 24], which recommend synchronized scheduling of parallel and sequential 
applications. We have demonstrated that there is no need for synchronization and that 
its lack does not decrease the execution performance. Concurrent execution of a 
parallel application and sequential applications on a cluster did not make the 
execution performance of a parallel application worse, especially when a slow but 
commonly found network such as 100 Mbits Ethernet is used. 

We have also demonstrated that co-scheduling of parallel applications on cluster 
does not lead to deterioration of the execution performance as it was shown in [21]. 
Although we cannot fairly judge [21]’s results due to the incomplete experimental 
detail provided, we are strongly convinced that their poor performance on co-
scheduling for multiple parallel applications could be caused by factors such as the 
network type in use as well as the physical memories available in the computers. 

3   The Execution Environment of the Scheduling Study 

In this sections, we describe how to employ a dynamic load balancing system and the 
implementation of MPI [9] to construct a cluster that can support the execution and 
scheduling of a mixture of a parallel application and sequential applications. 

3.1   The OpenMosix Dynamic Load-Balancing System 

Dynamic load balancing is an efficient method of scheduling processes on a cluster as 
it can provide a unified way to utilize both space- and time-sharing for scheduling 
processes of sequential and parallel applications. By taking advantage of a process 
migration facility, allocation of parallel processes to computers of a cluster can be 
changed dynamically according to the actual workload on each of the computers [11]. 

The openMosix system [16] is a Linux kernel extension which can turn a network 
of ordinary computers into an openMosix cluster. It is in fact an open source version 
of Mosix [6] developed by Barak et al. as a part of the Mosix Distributed Operating 
System project. In a nutshell, the openMosix/Mosix technology consists of the PPM 
(Preemptive Process Migration) mechanism and a set of algorithms for adaptive 
resource sharing. The PPM can migrate any process, at any time, to any available 
computer in the cluster based on the information provided by resource sharing 
algorithms or triggered by the users. 

There are two resource sharing algorithms used in openMosix/Mosix: dynamic 
load-balancing and memory ushering. The former can reduce the load difference 
between pairs of computers by migrating processes from a heavily loaded computer to 
a lightly loaded one. The memory ushering algorithm is triggered when a computer 
suffers heavily from paging due to running out of free memory to hold processes. It 
then overrides the dynamic load-balancing algorithm and attempts to migrate a 
process to a computer that has sufficient free memory.  
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3.2   LAM/MPI 

Currently, most existing clusters are managed by centralized operating systems such 
as Unix/Linux and Windows. This implies that executing parallel applications on a 
cluster requires some support from a run-time environment so that the parallel 
applications can utilize distributed computers. One of the most important supports is 
provided by the IPC mechanism that allows processes of a parallel application to 
communicate. LAM/MPI [4] was selected for our project because it could be used 
with the openMosix system without too much difficulty.  

To take advantage of the higher communication speed between processes on the 
same SMP computer, LAM provides three different client-to-client transport layers: 
tcp, usysv and sysv [13]. The tcp transport uses TCP sockets for all interprocess 
communication. The usysv and sysv transports are multi-protocol, i.e., processes 
located on the same node communicate via shared memory and processes on different 
nodes communicate via TCP sockets. When integrating the LAM/MPI into the 
openMosix, care must be taken to select the tcp transport layer in LAM/MPI. If either 
the usysv or sysv transport layer is selected, automatic process migration from 
openMosix would be prevented. We used in our project LAM/MPI-6.5.9 [13] that 
requires a compile-time selection of such a transport layer communication protocol. 

3.3   The Global Scheduling System 

Since the openMosix package exists as a kernel patch of the Linux operating system, 
an openMosix cluster can be constructed by installing a copy of the openMosix-
enabled Linux kernel in each of the computers in the selected cluster. Once an 
openMosix cluster is set up, the executions of computer applications can be started on 
any computer of the cluster and the distribution and balance of workloads will be 
done automatically. The current version of the openMosix-enabled Linux kernel used 
in our project is openMosix-2.4.20 [16]. We have set openMosix to make load 
balancing decisions based only on the workload of each of the computers.   

One way to execute an MPI parallel application on our openMosix cluster is to 
place all the processes of a parallel application on one computer initially and allow 
the openMosix system to migrate processes from that computer to other computers in 
order to balance the workload of the cluster [6]. The actual processor-to-processor 
communication mechanism for the distributed processes is relied on the IPC 
subsystem of openMosix rather than the LAM/MPI daemon1. The drawback of this 
approach of executing parallel applications on our openMosix cluster is in the 
overhead caused by the single MPI daemon in the cluster. Since communications of a 
migrated process to any other processes are handled by its handler (created by 
openMosix) located on the machine where it is started, a single MPI daemon for the 
cluster implies that all handlers are concentrated on one computer, which becomes a 
communication bottleneck of the processes.   

Alternatively, an MPI parallel application can be executed by providing a MPI 
daemon for each of the computers of the cluster. In such a way, processes from an 
MPI application are initially placed to different computers and therefore the handlers 
                                                           
1  The MPI daemons are responsible for process initialization and handling of communications 

among processes of a parallel application. 
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created by openMosix for handling inter-process communications would be spread 
evenly across different computers of the cluster. However, adopting this approach to 
execute MPI applications in our openMosix cluster imposes a restriction that the 
identity of the computers being used must be known prior to the execution. 

In summary, the system exploits two level scheduling. The higher level scheduling, 
which offers global scheduling, exploits load balancing that is provided by the 
openMosix systems. This level only schedules processes of a parallel application 
taking into consideration load of each individual PC of the cluster. The lower level 
scheduling offers local scheduling for processes running on a given PC of the cluster.  

4   The Selection and Preparation of Application Benchmarks 

This section addresses the issues of the selection and the preparation of the 
benchmark applications for our experiments 

4.1   Selection of the Parallel Application 

The behaviour and scheduling requirements led us to the specification of program 
attributes that must be present because they influence the execution performance of a 
parallel application. These attributes form a basis of the selection of benchmarks for 
our experiments. They are as follows. 

• Computation attributes: In general, the problem size of a parallel program is 
directly proportional to its execution time. It can be broadly classified into a 
computation bound program and a communication bound program. 

• Communication attributes: Different parallel programs have different 
communication features. The common communication features in parallel 
programs are communication volume and communication pattern.  

• Memory attributes: The main memory of a program required for its execution 
affects the scheduling behaviour, as it could lead to memory swapping. 

• Topology attributes: The topology in process-to-processor mapping of a parallel 
program defines the size (number of processes) and the structure (the connections 
of processes) of the program.  

Table 1. A classification of the selected parallel applications 

Selection Attributes 
Program 

Computation Comm. Volume Comm. Pattern Topology 

MPI-Povray Comp. Bound Low Point-to-point Any 

PTSP Comm. Bound Medium Point-to-point Any 

EP Comp. Bound Negligible Negligible Any 

LU Comm. Bound Medium Point-to-point Power-of-2 

BT Comm. Bound High Collective Square-of-n 

MG Comm. Bound High Collective Power-of-2 

To evaluate the impact of concurrent execution of parallel and sequential 
applications on their performance, we carried out an analysis of the NAS programs as 
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well as other parallel applications to identify those that posses the attributes addressed 
above. We have found that EP, LU, BT and MG, of the NAS Parallel Benchmarks 
[15], MPI-Porvay [20] and Parallelized TSP [14], and the sequential benchmark: 
BYTE’s Unix Bench [7] can represent real world parallel applications with a broad 
range of program attributes in terms of computation, communication and topology. 
We have carefully confined the problem size of the selected programs such that their 
requirement on main memory during execution would be satisfied and that memory 
swapping would not occur. The features of these programs are summarized (also 
using the results presented in [10, 15, 18] for NPB) in Table 1. 

4.2   Sequential Applications and the Construction of Workload Benchmarks 

To achieve the aim of our research, there was a need to identify and determine the 
influence of sequential applications with different workloads (ranging from CPU-
bound to I/O-bound) executing concurrently with a parallel application on a cluster. 
The sequential applications must meet the following requirements: 

• Controllability: The amount of workload of the sequential application must be 
easily and precisely adjusted. 

• Repeatability: The exactly same amount of workload of the sequential application 
can be repeated for different experiments. 

• Durability: The execution time of the sequential application must be comparable 
(usually fairly long) with the parallel application when they run concurrently. 

Controllability, repeatability and durability can be achieved by using sequential 
benchmarks. Following our study of sequential benchmarks, we have selected the 
BYTE’s Unix Benchmark Suite [7].  

The BYTE’s Unix Benchmark Suite consists of a set of sequential applications, 
which were designed to test the performance of a single-processor computer system in 
the dimensions such as arithmetic operations, memory operations, disk operations, 
system calls as well as system loading. Each application contained in the benchmark 
suite is classified as either I/O-bound or CPU-bound as shown in Table 2. 

Table 2. Classification of the BYTE Unix Benchmark applications 

Category Program  

CPU-bound 
dhry2reg, whetstone-double, pipe, spawn, shell, syscall, arithoh, short, int, long, float, 
double, C, dc, Hanoi 

IO-bound execl, fstime, fsbuffer, fsdisk, context1 

To benchmark a computer system using the BYTE Unix Benchmark, users are 
required to specify a fixed time period for the execution of a sequential application. 
Performance of the computer system is calculated based on the amount of work that 
the sequential application has completed within the declared time period [7]. 
Therefore, an assumption made in each measurement is that the sequential application 
being tested must fully occupy the CPU of a computer. 

Our earlier performance studies with the BYTE suite has shown that the use of a 
fixed time period to measure system performance would produce incorrect results if 
time sharing of a single computer by multiple applications is in place. This occurs 
because running other applications concurrently with a sequential application from 
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the benchmark suite on a computer leads to the reduction of the execution time 
allocated to that sequential application. Therefore, this execution model of the 
benchmark suite did not allow us to carry out our scheduling experiments by mixing 
and running a parallel application and sequential applications from the benchmark 
suite directly on a computer cluster. Consequently, we modified the execution model 
of the benchmark suite to a workload based model, in the sense that each of the 
sequential applications would finish an amount of work in the time period of 
execution of a parallel application. Having the applications from the benchmark suite 
changed into workload based, a set of sequential benchmarks can be constructed by 
choosing different applications from the BYTE suite and packing them together into 
groups according to the particular workloads required.  

The workload composition (WC) is made up of a number of CPU-bound and I/O-
bound applications that can be varied to generate different workloads with varying 
number of CPU-bound and I/O-bound applications, i.e., WC = {Seq1, Seq2,…,Seqn}, 
where Seqi is any sequential application from the BYTE’s Unix Benchmark suite with 
i = 1..n and n is any positive integer. We constructed three sets of sequential 
benchmarks with different workload compositions, SeqIO, SeqIB and SeqCPU. SeqIO, 
SeqIB and SeqCPU represent I/O-bound, In-Between and CPU-bound sequential 
benchmarks with a workload of 20%, 50% and 80% CPU utilization, respectively as 
listed in Table 3. The constructed workloads model demanding users and represent 
heavy utilization of cluster computers. 

Table 3. Workload Compositions 

Workloads Components 
SeqIO fstime, idle-burst, fsbuffer, idle-burst, fsdisk, idle-burst 

SeqIB execl, context1, spawn, fsdisk, whetstone-double, C, fstime, syscall, hanoi, dc 

SeqCPU 
dhry2reg, whetstone-double, pipe, spawn, shell, syscall, arithoh, int, double, C, execl, 
context1, hanoi, short, float 

5   Performance Study of Applications on Our openMosix Cluster 

Our openMosix cluster consists of 16 Pentium II (350MHz) computers, each with 383 
Mbytes of main memory. The computers are connected together by a 100Mbit/s Fast 
Ethernet network. The following subsections address the different issues related to the 
performance study of parallel applications in clusters. 

The Influence of the Dynamic Load-Balancing System. When the openMosix 
dynamic load-balancing system is employed to schedule processes of parallel 
applications, execution overhead induced could primarily come from two sources: 
process migration and load-monitoring of computers. Because the former depends on 
the workload and the number of computers used as well as the actual number of 
migrations performed, it is difficult to be measured. The latter can be measured easily 
at any given cluster. This overhead is the additional time needed to run the openMosix 
software without any process migration occurring and is purely caused by the load-
monitoring unit of the openMosix software. Figure 2 shows the results of two 
executions (with and without openMosix) of the MPI-Povray application on different 
number of computers and the results show that such overhead induced is insignificant. 
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Fig.3. Executions of Parallelized TSP on our 
openMosix Cluster 

The Influence of MPI Daemons. There are two different ways of executing a 
parallel program on our openMosix: one MPI daemon per cluster and one MPI 
daemon per computer. Figure 3 shows the results of the execution of Parallelized TSP 
on different number of computers, with a problem size of 21 cities, in the two 
different ways. It can be observed that the overhead induced in the one daemon per 
cluster system increases as the number of computers increases. 

The Influence of Program Topology. Some parallel programs are topology specific; 
this means that their executions are restricted to some well defined number of 
processors and specific process-to-processor mappings. For the selected NPB 
programs, the MG and LU programs can only be compiled for running with a power-
of-2 number of processes, the BT program for running with a square number of 
processes, and EP for running with any number of processes [15]. 
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For this reason, we have performed an experiment by compiling the EP, LU, BT 
and MG programs for running with 16 processes and let each of the programs run on 
a power-of-2 number of processors. The result as shown in Figure 4 has confirmed the 
topology specific nature of the programs as their speedups are proportional to a 
power-of-2 of number of computers used. We could not satisfy fully the topology 
requirement for the BT program. However, we assumed that the loss of performance 
for executing BT with a slightly different process-to-processor mapping (in the cases 
of 2 and 8 computers used) will not distort too much the experiment outcomes. 

6   Summary and Conclusions 

In this paper, we have presented how to construct an applications execution and 
scheduling environment for clusters by integrating existing parallel programming 
environments, tools and middleware. A prototype of such execution and scheduling 
environment was built: the openMosix cluster. It consists of a network of computers 
running the Linux operating system. MPI was used to support communication of 
processes of parallel applications and the openMosix load balancing system was used 
to schedule processes of sequential and parallel applications across computers in the 
cluster based on the actual workload in each of the computers. This system has been 
demonstrated to be flexible, low-cost and well suited for the performance study of 
benchmarks’ scheduling on clusters. . 

We have demonstrated that the way the publicly available and frequently used 
programming benchmarks (both sequential and parallel) could be adapted to carry out 
such study. For parallel applications, we have identified, selected and characterized 
the following programs: MPI-Povray, Parallelized TSP and the NAS programs. For 
sequential applications, we have identified and selected the BYTE’s Unix Benchmark 
Suite, from which constructed a set of workload-benchmarks. These workload 
benchmarks can represent sequential applications of various workloads ranging from 
IO-bounded to CPU-bounded. We have also presented the influence of a dynamic 
load-balancing system, the number of MPI daemons used as well as the topology of 
parallel programs on the execution performance of parallel applications.  
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Abstract. In this paper, we evaluate message-passing applications in Grid envi-
ronments using domain decomposition technique. We compare two domain de-
composition strategies: a balanced and unbalanced one. The balanced strategy is 
commonly strategy used in homogenous computing environment. This strategy 
presents some problems related with the larger communication latency in Grid 
environments. We propose an unbalanced domain decomposition strategy in 
order to overlap communication latency with useful computation. This idea 
consists in assigning less workload to processors responsible for sending up-
dates outside the host. We compare the results obtained with the classical bal-
anced strategy. We show that the unbalanced distribution pattern improves the 
execution times of domain decomposition applications in Grid environments. 
We considered two kinds of meshes, which define the most typical cases. We 
show that the expected execution time can be reduced up to 53%.  We also ana-
lyze the influence of the communication patterns on execution times using the 
Dimemas simulator. 

1   Introduction 

Domain decomposition is used for efficient parallel execution of mesh-based applica-
tions. These applications use techniques such as finite element and finite difference, 
which are widely used in many disciplines such as engineering, structural mechanics 
and fluid dynamics. Mesh-based applications use a meshing procedure for discretizing 
the problem domain. Implementing a mesh-based application on a Grid environment 
involves partitioning the mesh into sub-domains that are assigned to individual proc-
essors in the Grid environment. In order to obtain optimal performance a desirable 
partitioning method should take into consideration several features: traffic in the net-
work, latency and bandwidth between processors inside the host, latency and band-
width between hosts, etc. 

We consider distributed applications that perform matrix-vector product opera-
tions. These applications solve problems that arise from the discretization of partial 
differential equations on meshes, such as explicit finite element analysis of sheet 
stamping or car crash problems. These applications require high computational capa-
bilities [1]. Typically, the models are simplified to the extent that they can be com-
puted on presently available machines; usually many important effects are left out 
because the computational power is not adequate to include them. 
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Previous work makes reference to the relationship between architecture and do-
main decomposition algorithms [2]. There are studies on latency, bandwidth and op-
timum workload to take full advantage of the available resources [3], [4]. There are 
also analyses about the behavior of MPI applications in Grid environments [5], [6]. In 
all these cases, the workload is the same for all the processors. In [7], Li et al. pro-
vides a survey of the existing solutions and new efforts in load balancing to address 
the new challenges in Grid computing. In this paper, we evaluate message-passing 
applications in Grid environment using domain decomposition technique. The objec-
tive of this study is to improve the execution time of the distributed applications in 
Grid environments by overlapping remote communications and useful computation. 
In order to achieve this, we propose a new data distribution pattern in which the work-
load is different depending on the processor. We use the Dimemas tool [8] to simulate 
the behavior of the distributed applications in Grid environments.  

This work is organized as follows. Section 2 describes the tool used to simulate the 
Grid environment and defines the Grid topologies considered. Section 3 deals with the 
studied distributed applications and the workload assignment patterns. Section 4 
shows the results obtained in the environments specified for the three different data 
distribution patterns. The conclusions of the work are presented in Section 5. 

2   Grid Environment 

We use a performance simulator called Dimemas. Dimemas is a tool developed by 
CEPBA1 for simulating parallel environments [5], [6], [8]. DIMEMAS simulator 
considers a simple model for point to point communications. This model decomposes 
the communication time in five components:  

1. Latency time is a fix time to start the communication. 
2. Resource contention time is dependent of the global load in the local host 

[10]. 
3. The transfer time is dependent of the message size. We model this time with 

a bandwidth parameter. 
4. The WAN contention time is dependent of the global traffic in the WAN [9]. 
5. The flight time represents the time invested on the transmission of the mes-

sage to the destination, not consuming CPU latency [10].  It depends on the 
distance between hosts. We consider hosts distributed at same distances, 
since our environment is homogeneous. 

We consider an ideal environment where resource contention time is negligible: 
there are an infinite number of buses for the interconnection network and as many 
links as different remote communication has the host with others hosts. For the WAN 
contention time, we use a lineal model to estimate the traffic in the external network. 
We have considered the traffic function with 1% influence from internal traffic and 
99% influence from external traffic. Thus, we model the communications with just 
three parameters: latency, bandwidth and flight time. These parameters are set accord-
ing to what is commonly found in present networks. We have studied different works 

                                                           
1 European Center for Parallelism of Barcelona, www.cepba.upc.edu. 
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to determine these parameters [9], [11]. Table 1 shows the values of these parameters 
for the internal and external host communications. The internal column defines the 
latency and bandwidth between processors inside a host. The external column defines 
the latency and bandwidth values between hosts. The communications inside a host 
are fast (latency 25 μs, bandwidth 100 Mbps), and the communications between hosts 
are slow (latency of 10 ms and 100 ms, bandwidth of 64 Kbps, 300 Kbps and 2 Mbps, 
flight time of 1ms and 100 ms). 

 

Table 1. Latency, bandwidth and flight time values 

Parameters Internal External 
Latency 25 μs  10 ms and 100 ms 
Bandwidth 100 Mbps 64 Kbps, 300 Kbps and 2Mbps 

Flight time - 1 ms and 100 ms  
 

 

Fig. 1. General Topology: n hosts with m processors per host 

We model a Grid environment using a set of hosts. Each host is a network of 
Symmetric Multiprocessors (SMP). The Grid environment is formed by a set of con-
nected hosts. Each host has a direct full-duplex connection with any other host. We do 
this because we think that some of the most interesting Grids for scientist involve 
nodes that are themselves high-performance parallel machines or clusters. We con-
sider different topologies in this study: two, four and eight hosts. Figure 1 shows the 
general topology of the host connections.  

3   Data Distribution 

This work involves the use of distributed applications that solve sparse linear systems 
using iterative methods.  These problems arise from the discretization of partial dif-
ferential equations, especially when explicit methods are used. These algorithms are 
parallelized using domain decomposition of the data distribution. Each parallel proc-
ess is associated with a particular domain.  

A matrix-vector product operation is carried out in each iteration of the iterative 
method. The matrix-vector product is performed using a domain decomposition algo-
rithm, i.e., as a set of independent computations and a final set of communications. 
The communications in a domain decomposition algorithm are associated with the 
domain boundaries. Each process must exchange the boundary values with all its 
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neighbours. Then, each process has as many communication exchanges as neighbour 
domains [12], [13]. For each communication exchange, the size of the message is the 
length of the common boundary between the two domains. We use METIS to perform 
the domain decomposition of the initial mesh [14], [15], [16].  

Balanced distribution pattern. This is the usual strategy for domain decomposition 
algorithms. It generates as many domains as processors in the Grid. The computa-
tional load is perfectly balanced between domains. This balanced strategy is suitable 
in homogeneous parallel computing, where all communications have the same cost. 

Unbalanced distribution pattern. Our proposal is to create some domains with a 
negligible computational load. Those domains are devoted only to manage the slow 
communications. In order to do this, we divide the domain decomposition in two 
phases. First, balanced domain decomposition is done between the number of hosts. 
This guarantees that the computational load is balanced between hosts. Second, un-
balanced domain decomposition is done inside a host. The second decomposition 
involves splitting the boundary nodes of the host sub-graph. We create as many spe-
cial domains as remote communications. Note that these domains contain only 
boundary nodes, so they have negligible computational load. We call these special 
domains B-domains (boundary domains). The remainder host sub-graph is decom-
posed in (nproc-b) domains, where nproc is the number of processors in the host and 
b stands for the number of B-domains. We call these domains C-domains (computa-
tional domains). As a first approximation we assign one CPU to each domain. The 
CPUs assigned to B-domains remain inactive most of the time. We use this policy in 
order to obtain the worst case for our decomposition algorithm. This inefficiency 
could be solved assigning all the B-domains in a host to the same CPU. Figure 2 
shows an example of a finite element mesh with 256 degrees of freedom (dofs) with 
the boundary nodes for each balanced partition. We consider a Grid with 4 hosts and 
8 processors per host. We do an initial decomposition in four balanced domains. Fig-
ure 3 shows the balanced domain decomposition. We consider two unbalanced de-
composition of the same mesh.  First, we create a sub-domain with the layer of 
boundary nodes for each initial domain (singleB-domain), which contains seven com-
putational domains (Figure 4).  Second, we create some domains (multipleB-domain) 
for each initial partition using the layer of boundary nodes. Then, the remainder mesh 
is decomposed in five balanced domains (Figure 5).  
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Fig. 4. SingleB-domain distribution Fig. 5. MultipleB-domain distribution 
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(a)   (b)   (c) 

Fig. 6. Communication diagram for a computational iteration: (a) Balanced distribution;  
(b) Unbalanced distribution (singleB-domain); (c) Unbalanced distribution (multipleB-domain).  

We must remark that the communication pattern of the balanced and the unbal-
anced domain decomposition may be different, since the number of neighbours of 
each domain may also be different. Figure 6 illustrates the communication pattern of 
the balanced/unbalanced distributions for this example. The arrows in the diagram 
represent processors interchanging data. The beginning of the arrow identifies the 
sender. The end of the arrow identifies the receiver. Short arrows represent local 
communications inside a host, whereas long arrows represent remote communications 
between hosts. In Figure 6.a, all the processors are busy and the remote communica-
tions are done at the end of each iteration. In Figures 6.b and 6.c, the remote commu-
nication takes place overlapped with the computation. In Figure 6.b, the remote com-
munication is overlapped only with the first remote computation. In Figure 6.c, all 
remote communications in the same host are overlapped. 

4   Results 

In this section we show the results obtained using Dimemas. We simulate a 128 proc-
essors machine using the following Grid environment. The number of hosts is 2, 4 or 
8; the number of CPUs/host is 4, 8, 16, 32 or 64; thus, we have from 8 to 128 total 
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CPUs. The simulations were done considering lineal network traffic models.  We 
consider three significant parameters to analyze the execution time behaviour: the 
communication latency between hosts, the bandwidth in the external network and the 
flight time. 

As data set, we consider a finite element mesh with 1,000,000 dofs. This size is 
usual for car crash or sheet stamping models. We consider two kinds of meshes, 
which define most of the typical cases. The first one, called stick mesh, can be com-
pletely decomposed in strips, so there are, at most, two neighbors per domain. The 
second one, called box mesh, cannot be decomposed in strips, so the number of 
neighbors per domain could be greater than two. The size of the stick mesh is 
104x10x10 nodes. The size of the box mesh is 102x102x102 nodes. 
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Fig. 7.a. Execution time reduction for the stick mesh with external latency of 10 ms and flight 
time of 1 ms 
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Fig. 7.b. Execution time reduction for the stick mesh with external latency of 10 ms and flight 
time of 100 ms 

Figures 7.a and 7.b show the time reduction percentages for each Grid configuration 
in stick mesh as a function of the bandwidth. The unbalanced decomposition reduces 
the execution time expected for the balanced distribution in most cases.  For a Grid 
with 2 hosts and 4 processors per host, the predicted execution time of the balanced 



220 B. Otero et al. 

distribution is better than other distributions because the number of remote communi-
cations is two. In this case, the multipleB-domain unbalanced distribution has only 
one or two processors per host computation.  

The results are similar when we consider that the external latency is equal to 100 ms 
(Figures 8.a and 8.b). Therefore, the value of this parameter has not significant impact 
on the results for this topology. In the other cases, the benefit of the unbalanced dis-
tributions ranges from 1% to 53% of time reduction. The execution time reduction 
increases until 82 % for other topologies and configurations.  For 4 and 8 hosts, the 
singleB-domain unbalanced distribution has similar behavior than the balanced distri-
bution, since the remote communications cannot be overlapped and they have to be 
done sequentially.  In this case, the topologies having few processors per computation 
are not appropriate. The unbalanced distribution reduces the execution time up to  
32 %. 
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Fig. 8.a. Execution time reduction for the stick mesh with external latency of 100 ms and flight 
time of 1 ms 
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Fig. 8.b. Execution time reduction for the stick mesh with external latency and flight time of 
100 ms 

Figures 9.a and 9.b show the reduction of the expected execution time obtained for 
each Grid configuration varying the flight time, the external latency and the band-
width in a box mesh. For the 2 hosts configuration in a box mesh, the behaviour for 
singleB-domain and multipleB-domain unbalanced distribution is similar, since the 
number of remote communications is the same. Variations of the flight time and the 
external latency improve the results up to 85%. Figure 9.b shows the reduction on the 
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expected execution time obtained for 4 and 8 hosts. The influence of the external 
latency on the application performance in a box mesh increases the percentage of 
reduction of the execution time up to 4%. We suppose that the distance between hosts 
is the same. However, if we consider hosts distributed at different distances, we ob-
tain similar benefits for the different distributions. 

The number of remote and local communications varies depending on the partition 
and the dimensions of the data meshes. Table 2 shows the maximum number of com-
munications for a computational iteration. The number of remote communications is 
higher for a box mesh than for a stick mesh. Thus, the box mesh suffers from higher 
overhead. 
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Fig. 9.a. Execution time reduction for the box mesh with external latency of 10 ms and flight 
time of 1 ms 
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Fig. 9.b. Execution time reduction for the box mesh with external latency of 10 ms and flight 
time of 100 ms 

We propose using unbalanced distribution patterns to reduce the number of remote 
communications required. Our approach shows to be very effective, especially for box 
meshes. We observe that the multipleB-domain with unbalanced distribution is not 
sensible to the latency increase until the latency is larger than the computational time. 
However, the execution time for the balanced distribution increases with the latency.  

The multipleB-domain unbalanced distribution creates as many special domains per 
host as external communications. Then, the scalability of the unbalanced distribution 
will be moderated, because a processor is devoted just to manage communications  



222 B. Otero et al. 

for every special domain. The optimum domain decomposition is problem dependent, 
but a simple model could be built to approximate the optimum. We propose to assign 
all B-domains in each host to a single CPU, which concurrently manages the  
communications. 

 

Table 2. Maximum number of communications for a computational iteration 

  STICK  MESH 
  BALANCED singleB-domain multipleB-domain 

Host xCPUs 
Remote  / Local 
Communication 

Remote  / Local  
Communication 

Remote  / Local  
Communication 

2x4 1 1  1 1 1 1 
2x8 1 1 1 1 1 1 

2x16 1 1 1 1 1 1 
2x32 1 1 1 1 1 1 
2x64 1 1 1 1 1 1 

4x4 1 1 2 2 1 3 
4x8 1 1 2 2 1 3 

4x16 1 1 2 2 1 3 
4x32 1 1 2 2 1 3 

8x8 1 1 2 2 1 3 
8x16 1 1 2 2 1 3 

  BOX  MESH 
2x4 2 3 1 3 1 3 
2x8 4 5 1 6 1 6 

2x16 5 8 1 7 1 8 
2x32 6 7 1 15 1 14 
2x64 7 8 1 25 1 24 

4x8 7 5 3 6 4 6 
4x16 10 9 3 11 4 9 
4x32 9 8 3 22 4 14 

8x8 13 5 6 7 13 7 
8x16 13 4 6 13 13 11 

It is also important to look at the MPI implementation [17]. The ability to overlap 
communications and computation depends on this implementation. A multithread MPI 
implementation could overlap communication and computation, but problems with 
context switching between threads and interferences between processes could appear. 

In a single thread MPI implementation we can use non-blocking send/receive 
with a wait_all routine. However, we have observed some problems with this 
approach. The problems are associated with the internal order in no blocking MPI 
routines for sending and receiving actions. In our experiments, this could be solved 
programming explicitly the proper order of the communications. But the problem 
remains for a general case. We conclude that it is very important to have no blocking 
MPI primitives that actually exploit the full duplex channel capability. As future 
work, we will consider other MPI implementations that optimize the collective opera-
tions [18], [19]. 

5   Conclusions 

In this paper, we presented an unbalanced domain decomposition strategy for solving 
problems that arise from discretization of partial equations on meshes. Applying the 
unbalanced distribution in different platforms is simple, because the data partition is 
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easy to obtain. We compare the results obtained with the classical balanced strategy 
used. We show that the unbalanced distribution pattern improves the execution time 
of domain decomposition applications in Grid environments. We considered two 
kinds of meshes, which define the most typical cases. We show that the expected 
execution time can be reduced up to 53%.   

The unbalanced distribution pattern reduces the number of remote communications 
required. Our approach proves to be very effective, especially for box meshes. How-
ever, the unbalanced distribution can be inappropriate if the total number of proces-
sors is less than the total number of remote communications. The optimal case is 
when the number of processors making calculation in a host is twice the number of 
processors managing remote communications. Otherwise, if the number of processors 
making calculations is small, then the unbalanced distribution will be less efficient 
than the balanced distribution. 
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Abstract. Most common jobs of Grid computing are arbitrarily divis-
ible. Divisible load theory(DLT) provides the mathematical machinery
for time-optimal processing. With multiple round load distributions, idle
processor periods can be harnessed for useful computation. Optimized
rounds for the purpose can be planned in advance. The Grid is dynamic
in nature. The above theory does not fully account for this. Any realistic
scheduling strategy based on DLT has to take this fact into account. Ex-
isting multiple rounds algorithms do not involve time-varying effects due
to environmental changes. This is a situation that leads to processing de-
lays, such as Disk I/O contention. The proposed inter-round scheduling
algorithm takes this into consideration. It involves time-varying resource
performance degradation and results in resonable performance.

1 Introduction

Resource scheduling is of vital importance for optimal Grid performance. Com-
monly encountered Grid jobs are arbitrarily divisible. The segmented tasks are
allocated to dispersed resources and processed. Divisible Load Theory[1] has
been considered to be a mathematically tractable framework to schedule arbi-
trary divisible workloads in parallel machines.

In this paper we employ divisible load scheduling in a multiple round frame-
work that adapts to changing environments brought about by dynamic resources.
A multi-round scheduling has been developed with a view to harness idle pro-
cessor cycles, a drawback of single round algorithms. The strategy is to allow
small chunks of workload in the initial rounds. This ensures that all the proces-
sors are busy. Load distribution is undertaken in parallel with the undergoing
computation. This results in overlapping of communication and computation.

Uniform Multi-Round Scheduling(UMR)[4] uses uniform chunk size in each
round. This leads to a near-optimal number of rounds, on both homogeneous
and heterogeneous platforms. But, this approach produces unexpected results in
the Grid in which resources are not dedicated to a specific task. As it uses system
parameters determined before load distribution, the actual makespan could vary
due to system dynamics. A load on each system component varies in time due
to the presence of background jobs. This increases the makespan of the system.
UMR does not resize the chunk to be assigned to a processor when a new round
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c© Springer-Verlag Berlin Heidelberg 2005
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begins as it is not adaptive in nature. Invariably, it follows the policy of working
with uniform chunk size. The chunk size is predetermined at the beginning of
load distribution.

We propose UMIO(Uniform Multi-Round Adaptive Disk I/O) Inter-round
scheduling that exploits current monitoring information about processor loads
to adjust the chunk size in response to changing system status. In UMR, every
processor in a round gets identically sized load. But, each processor expends a
different execution time according to its status. Some processors are slower or
faster than others. The time to process some given chunk can vary according
to the load on the procesor. In Inter-round scheduling, we allow uniform chuck
size, but it is based on the current processor I/O load as I/O contention creates
a bottleneck that slows down a processor. We can also use other system pa-
rameters to get a more precise model. When a new round begins, a processor’s
current I/O load affects the load distribution in the next round. This Inter-
Round scheduling tries to minimize the gap between the theoretical makespan
and the real one arising from changing system dynamics brought about by shared
resource contentions.

The rest of the paper is organized as follows: In section 2 we explain several
divisible workload scheduling algorithms. Section 3 presents the proposed UMIO
algorithm which is evaluated by simulation in Section 4. Section 5 concludes
the paper.

2 Related Work

In single round divisible load scheduling[1,2] on homogeneous platforms, the
total load is divided into unform chunks. In heterogeneous environments, the
load assigned to a processor is determined by its computational speed. Casanova
and Yang[3] proposed a simple model for large scale Grid computing. The model
does not consider overheads on shared resources.

Multi-Round Scheduling[1] was developed to reduce the time for which a
processor idly waits to receive its load—a situation that occurs in single round
scheduling. By repeatedly transmitting the load to each processor over multiple
rounds, the load size can be scaled down. This is in stark contrast to the single
round case. The next processor can receive the load immediately after the first
one and then work on it. The MI(Multiple Installment) Algorithm, which sends
the load in more than one installment to reduce communication overheads was
proposed by Bharadwaj et al[1]. Yang and Casanova[6] proposed a more realistic
affine overhead model for MI and transferring problem of outputs. The number
of rounds must be specified manually in this case. The UMR(Uniform Mutil-
Round Algorithm) was proposed by Yang and Casanova[4]. As it allows uniform
load size, it is possible to find the optimum number of rounds that minimizes
computational makespan. In [5], a robust method for controlling the size of load
in a progressive manner is mentioned. It has no device to control its adaptatibility
between rounds. In the proposed UMIO, we incorporate the functionality to
adapt to resource changes.
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3 UMIO(Uniform Multi-round Adaptive Disk I/O)
Algorithm

As for the UMR which works with the same load size in each round, the makespan
could change due to varying system load. To solve this problem, we propose the
UMIO Algorithm that can accomodate changes in inter-round resource status.
Figure 1 shows how multi-round scheduling distributes chunks of workloads over
serveral rounds.

P1

P2

P3

P-N

ROUND 0 ROUND 1 ROUND 2

Communication

Computation

Communication

Computation

Communication

Computation

Communication

Computation

Time

Communication
Initialization Latency

Communication
Transfer Time

Communication
Termination Latency

Computation
Initialization Latency

Computation Time

Fig. 1. Uniform Multi-round Scheduling Diagram(UMR[4])

The parameters are related as follows:

TCi = nLati + αiziTcm + tLati (1)

TPi = cLati + αiwiTcp (2)

Here, TCi is the time taken to transfer chunk size αi to processors Pi; TPi is
the time taken to compute chunk size αi at processors Pi; nLati, tLati and cLati
are the initial and final communication latencies while cLati is the computational
initial latency. Futher, wi is the ratio of the time taken by Pi to compute a given
load, to the time taken by a standard processor to compute the same load; zi is
the ratio of the time taken by a link to Pi to transfer a given load, to the time
taken by a standard link to transfer the same load. Also, Tcp is the time taken
to process a unit load by the standard processor and Tcm is the time taken to
transfer a unit load using a standard communication channel.

3.1 Disk I/O Contention Model

Contention parameters are added to the ealier UMR model in accordance with
the following relationships:

TPi
′ = cLati

′ + αiwi
′Tcp (3)

wi
′ = Bi

ioCFcpwi (4)
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cLati
′ = Bi

ioCFinitcLati (5)

Here, ioCFinit is the initial background I/O contention factor and ioCFcp

is the background I/O contention factor of computation. These two contention
factors are measured by a local resource monitoring system such as SWS(Storage
Weather Service)[7,8]. Further, Bi is the number of tasks competing for I/O at
Pi. By replacing the UMR’s TCi model with new factors, we can use UMR to
obtain near-optimal number of rounds[4]. We find the approximate number of
rounds through constrained minimization. The objective of this is to minimize
Ex(M, α0)[4], the makespan of the application. M is the number of rounds and
α0 is the initial chunk size in round 0. By computing the initial chunk size and
M, the chunk size of the next round can be obtained by

Ex(M, α0) =
W

N
+ McLat +

1
2
N(nLat + α0ziTcm) + tLat (6)

Here, W is the total workload and N is the number of processors. M is
computed by the Lagrange multiplier method the same as in [4]. Once we have
near-optimal number of rounds, M∗, we can get the initial chunk size, α0.

3.2 Inter-round Scheduling of UMIO

UMIO begins with predetermined M and α0. Before distributing the load in the
next round, a new chunk size is calculated as described above. Figure 2 shows
inter-round scheduling. Between rounds, a processor’s status changes owing to
contentions as described in the I/O contention model. Therefore, rescheduling
based on the current status of each processor is needed.

In this paper, we assume that all the processors are affected to the same
degree of contention from concurrently running applications. This is reasonable
because local resources in the Grid are clustered homogeneous machines involv-
ing the same type of hardware and software. If an application is deployed to
a local cluster, it suffers from I/O contention to the same extent over all the
resources. In such a situation, the UMIO algorithm works with the same chunk
size in a round.

Round K-1 Round K Round K+1

Inter-Round Scheduling
Reset Load Factors

New Chunk Size Smoothing

Master
Scheduler

Rescheduling Event

Load Distribution
Workload Statistics

Fig. 2. Inter-Round Scheduling Procedure
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During the first round following initial scheduling, the contention factors of
all the processors are collected by the master scheduler in parallel. These indicate
the current processing power of the processors. These factors are incorporated
into the UMIO model and the updated M and α0 are computed. The scheduler
then computes the chunk size for the next round, i.e., K +1. If the new M is not
equal to the initial M and the next round K + 1 is greater than the initial M,
the scheduler takes the last round’s chunk size for the new schedule because the
last chunk size is the largest. UMR and UMIO employ a small chunk size in the
initial round with a view to start all the processors immediately. The smoothing
operation of Figure 2 is to select proper chunk size by comparing the initial and
the new M.

4 Experiments and Results

We evaluate UMIO with SI(Single Installment)[2], MI(Multiple Installment)[1]
and UMR[4]. SI and MI do not involve an affine cost model. But, UMR and
UMIO follow an affine cost model including overhead costs described in Section
3. Figure 3 shows the makespan of SI, MI and UMR. We set w=10,z=5, Tcm=1,
Tcp=1, cLat=0.1, tLat=0.1 and cLat=0.1. The number of processors ranged
from 2 to 20. The number of rounds ranged from 2 to 10 for MI. SI leveled at
10 processors having a makespan of 2.4. We searched the makespan space of
MI. It shows similar results as did SI when the number of processors increases
at a certain fixed number of rounds(#Rounds). Also, increasing the number
of rounds results in enhanced makespan, but not as much as is obtainable by
increasing the number of processors. MI leveled at 9 processors and 3 rounds
which has a makespan of 2.0. The advantages of multi-round scheduling can be
discerned by comparison between SI and MI.

Figures 3 (c) and (d) show UMR’s makespan and its optimized number of
rounds verses the number of processors. UMR outperforms MI with 5 proces-
sors when the makespan is 1.85. The number of rounds grows up to 8 as the
number of processors reaches 4. After that, the number of rounds decreases to 2
because there are enough processors to process the workload. The flat makespan
of UMR is about 0.62. In the case of UMR, we assume that there is no back-
ground job to share the computing power, i.e., each resource uses 100% of the
computing power.

Figure 4 plots the dependence of UMIO’s makespan and the number of rounds
against the number of processors. The result is similar to that of UMR but the
makespan has stepwise changes because of inter-round rescheduling. We allow
a performance degradation of 5% per round to simulate time-varying resource
changes. In each experiment in a certain simulation(#Procs), each processor has
a different computing power in a round. The makespan of UMIO flattened at 1.0
even though it suffered from computing power degradations due to contention.
The round variation looks similar to that of UMR. But there is a difference
between UMR and UMIO due to the time-varying processor performance changes
as can be seen in Figure 4 (b).
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(a) SI (b) Makespan Space of MI

(c) UMR (d) Round Variation of UMR

Fig. 3. Makespan of SI, MI and UMR

(a) (b)

Fig. 4. Makespan: (a) UMIO (b) UMR(standard) vs UMIO(adjusted)

Figure 5 shows makespans of SI, MI, UMR and UMIO. Because SI and MI
have no affine cost model, the actual graph shifts upward by as much as the
overhead cost. UMIO outperforms SI and MI after 10 processors. But, UMIO
outperform SI and MI over the entire range. Because UMIO has an affine cost
model and the Disk I/O contention model, we enforce 5%/Round degradations.
Also, UMIO is close to UMR as many processors are involved even though each
processor suffers from contentions in every round.
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Fig. 5. Comparison SI, MI(best case, M=8), UMR and UMIO

5 Conclusions

In this paper, we have made two contributions: 1) the Disk I/O contention model
for multi-round divisible load scheduling—a step toward a realistic DLT model
in the Grid, and 2) Inter-round scheduling for adapting to changes in resource
performance status. In addition to the benefit that accrues from multi-round
scheduling and UMR’s optimal number of rounds for a certain environment, one
can also impart adaptability to the changes in environment to schedule divisible
load applications in the Grid.
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Abstract. In the past years a vast amount of work has been done in order to im-
prove the basic scheduling algorithms for master/slave computations. One of the
main results from this is that the workload of the tasks may be adapted during the
execution, using either a fixed increment or decrement (e.g. based on an arithmeti-
cal or geometrical ratio) or a more sophisticated function to adapt the workload.
Currently, the most efficient solutions are all based on some kind of evaluation of
the slaves’ capacities done exclusively by the master. We propose in this paper the
Adaptive Time Factoring scheduling algorithm, which uses a different approach
distributing the scheduling between slaves and master. The master computes, us-
ing the Factoring algorithm, a time slice to be used by each slave for processing,
and the slave predicts the correct workload size it should receive in order to ac-
complish this time slice. The prediction is based on a performance model located
on each slave which is refined during the execution of the application in order to
provide better predictions. We evaluated the proposed algorithm using a synthetic
testbed and compared the obtained results with other scheduling algorithms.

1 Introduction

Load balancing has been an ongoing issue for decades. Algorithms based on list-
scheduling which manage a list of ready to execute tasks that are sent to slave proces-
sors are mainly used because of their suitability to dynamically evolving computations,
and also because they cope with heterogeneous resources, since when one processor
has finished his work it simply gets more work from the list. This is a simply way to
automatic compensate for the differences in the performance of the slaves.

A vast amount of work has been done in order to improve the basic algorithms
for master/slave computations. One of the main features concerning load balancing
that resulted from this is that the workload of the tasks may be adapted during the
execution, using either a fixed increment or decrement (e.g. based on an arithmetical or
geometrical ratio) or a more sophisticated function to adapt the workload. We present a
briefly review of some of these techniques in Section 2.

Yet the solutions presented are all based on some evaluation by the master of the
slaves’ capacities and of the tasks workload. This implies a significant overhead since
the master has to maintain some kind of information about its slaves. We present in
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this paper the Adaptive Time Factoring scheduling algorithm, which uses a differ-
ent approach distributing the scheduling between slaves and master. The master com-
putes, using the Factoring algorithm, a time slice to be used by each slave for pro-
cessing, and the slave predicts the correct workload size it should receive in order to
accomplish this time slice. The prediction is based on a performance model located on
each slave which is refined during the execution of the application in order to provide
better predictions.

In this paper we review in Section 2 some scheduling algorithms used for mas-
ter/slave applications with a brief state of the art for each one. Section 3 presents our
algorithm and the way each slave can evaluate its capacities. In order to validate our
algorithm we devised a synthetic small testbed and Section 4 shows the measurement
results that we have obtained using the algorithm proposed in comparison to other al-
gorithms. At last we draw some conclusions about our contribution.

2 Related Work

We present below some classic self-scheduling algorithms proposed in the literature.
Self-scheduling [1] represents a large class of dynamic centralized loop scheduling
methods. These methods divide the total workload based on a specific distribution, pro-
viding a natural load balancing to the application during its execution. We present also
some adaptive algorithms that add extensions to the classic self-scheduling algorithms
in order to support heterogeneity and adaptability. They consider the load variation in
the system environment and adjust the size of the chunks delivered to each processor
dynamically. This class of algorithms presents a good performance on dynamic and
heterogeneous environments based on its ability to adapt itself to the changes in the
environment during the execution of an application.

The Pure Self-scheduling or Workqueue scheduling algorithm divides equally the
workload in several chunks. A processor obtains a new chunk whenever it becomes idle.
Due to the scheduling overhead and communication latency incurred in each scheduling
operation, the overall finishing time may be greater than optimal.

The Fixed-size Chunking scheduling algorithm [2] proposes that each processor
receives chunks with size K each time it becomes idle. Although it is hard to determine
the best K value in realistic applications due to the high number of dependable variables,
the authors give an approximation for an acceptable fixed chunk-size K (using Pth order
statistics to model the last P chunks).

The Guided Self-scheduling algorithm [3], schedules large chunks initially, imply-
ing reduced communication/scheduling overheads in the beginning, but at the last steps
too many small chunks are assigned generating more overhead [1]. Each time a proces-
sor requests for more work, the algorithm assigns to it a chunk of size equal to the size
of the remaining workload divided by the total number of processors being used for
the computation.

Factoring [4] was specifically designed to handle iterations with execution-time
variance. With factoring, iterations are scheduled in batches of P equal-sized chunks.
The total size of the chunk per batch is a fixed ratio (α) of the remaining workload, i.e.
Remaining Workload / α ∗ Number Of Processors.
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Weighted Factoring Self Scheduling [5] is an improved loop scheduling algorithm
addressing load imbalance in a heterogeneous environment. In this algorithm, proces-
sors are dynamically assigned decreasing size chunks of iterations in proportion to their
processing speeds.

Adaptive Weighted Factoring [6,7] is an adaptive algorithm based on probabilistic
analysis, being able to accommodate load imbalances caused by predictable and unpre-
dictable phenomena. In the Adaptive Weighted Factoring, the weight values are adapted
after each iteration in the computation. The newly computed weights are not only based
on the performance of particular processors during the previous iteration step, but also
on their cumulative performance during all the previous iterations.

Adaptive Factoring [8,9] allows a relaxation of some of the theoretical assump-
tions imposed by models used in earlier methods, therefore making this technique more
robust to any load variations present in the environment and improving the perfor-
mance of applications characterized by highly irregular behavior. In this algorithm,
the weights are dynamically assigned to processors at run time by closely follow-
ing the rate of change in processor speed. The model used for this method allows
the dynamic computation of new weights for each processor, when a new chunk is
allocated.

In all algorithms shown above, the information needed to evaluate the best pro-
cessor to run the remaining workload is centralized at the master process, which is
responsible for the decision regarding increasing or decreasing the chunk that is exe-
cuted by each slave process. We propose in the following Section another approach,
where the evaluation of the chunk size to be assigned to each slave is done by the
slave itself.

3 Adaptive Time Factoring Scheduling Algorithm

The Adaptive Time Factoring (ATF) scheduling algorithm is, like others algorithms
(e.g. Weighted Factoring [5], Adaptive Weighted Factoring [6,7]), based on the de-
creasing scheme proposed by Factoring [4]. However, instead of decreasing, for each
round, the number of tasks to be processed by each slave, it decreases the time slice that
each slave should use. Each slave predicts the best chunk size it should process based
on the time slice given using a performance model.

The main features of the algorithm are the utilization of time instead of chunk sizes
as a scheduling metric, and the distribution of the performance model structure between
the slaves. The utilization of time instead of chunk sizes facilitates handling hetero-
geneous slaves due to better scheduling abstraction, i.e. the scheduler can assure that
scheduling the same amount of time for different slaves will result in approximately
the same completion time benefiting overall performance. The adoption of a distributed
performance model managed by the slaves instead of a centralized one at the serevr pro-
vides better scalability support avoiding a centralized bottleneck and faster adaptation of
the model due to performance variable fluctuations. Based on this data distribution, the
algorithm scheduling decision is also distributed between master and slaves. In contrast
to other algorithms, the slave also participates at the scheduling decision calculating the
chunk size to be processed using its local performance model.
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The main goal of the algorithm is to minimize execution time of applications in
heterogeneous and dynamic environments. It addresses particularly applications using
the master/slave model containing divisible workloads, i.e. the total amount of work to
be processed can be divided in equal-size chunks.

During the execution of the algorithm, each slave builds an internal performance
model which contains the slave’s execution and communication time demands to pro-
cess chunks of the application workload. It enables the prediction of the chunk size to
be processed by the slave in order to fully use the time slice given by the master. De-
tailed information related to the performance model and the prediction method used in
the algorithm is presented in Section 3.1.

The Adaptive Time Factoring scheduling algorithm is based on a distributed
scheduling method. Each slave computes a chunk sent by the master and, based on
its internal performance model, predicts the best chunk size to be computed at the next
iteration considering the time slice given by the master. The master distributes time
slices in decreasing chunks between the slaves. The decreasing method used is based
on the Factoring [4] algorithm with a fixed value α = 2.

In order to obtain efficient slave predictions for scheduling, it’s necessary to build
and refine the performance model in each slave before using the predictions. Due to
this requirement, the Adaptive Time Factoring scheduling algorithm is divided in two
distinct phases: setup phase and adaptive phase.

The setup phase is used to build the local performance model on each slave and to
refine it in order to produce predictions with minimum error. It’s like an initial bench-
marking of each slave using the application workload. At the beginning, the master
sends to each slave a chunk with minimum size and waits for the results. After receiv-
ing the results from a slave, it sends another chunk to the slave duplicating its size by
a factor of two. It continues this process until it receives a signal from the slave indi-
cating to start with the adaptive phase. This signal is sent when the slave already has
an efficient performance model capable of producing good predictions, i.e. the model
provides minimum error comparing predicted and measured execution times.

The adaptive phase turns over an increasing size mechanism to a decreasing one.
However, instead of decreasing the chunk size, it decreases the time slice used by each
slave to predict the more appropriate chunk size to be processed. Since the beginning
of the algorithm, each time the master sends a chunk to each slave, it includes in the
message a time slice for the next round. This time slice is used by the slave to predict
the chunk size that it can be execute at the next round. The slave returns a message with
the results of the chunk processing, the execution time that it took to process the chunk
and the chunk size predicted. This chunk size is only considered at the algorithm after
the slave sends the signal to the master in order to start the adaptive phase. The time
slice for the round is computed as:

timeSliceroot
i+1 = (workloadi+1 ∗ avgExecT ime)/α ∗ nSlaves

where timeSliceroot
i+1 is the time slice computed for the next round (i + 1),

workloadi+1 is an estimation of the remaining workload at the next round (i + 1),
avgExecT ime is the average execution time for a chunk with minimum size, alpha
is a parameter of the Factoring algorithm which is fixed to 2 and nSlaves is the total
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number of slaves. The average execution time is computed each time the master re-
ceives a new result from some slave using chunk size and execution time values. Since
the time slice sent is related to the next round, it’s necessary to use an estimation of the
remaining workload at the next round. It is compute as:

workloadi+1 = workloadi − nSlaves ∗ timeSlicei

avgExecT ime

The estimation is based on the subtraction, on the current workload, of the average
chunk size that can be processed by all slaves during the current time slice. In order to
minimize the gap between slaves completion times, the following rule is used: the first
slave in a round computes its time slice as presented above (root time slice), and all the
others compute their time slices as:

timeSlicei+1 = timeSliceroot
i+1 − δj

where timeSliceroot
i+1 is the first time slice computed at the beginning of the round, and

δj is the time taken to set this new time slice since the first time slice of this round has
been computed.

The master algorithm for the adaptive phase is presented in Figure 1. It keeps in a
loop sending chunks and receiving the results to available slaves until the workload is
empty. Before sending the chunk to a slave, it computes the time slice, which depends
if the slave is the first to compute this value or not, as described before. It assigns the
new chunk size with the slave’s prediction size previously returned with the last result,
and sends to the slave the chunk and time slice.

At reception, the master receives the result of chunk processing, execution time
took to process the chunk and the predicted chunk size for the next round. The average
execution time is computed using chunk size and execution time parameters.

Algorithm 1. Adaptive Time Factoring algorithm
1: while workload is not empty do
2: for each available slave do
3: if beginning of round i then
4: compute timeSliceroot

i+1

5: else
6: compute timeSlicei+1

7: end if
8: chunk ⇐ predictedSize
9: send chunk and timeSlicei+1

10: end for
11: receive result, execT ime and predictedSize
12: compute avgExecT ime
13: end while

Due to the existence of a performance model on each slave, any change in the ma-
chines (e.g. machine turned down, start of a concurrent application) results in an adap-
tation of the best chunk size to be processed by the slave. It is important to emphasize
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that different slaves can be in distinct phases of the algorithm at the same time, i.e. some
of the machines can be executing at the setup phase and others at the adaptive phase.
This condition happens when more slaves are included during the execution.

3.1 Local Prediction of the Computational Load

In order to estimate the most suited workload, a slave needs a performance model for
the execution of chunks of size chunkSizei. The model may include various data
such as the execution time, memory utilization, etc, used to process a given chunk.
In this preliminary version of our prototype we only take into account the
execution time.

Given some N values chunkSize1, chunkSize2, . . . chunkSizen and the slaves’s
data t (e.g. the execution time) the slave has to estimate t(chunkSize). In a multi-
parameter model we could use algorithms such as the Singular Value Decomposi-
tion [10], one of the most robust for data modeling. It would fit the function t as a
linear combination of standard base functions (e.g. x → ex,

√, polynomials, . . . ).
Nevertheless in the case where t only depends on the processor’s speed, an affine

model of the time required vs. the chunk size to run is most realistic and used by other
algorithms [11]. The modeling problem is therefore a basic linear interpolation problem
of the measured running time tj , j = 1 . . . n vs. the chunk size chunkSizej. Besides
the estimated coefficients a, b of the affine approximation t = a + b × chunkSize, the
correlation coefficient is used to determine the correction of the interpolation and thus
decide if a larger chunk should be sent in the initial phase.

The interpolation algorithm is very fast and thus does not prejudice the execution of
the application. Moreover, it is trivial for a slave to determine the adapted chunk size,
given the execution time t it has to run and the affine model (a, b). Note that in the case of a
more complex, non-linear model, it would have to use a more time-consuming algorithm
such as a gradient or dichotomic search to solve the t = f(chunkSize) equation.

4 Evaluation

In order to evaluate the performance of the Adaptive Time Factoring scheduling algo-
rithm (ATF) we devised a simple master/slave application and executed it in a hetero-
geneous cluster. This application consists in w multiplications of two matrices of size
n×n. The minimum chunk size is the multiplication of two matrices (w = 1). With this
application we are able to easily vary the size and the number of chunks to be processed,
generating different conditions to evaluate the behavior of our algorithm.

We executed the application in a cluster with 16 machines connected through a
Fast-Ethernet network. The testbed consists of four different types of nodes divided in
classes, from A to D (4 nodes per machine class). To give an idea of the performance
of each machine class Table 1 presents their execution times for the computation of a
chunk for three different matrix sizes.

We compared our Adaptive Time Factoring scheduling algorithm (ATF) to the clas-
sical Workqueue algorithm (WQ), and to two factoring algorithms, the non-adaptive
Factoring Algorithm (FAC), and the Adaptive Weighted Factoring (AWF) with α = 2.
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Table 1. Execution time for one chunk (one matrix multiplication - w = 1)

execution time (seconds)
n Class A Class B Class C Class D

300 0.80 1.00 1.34 1.44
500 5.18 6.89 9.35 9.52
700 14.82 19.74 27.03 27.22

Table 2. Comparison of the execution times of the algorithms (in seconds)

n
t 300 500 700

WQ FAC AWF ATF WQ FAC AWF ATF WQ FAC AWF ATF
1000 61.74 62.86 61.7 62.15 486.22 483.98 483.94 483.04 1391.57 1385.12 1378.60 1380.34
1500 94.45 93.79 91.38 92.80 727.03 726.86 724.55 725.84 2081.26 2080.94 2068.97 2072.44
2000 122.69 124.63 121.54 124.77 964.97 965.68 963.32 964.99 2767.57 2769.48 2754.77 2756.48
2500 152.76 155.70 158.16 155.05 1208.22 1207.80 1205.15 1206.89 3456.94 3452.83 3438.00 3444.37
3000 190.16 187.5 183.98 181.9 1449.34 1448.31 1442.63 1445.86 4151.01 4144.19 4126.22 4134.71

We used three different matrix sizes (n): 300, 500 and 700, and five number of multi-
plications for the workloads w: 1000, 1500, 2000, 2500 and 3000. The obtained results
are presented in Table 2.

In most cases ATF outperforms WQ and FAC, particularly in bigger matrices. This
is expected because of the heterogeneity of the testbed. Adaptive algorithms can adapt
the number of chunks scheduled to a node depending on their performance thus making
better use of the resources.

ATF has similar results to AWF in all cases (difference around 1% in execution
times). We think this is a very promising result considering that AWF is one of the
latest algorithms introduced and is also known for having the best results for the kind
of measurements we are performing ([6,7]). Besides, we believe that the benefits of
adaptability and distributed scheduling presented in ATF, in order to improve scalability
and performance, couldn’t be explored in our experiments, since the measurements have
been done in a small heterogeneous cluster. We believe that using more machines, ATF
will eventually overcome AWF.

5 Conclusions

In this paper we presented the Adaptive Time Factoring (ATF) scheduling algorithm. It
is based on a distributed scheduling method, in which each slave computes a chunk sent
by the master and, based on its internal performance model, predicts the best chunk size
to be computed at the next iteration considering the time slice given by the master. The
master distributes time slices between the slaves using a decreasing method based on
the Factoring algorithm.

We presented experimental measurements with ATF in a heterogeneous platform
and compared it to other algorithms. The results show that ATF outperforms Workqueue
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and Factoring in most cases, particularly in bigger matrices. ATF showed also similar
results to Adaptive Weighted Factoring in all cases (difference around 1% in execution
times). We think this is a very promising result considering that AWF is known for
having the best results for the kind of measurements we performed. We also believe
that ATF, due to its distributed scheduling mechanism, will eventually overcome AWF
in a testbed with more machines.
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Abstract. Load balancing is an attractive problem in storage system. With the 
fast growth of high-speed network technology and novel storage architecture, 
smarter storage device becomes an effective way to solve the problem. In this 
paper, we present an effective object migration & replication policy in our 
object storage system (OSS), denoted adaptive policy triggering. This policy 
migrates/replicates object from congested object storage controllers to relatively 
uncongested object storage controllers according to the information of three 
facets in the OSS, including metadata server, object storage controller and 
storage object itself. First, clients interact with the metadata server (MS). So 
those global policies are triggered by the MS. Second, the OSC has better 
knowledge of its own load than MS. It is reasonable that local policy is 
triggered by the OSC. Third, the storage object is encapsulated with data, 
attributes and methods. These attributes can be set or got when objects are 
accessed. And object attribute values are good as policy threshold. Furthermore, 
object methods also can be triggered according to some policies. 

1   Introduction 

Load-balancing strategies may be best when a large number of users with high-speed 
connections to the servers access a relatively small quantity of rarely updated 
information. In that case, load balancing is beneficial primarily in that it provides a 
measure of redundancy (e.g. replication, snapshot etc.). Load balancing is also good 
when most of the hits on the server are on a small group of pages, which negates 
using hyperlinks to disperse content to multiple servers. 

However, server load balancing has been excessively studied. Such load balancing 
policy improves network performance by distributing traffic efficiently so that 
individual servers are not overwhelmed by sudden fluctuations in activity. Server load 
balancing is a guide to this critical component of high availability, clustering, and 
fault tolerance, all of which provide the infrastructure for reliable Internet sites and 
large corporate networks. Those technologies often solve problems, but not always, 
and, specially, not for storage system. 

Moreover, scarce research aim at helping users reduce server hardware and lessen 
bandwidth needs in large data centers. In fact, load balancing and failover are crucial 
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features in any storage system. Nowadays, storage industry wants an alternative that 
people can keep servers costs low and keep the amount of work they have to do as 
small as possible. So, intelligent storage device is taken into account. 

The OSS (object storage system) is the next wave of storage technology and devices 
[1]. Above mentioned researches identify weak points in devoting their mind to the 
servers (or application servers) and overlooking storage nodes or using traditional 
storage interface (file or block) in storage nodes, but are trying to gear toward load 
balancing. It may be a new approach for us to design smart storage system with the help 
of the OSS. This paper just discusses the intelligence of object storage device and 
provides a load balancing policy based on adaptive policy triggering. 

2   Object Storage System Overview 

2.1   The OSS Structure 

In the OSS, objects are primitive, logical units of storage that can be directly accessed 
on an object storage controller (OSC). The OSS built from the OSCs is shown in 
Figure 1. A metadata server (MS) provides the information necessary to directly 
access objects, along with other information about data including its attributes, 
security keys, and permissions (authentication). The OSCs export object-based 
interface, and the access/storage unit is object. It operates in a mode in which data is 
organized and accessed as objects rather than as an ordered sequence of sectors. 
Clients contact with MS and get the information about objects. The OSCs receive and 
process those requests with some policies. In our previous work [2], smart object 
storage controller is introduced. 

 

Fig. 1. Object storage system architecture 

2.2   Object Attribute and Method 

The object is the fundamental unit of data storage in the OSS. Storage object [1], [3], 
[4], [5] is a logical collection of bytes in the OSC. An object on the OSC consists of 
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an ordered set of sectors associated with an object ID (OID). Data is referenced by the 
OID and an offset into the object. Conceptually similar to a file, it is allocated and 
placed on the media by the OSC itself, while the operating system manages its files 
and metadata in these object constructs, instead of managing sectors of data. 

For convenient managing, other object attribute can be extended to three types, 
such as public attribute, privacy attribute, share attribute. For example, public 
attribute is opaque to the storage device and are used by applications or MS to store 
higher-level information about the object, such as OID, object name, object type (e.g. 
file, device, database table) and storage map. Also, in the OSS, the OSC is a special 
device object and comprises some attributes, such as the OSC’s initial capacity, 
remaining capacity and IP address. 

In the OSS, method may be a user-defined modular operation on stream data, and it 
is applied to per-object basis. It takes input data, performs operation on the data, and 
then passes data to its output. Each object in the OSS has associated with reading and 
writing streams. Clients can insert any modular methods into read and write streams. 
When clients read/write objects, the objects enter the stream at one end, progress call 
those register methods, and the methods are executed when the data passing through 
them. The OSS provides flexible methods by supporting arbitrary data stream 
operations. Thus, clients can upload any kind of methods, and register any kind of 
method for any objects. 

3   Adaptive Policy Triggering 

A “policy” can be thought of as a coherent set of rules to administer, manage, and 
control access to network resources [5]. With object attribute scalability, abundance 
clues  are  obtained  to guide or  direct  in  the solution of self-managing by  the  OSS.  

 

Fig. 2. Adaptive policy triggering based on OSS 

Figure 2 shows our design for adaptive policy triggering. It is a simple version from 
our previous work [8]. In our design, criteria and policies are separated. It is because 
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that one policy may correspond to several criteria, and one criterion may adapt to 
different policies. The criteria pool is filled with general values regarded to be useful 
by one or more of the management policies. Most popular criteria such as time, 
frequency of access, capacity and size are initially registered to the pool. A new 
policy registered into the policy pool has to contact corresponding criteria in case they 
are not already registered. So the OSS can provide a solution for dynamic loading or 
unloading policy. 

The adaptive policy triggering ensures that the registered criteria are updated on 
performance of storage system state. Those policies themselves are just descriptions 
of how to implement system management function and specify system states and how 
to response to them. These may include any proposed storage system management 
policy. When clients or system operate objects, the OSS records correlative object 
attribute values. For the adaptive policy triggering, those correlative policies are 
triggered and therefore have the largest effect on the storage system load. The 
adaptive policy triggers the policy depending on the match process between object 
attribute values and criteria from the criteria pool. 

4   Load Balancing Based on Adaptive Policy Triggering 

As distributed systems span the globe, placing objects near the point where the 
objects are accessed is becoming important to improve service performance and to 
reduce network load. With the adaptive policy triggering, the OSS will have the 
ability to transparently migrate or replicate objects among different OSCs based on, 
for example, QoS issues. 

4.1   Triggered by Metadata Server 

MS authenticates client request and authorizes client access data with capability. In fact, 
a map recorded information between OID and the OSCs is got from the MS. After 
authentication and authorization, client directly access data with map and capability got 
from the MS. At the same time, all MSs may act as a role of router. They routing 
management information and copy (or move) some object metadata. Management 
message can be routed efficiently for metadata discovery and system management. 

As a resource manager, the MS record concerned information of all OSCs, such as 
total capacity, used space, available space, optional striping requirement among the 
OSCs, total I/O bandwidth and IP address. The MS monitor data requests in the OSS. 
According to the object access pattern, object may be migrated, replicated or stripped 
among the OSCs to achieve good locality, load balancing and high scalability. Load 
balancing among the MSs can also be achieved based on this same object  
access monitoring. 

For instance, whenever additional space is required, there would be a central 
authority to which MS in the network could turn to find additional space or to find all 
the OSCs available to it. This could be the basis for operating systems being more 
dynamic and flexible as to what hardware they are operating with at any point. It need 
not be the peripheral set that was present at system generation time or even power  
up time. 
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4.2   Triggered by Object Storage Controller 

Local intelligence is achieved in the OSCs and is a basis of the whole object storage 
system. The OSC has better knowledge of its own load than MS. If I/O load of one 
OSC reach the local threshold, the OSC may initiate replication of popular objects to 
enforce load balancing or may migrate some hot spot object. 

Moreover, with the OSCs understanding quite precisely which objects are in use 
and which are not, the cache space can be more effectively utilized. It should also 
make scalability more linear by increasing storage management capability at the same 
rate as the number of the OSCs increases. The OSCs would take over space 
management, eliminating any increase in OS overhead. 

At the same time, each OSC has some additional processing power to apply some 
other tasks. They could contribute to breaking the task of data management into many 
simple, small functions performed concurrently. If the OSCs knew enough about what 
work was going on, they could make sure that an export operation only took place 
when an object was in a consistent state. Support load balancing by having the OSCs 
be as knowledgeable as possible about their own conditions and informing the 
appropriate service of those conditions or acting in response to those conditions as 
guided by policy assignments. The OSC could allocate an object to whatever zone is 
most appropriate given the users interest in cost versus performance. 

4.3   Triggered by Storage Object 

Object attributes may describe how object data are stored or accessed. So object can 
initiate load balancing policy itself. Object is composed of data, attributes and 
methods. Some policy about object management is listed in object attribute set. This 
is similar to the inode attributes inside a traditional file system. But object method 
may lib-like program and can be dynamicly loaded/unloaded. (Of course, those 
methods must be registered firstly.) 

For instance, an object attribute could be set for an object object when the object 
was closed after an updating, the OSC could automatically keep the old version of the 
object while giving the new one a separate OID. Similarly, an object attribute might 
be set to indicate that an object should be exported after it was updated. Object 
attributes describe characteristics of the data. Most of object attributes are used by the 
OSC to manage the storage object. Which include object ID, block pointers, logical 
length etc. In the OSS, the OSC is a special kind of object (device object) whose 
attributes are used by applications and MS to store device information. Some structure 
information is opaque to OSC and includes higher-level information about system 
management. For example, like HP AutoRAID [7], a few OSCs may constitute a 
RAID. And some object attributes contain information about its environment, group 
and user access control information etc. 

5   Conclusions and Future Work 

Differing data requirements, system complexities, and cost constraints mean that 
storage system load balancing needs vary widely from servers to devices. The 
adaptive policy triggering is provided to offering a novel loading balancing solutions 
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to meet this diversity of need. And the adaptive policy triggering makes it possible for 
storage system to take advantage of object storage architecture to enable  
intelligent storage. 

This paper first outlines object storage system and object characteristic. Next, the 
paper explores details of the object storage technology, and then it places those details 
in the context of development of the load balancing, which includes replication and 
migration. Our current design constitutes only narrow application. We will perform 
other application using the adaptive policy triggering, such as backup, caching and 
logging. At the same time, large-scale applications will enforce us to minimize 
computational overheads and to require the use of more efficient data structures and 
powerful machine learning algorithm. 
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Abstract. Redundancy is a basic technique for achieving fault tolerance, but the 
overhead introduced by redundancy may degrade system’s performance. In this 
paper, we propose efficient replication based algorithms for fault-tolerant mobile 
agent execution, which allows for parallel processing in the agent execution so as 
to reduce the overheads caused by redundancy. We also investigate the heartbeat 
based failure detector approach and modify it for use in our proposed algorithms. 
Performance evaluation has been performed to compare the proposed algorithms 
with the existing algorithm. Both analytic and simulation results show that our 
new algorithms can significantly improve system’s performance. 

1   Introduction 

A Mobile Agent (MA) is a program that can migrate from host to host in a network of 
heterogeneous computer systems to execute the tasks specified by its owner. The 
migration path can be fixed according to a predefined itinerary or dynamically decided 
using a self-initiated itinerary. A mobile agent works autonomously and communicates 
with other agents and host systems. During the migration, the agent carries its code and 
some kind of execution state. On each host of the network, a MA platform is 
responsible to execute the mobile agent’s operations, provides a safe execution 
environment, and offers services for MAs residing on this host. A MA system is the set 
of all MA platforms of the same type together with the MAs running on these platforms 
as part of an agent-based application. Many applications of mobile agent have been 
reported including Electronic Commerce[11], Information Retrieval[12], Network 
Management[13,14] and Mobile Computing[15]. 

However, before we implement mobile agent-based applications, some important 
issues such as fault tolerance must be addressed. Many fault-tolerance schemes have 
been proposed, and one of the most popular solutions is the replication based scheme 
[5,6,7,8,9]. The basic idea of replication based scheme is to maintain some replicas for 
the working MA. If the working MA failed and is detected by a replica, then the replica 
will create a new working MA to continue the task. On the other hand, if the working 
MA detects that the replica failed, it will generate a new replica to replace the failed 
one. So the working MA and the replica will guard each other. Replication based 
schemes has its shortcomings. The first is the overheads, which may slowdown the 
system execution dramatically. The second problem is the failure detection. Heartbeats 



 Parallel Algorithms for Fault-Tolerant Mobile Agent Execution 247 

algorithm is a well known failure detection technique, which requires the peers to keep 
on exchanging the heartbeat messages. But for mobile agent applications, no message 
can be delivered during a MA’s migration. So the traditional heartbeats algorithm does 
not work properly and modification is needed. 

In this paper, we address these two problems. We propose replication based 
algorithms for fault-tolerant mobile agent execution. Parallel processing is introduced 
in our proposed algorithms. System’s overheads are reduced and the performance is 
improved through parallel processing. We also modify the traditional heartbeats 
algorithm with handover procedures for failure detection in fault tolerant mobile agent 
executions. To the best of our knowledge, this work is the first study of the 
implementation of failure detector in mobile agent environment. 

The rest of the paper is organized as follows: section 2 describes related works and 
the motivations of our research. Section 3 describes our proposed mobile agent fault 
tolerant execution algorithms and the failure detection mechanisms in detail. Section 4 
presents the analysis of the algorithms’ performance, and validates the analysis results 
through the simulation. The performance is compared with the well known rear-guard 
algorithm. Finally, section 5 concludes this paper. 

2   Related Works and Our Works’ Motivations 

Most of the replication-based MA execution algorithms in literature are based on the 
same rear-guard model. A working agent is followed by one or several replicas, called 
the rear guard agents [5]. If the working agent failed, the rear guard agent will continue 
the job for the failed agent. Later works made improvement on and reported 
implementations of this model. In [6], the authors presented a “sliding window” 
mechanism. Before each migration of a MA, a specific number of backups of this MA 
are duplicated in order to avoid the collapse or disappearance of this MA. In fact, the 
backups of the agent just play the role of the rear guard agents. The size of the window 
is adjustable and determines the number of backups used. In [7], “surrogate of agent” is 
used, which is just another name of rear guard agent. A MA will leave a surrogate on 
each host it visited. Once a surrogate finds out that the MA failed, it will recreate an 
agent to continue the job. A mobile shadow scheme is proposed in [8], which employs a 
pair of replica mobile agents, the master and the shadow. In [9] a pipelined model is 
proposed, in which a witness agent is behind a working agent. In fact, both the shadow 
and the witness agent act as a rear guard agent. 

The rear guard agent only guards the failure status of the working agent, and keeps 
consistency with the working agent in order to continue the work of a failed working 
agent. In order to improve the system performance, we can let the replicated MA 
undertake tasks that can be done concurrently with the working agent. In [1], the 
authors make the use of two reverse MAs to execute in parallel by reverse itinerary to 
gain higher system execution speed. In [2], two MAs executing in reverse itinerary to 
speed up the execution and improve fault tolerance. But these works focus on achieving 
load balance and sensor networks’ performance respectively. The fault tolerance 
execution of MA is not their main concern thus not addressed.  

A problem common to all these works is that they did not mention how to detect 
failures. Failure detector [3, 4] is the mechanism necessary for detecting the failure of 
an executing entity in the system. The heartbeat-style failure detectors have been 
widely implemented in real systems. Paper [3] also described how to configure a failure 



248 J. Yang et al. 

detector to satisfy the predefined QoS. In [4], authors proposed how to make 
estimations about the arriving time of heartbeat messages. However, the conventional 
heartbeat-style failure detectors have several problems for mobile agent systems. First, 
a MA cannot deliver the heartbeat message during its migration. We call this period the 
dumb period. Second, there is the possibility of false detection. In [3], the authors 
proposed a set of quantitative measures for false detection, which include: mistake 
recurrence time, and mistake duration. If a replica receives a false detection from the 
failure detector, it may regenerate a new working MA to replace the “failed” one, but 
the fact is the working MA is not failed. So it may cause duplicate execution.  

In summary, although rear-guard algorithm provides fault tolerance for MA system, 
it is not efficient. Also, conventional heartbeat-style failure detectors are costly and the 
false detections will cause extra troubles. All these will affect the system performance. 
But the fact is many applications for data retrieval applications such as network 
management need fast data collection. Data submitted late usually is not useful, and 
even harmful to the system. So fault-tolerance algorithms should be efficient. We will 
describe our proposed efficient replication based MA fault tolerance algorithms in 
section 3.  

3   Replication Based MA Fault-Tolerant Algorithms 

The main idea of improving the efficiency of replication based mobile agent algorithms 
is to introduce parallel processing among the replicas. According to whether the MA’s 
itinerary is predefined or not, we propose two algorithms, namely Reverse MAs 
Algorithm (RMAA) and Alternate MAs Algorithm (AMAA).  

 

3.1   RMAA 

RMAA is well suited for MA applications with a predefined itinerary and no 
requirement on the host visiting sequence. One typical example is the information 
retrieval applications. In RMAA, the original predefined itinerary is the forward 

Fig. 2. Landing procedure Fig. 1. RMAA execution process 
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itinerary and the reverse itinerary is an itinerary that reverses the sequence of hosts in 
the forward itinerary. There are two MAs in RMAA. One is called Forward MA (FMA) 
which will visit hosts according to the forward itinerary, and another is called Reverse 
MA (RMA) which will visit hosts according to the reverse itinerary.  

Fig. 1 illustrates the RMAA scheme. The pair of MAs is dispatched by the user’s 
mobile agent system at the same time. They execute concurrently along their own 
itineraries until they reach two neighboring hosts (e.g., Host 2 and Host 3), which 
indicates that all the hosts on the itinerary have been visited. The two MAs will then 
return the MA platform on user’s host. In order to prevent both MAs failures due to the 
failure of the host, the two MAs are not allowed to land on the same host. For this 
purpose, a landing procedure is needed (Fig. 2).  

The two MAs send the coordination message “Hello” before migration to the next 
host. The “Hello” message is put into a queue on the MA platform of the next host, 
which ensures that the host only accepts one MA with the earlier “Hello” in the pair 
MAs. A MA can migrate to the host only if it has received an “Ok” message as response 
from the host. If two MAs send the “Hello” message to the host simultaneously, the 
host will receive both of them. But in the queue, one will precede another one. For the 
sender of the later “Hello” message, MA platform will reply it with a “No” message. 
When the MA receives a “No” message, it knows that another MA is on the 
neighboring host. So this MA will go back user host. The MA which got the “OK” 
message will return user host too after it finishes its execution.  

Same with the rear-guard algorithm, we assume that the FMA and the RMA will not 
fail at the same time. During the execution of the pair of MAs in RMAA, one MA may 
fail during its execution or migration. The failure detector will detect the failure and 
inform another MA, and the living MA will generate a new MA to replace the failed 
MA (Fig. 3). For this purpose, FMA and RMA should keep each other’s computing 
results (this is the same with rear-guard algorithm). A distinguish advantage of the 
RMAA algorithm is that it can handle the itinerary partition due to links failure. In  
Fig. 4, the itinerary is partitioned into two separated sections. It is obviously that the 
pair of MAs can finish their tasks if they will not fail.  

The RMAA scheme can be easily extended to accommodate n (n  1) pairs of MAs 
to speed up the execution in large-scale networks. The original itinerary can be 
separated into n sections, and on each section RMAA is executed. 

 
Fig. 3. The failure handling of RMAA   Fig. 4. Itinerary partition 
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RMAA can be implemented on system level in a way transparent to the application 
programmer. What the programmer needs to do is just to provide the MA’s task and 
itinerary to RMAA. RMAA will create FMA and RMA to finish the users’ task. The 
algorithm of pseudocode format for executing RMAA is illustrated in the following box. 

3.2   AMAA 

A predefined itinerary is necessary for RMAA. But one of the fundamental features for 
mobile agent is autonomy, which allows a MA to determine the next host dynamically 
without a predefined itinerary. RMAA is not applicable under such a context while the 
rear-guard algorithm can still work. But the rear-guard algorithm is not efficient and we 
seek a faster algorithm.  

Fig. 5 A MA’s operations  Fig. 6 AMAA execution process 

For a mobile agent application without predefined itinerary, an agent needs to 
compute the next stop before every migration. Accordingly, we divide a MA’s 
operations into two sections (Fig. 5): CalNextStopOps contains all the necessary 
operations which have to be done in order to get the next stop; RestOps includes the rest 

//RMAA is a class which implements all the functions of RMAA algorithm. User just needs to create //a 
RMAA object and provides the Task and Itinerary to the RMAA object.  
1. RMAA rmaa = new RMAA (Itinerary, Task); //RMAA creates 2 members: a FMA and a RMA; 
2. rmaa.Launch(); //FMA and RMA are launched; 
//FMA and RMA execute the same code in parallel. We only describe FMA’s execution.  
3. if (rmaa.FMA.tryMigration() = = OK) //will not encounter RMA 
    {rmaa.FMA.migration(); //migrate to next host 
     result = rmaa.FMA.Task.start();   
     rmaa.FMA.synchronize(result); //synchronize the computing result for failure handling.    
     goto 3; //Finish the execution on current host, then try to go to next host. 
  }else  //will encounter RMA if migrate to the next host. So FMA returns home. 
    rmaa.FMA.returnHome();  
 
// Pseudocode for the MA failure handling. Suppose ma gets a message from failure detector. 
if (msg = ma.getmessage() = = MA_Failure) //get asynchronous message from failure detector 
   ma1 = ma.clone();  //this ma will clone a new ma according to the failed ma’s infomation. 
   ma1.migration(msg.host, failureMA_id); //the cloned ma migrates to the host. 
//After the cloned ma lands on the host, it will check the reported ma is really failed or not. 
   if (ma1.check(failureMA_id) = = ReallyFailed) //if the reported ma really failed, its job will be   

  ma1.resumeFailedma();                 //continued.  
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operations (the de-registration operations at lest). The border between these two 
sections can be different for different applications. Some applications can determine 
the next stop in the first few steps; some get it at last.  

AMAA involves two MAs. One MA which is on the head is called Leading MA 
(LMA); the other MA which is behind the LMA is called Slave MA (SMA). The two 
MAs should arrange their operations in two sections as described above. Fig. 6 shows 
the execution process of AMAA. The MA platform on user host launches two MAs. 
One lands on the first stop and becomes LMA. The other who is waiting on the user 
side becomes SMA. When the LMA got the result of the next stop, it sends a message to 
the SMA which is still waiting on the user side. SMA migrates to the next stop and 
becomes the new LMA and starts its execution (former LMA becomes SMA now). 
When LMA determines the next stop, it sends a message to SMA. Now the SMA may 
or may not finish the RestOps. When SMA finishes the RestOps, it will migrate to the 
next stop. The process will continue until the task is finished. 

Same with the rear-guard algorithm and RMAA, Failure detector will inform the 
failures of MAs, and the living MA will generate a new MA to replace the failed MA. 
Different from RMAA, AMAA can not handle the itinerary partition. 

AMAA can be extended to involve n (n  2) MAs easily. Among the n MAs, One 
acts as the LMA. The rest n-1 MAs form a sequence of SMAs. When the LMA gets the 
next stop, it informs the last SMA. The last SMA migrates to the next stop and becomes 
the LMA. Previous LMA becomes the first SMA in the sequence of SMAs.  

Same with RMAA, AMAA can also be implemented at the system level. Users need 
not provide the itinerary, but the task is required to separate into two sections as we 
described. The following box illustrates the pseudocode for AMAA. 

//AMAA is a class which implements all the functions of AMAA algorithm. User just needs to create 
//a AMAA object and provides the Task to the RMAA object. 
1. AMAA ma[ ] = new AMAA (Task); //AMAA creates 2 members: an LMA and a SMA; 
2. NextHost = FirstHost; ma[0].end = false; ma[1].end = false; //Initiation;  
3. ma[0].goto 4; ma[1].goto 9; //ma[0] is current LMA and ma[1] is current SMA. 
//ma[0] and ma[1] share the same code from 4 to 9. In the following, “ma” can be ma[0] or ma[1]. 
4. ma.migration(NextHost);  

5. NextHost = ma.Task. CalNextStopOps();  

6. if (NextHost  NULL) 
    ma.informSMA(NextHost); //After the current SMA get this message, it will migrate   
  else               // to next host and becomes the new LMA. This ma becomes the new RMA. 
    {ma.informSMA(NULL); //No next host, so inform SMA to return home. 
     end = true; //This mark will make LMA return home     
    } 

7. result = ma.Task. RestOps(); //Finish the rest operations.  

8. ma.synchronize(result); //synchronize the computing result 
9. if (end = = ture) //No next host. 
    ma.returnHome(); 
  else if (ma.getNextHost()  NULL) //SMA get the next host which is sent by LMA 
       {goto 3;                 //SMA will migrate to the next host.  
       } else  //No next host 
         ma.returnHome(); //it is time to go home. 

// Pseudocode for the MA failure handling in AMAA is the same with RMAA. 
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The function of failure detection is a fundamental requirement for replication based 
fault tolerance algorithm. As we introduced in section 1, heartbeat-style failure 
detectors are widely used. But a big problem for a heartbeat-style failure detector is 
false detection. For MA applications, another problem is the dumb period (section 2).  

For the problem of dumb period, a handover procedure is needed. A simple 
solution is that before a MA starts migration, the “migration” tag is piggybacked in 
heartbeat message. When the failure detector monitoring the MA receives the 
message with the “migration” tag, it will stop the failure detection for this MA and 
wait until it receives the new heartbeat message (at this time, the MA lands on a new 
host). The problem for this scheme is that, if the MA is lost during migration, failure 
detector can not detect it. An enhanced scheme is based on MA’s reliable migration. 
When a MA starts a migration, it sends a replica to the next host and waits until the 
replica landing on the next host. During the migration process, the waiting MA can 
keep sending heartbeat messages to the failure detector. After the replica lands on the 
new host, it informs the waiting MA and the waiting MA will hand over the task of 
heartbeat message exchanging to the replica. Through this scheme, the dumb period 
problem can be solved and the failure detector can keep on the monitoring task. 

False detection is an inherent problem for heartbeat-style failure detectors. What 
we can do is to add a checking procedure. When a new MA is generated to replace the 
failed MA, the new MA should check the failed MA’s status on the host of the failed 
MA. We assume we can check the real status locally. If the new MA finds out that it 
is a false detection, it will kill itself to avoid the duplicate execution. 

4   Performance Analyses and Evaluations 

In this section, we first make an analytic analysis on the execution time for the 
different fault tolerant MA execution algorithms, and then describe our simulation 
study. 

4.1   Analysis on Execution Time 

In the following discussing, we assume the execution time T for a MA is the same on 
each host. N is the number of hosts. The time for a MA migrating from the current host 
to the next stop is Tm. TTask_exe is the total execution time of each algorithm. For 
rear-guard algorithm, when the working MA starts a migration, it will inform the rear 
guard MA to keep following. We assume the time needed for this operation is Tinform. In 
RMAA, Tlanding is the time needed by each landing procedure. In AMAA, like the 
rear-guard algorithm, Tinform is the time needed by the operation of LMA informing the 
next stop to SMA, and according to Fig. 5, we assume the time taken for each 
CalNextStopOps  is  TCalNextStopOps;  the  time  taken  for  each  RestOps  is  TRestOps. It  is 

3.3   Failure Detection Mechanisms for MA Applications 
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obviously that T = TCalNextStopOps+TRestOps. For simplicity, we do not consider the cost of 
heartbeat messages and synchronization messages, because they are needed by all of 
our discussed algorithms.   

 

Fig. 7. Execution time comparisons 

For the rear-guard algorithm, the whole task is finished by the single working MA 
and no parallel processing is involved (Fig. 7). So we can get: TTask_exe = N(T+Tm+ 
Tinform). For RMAA, the FMA and RMA execute in parallel, so ideally the execution 
time  is: TTask_exe   =   N(T+Tm+Tlanding)/2.  AMAA  allows  partial  parallelism  in  MA 

N(Tm+ TCalNextStopOps + Tinform)+ TRestOps  TRestOps < Tm+ TCalNextStopOps + Tinform 

(N+1)(Tm+ T + Tinform)               TRestOps  Tm+ TCalNextStopOps + Tinform 

 executions, and its execution time depends on how much job is done in parallel. From 
Fig. 7, we can figure out how to compute the execution time for AMAA. 

The parameter TRestOps determines the degree of parallism that can be achieved. If we 
can increase the TRestOps, the execution time of AMAA will be shortened. However, the 
reduction in the execution time is bounded that the total time will be no less than 
(N+1)(Tm+T+Tinform)/2, if TRestOps is greater than Tm+TCalNextStopOps+Tinform. We define 
this TRestOps as the AMAA critical value. For AMAA involving n MAs, it is easy to see 
that the task execution time will be (N+1)(Tm+T+Tinform)/n, (2  n  N, TRestOps  
Tm+TCalNextStopOps+Tinform). 

Table 1 summarizes the execution modes and execution time for all the algorithms 
discussed in this paper. Note that for AMAA in the table, we assume that TRestOps is set 
as the critical value.  
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Table 1. Execution mode/time comparisons 

Theoretical Execution Time (N hosts)  
Itinerary Execution 

mode 2MAs nMAs (n>2) 
Rear-Guard Self-initiate Non-parallel  N(T+T+ Tinform) N(T+T+ Tinform) 

RMMA Predefined Full- parallel N(T+ Tm+ Tlanding)/2 N(T+ Tm+ Tlanding)/n   
AMAA Self-initiate Partial- parallel (N+1)(Tm +T+ Tinform)/2 (N+1)(Tm +T+ Tinform)/n 

We can see that RMAA can provide the fastest execution speed because Tinform is 
almost the same with Tlanding and they are some time intervals comparing with TM and T. 
But RMAA needs a predefined itinerary and it also requires the system allow a random 
hosts accessing sequence. These requirements make RMAA inflexible. AMAA has the 
same degree of flexibility as the rear-guard algorithm, but its execution time can only 
be shortened if the next stop can be calculated quickly (then TRestOps will becomes 
bigger). If AMAA can only get the next stop at the last step of its operation (TRestOps = 
0), the execution time will be the same with the rear-guard algorithm: TTask_exe = 
N(Tm+TCalNextStopOps+Tinform)+TRestOps = N(Tm+T+Tinform). But normally the TRestOps will 
not be zero, because a MA has to perform some routing operations on a host at last, 
such as deregistration, release resources, etc. So we can always gain the partial 
parallelism so as to shorten the execution time. The results in Table 1 are just the 
theoretical values. In practice, the real execution time will be longer due to various 
overheads. We will compare the execution time in the simulation study to be described 
in the next subsection. 

4.2   Simulation Results 

In order to compare the execution time in realistic environment, we performed 
simulations of the rear-guard algorithm, RMAA and AMAA on the Naplet MA 
platform [16].  

The simulations are carried out on a PC with Pentium 4 CPU (2.5GHz), 256MB 
RAM. The software environment is: Window XP, Java version 1.4, and Naplet MA 
platform. Five Naplet MA platforms are installed on the PC and we simulate the MA 
traveling 15, 25, 35, 45, 55, 65, 75, 85, 95, 105 nodes respectively using different fault 
tolerant algorithms. The number of MA failures is set to be 1/20 of the total number of 
hosts that have been visited and the failures are uniformly distributed along its itinerary. 
The exchange frequency of the heartbeat messages is 5 messages per second. Enhanced 
handover scheme is adopted in the simulation. For AMAA, we set the TRestOps to be its 
critical value, which means a MA will send out the next stop message in the mediate of 
its execution.  

From the simulation results in Fig. 8, we can see that RMAA only takes about half of 
the rear-guard algorithm’s execution time. AMAA also takes near half of the execution 
time of rear-guard algorithm. For the number of messages exchanged, Fig. 9 shows that 
it increases in direct proportion to the execution time. That is because the heartbeat 
messages take up the most part of the exchanged messages during MA’s execution. 
Longer execution time will cause more heartbeat messages exchanging. 
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         Fig. 8. Execution time comparisons                         Fig. 9. Exchanged messages 

5   Conclusions and Future Works 

In this paper, we described the two efficient replication-based mobile agent execution 
algorithms. The algorithms allow for parallel processing and provide fault tolerance. 
Analytic analysis and simulation results show that the proposed algorithms can 
improve system’s execution speed dramatically. The shorter execution time can help 
MA bypass host failures with greater probability and reduce the number of heartbeat 
messages exchanged. The overhead caused by heartbeat-style failure detector is an 
important issue in designing a high-performance fault tolerant MA system. In our 
future work, we will investigate this issue and attempt to design alternative approach to 
failure detection, e.g., using the watch-dog technique with remote notifications. 
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Abstract. The Voronoi diagram is one of the most fundamental data structures in 
computational geometry, which is concerned with the design and analysis of al-
gorithms for geometrical problems. In this paper, a parallel algorithm for con-
structing the Voronoi diagram on CREW (Concurrent Read and Exclusive 
Write) model is proposed. This is an improved algorithm based on Preilowski 
and Mumbeck’s work. In their algorithm, they apply the Neighbor-Point-
Theorem and present a parallel approach to check neighbor points. In this article, 
we propose an improved approach, Wave-Front algorithm, which is a quite dif-
ferent way to check neighbor points. The algorithm is then implemented in both 
sequential and multithreaded models. Since the Wave-Front algorithm has inher-
ently concurrent tasks that can be executed simultaneously, multithreaded ver-
sion was executed to observe the performance. Computational results indicate 
the effectiveness of the threaded model. 

1   Introduction 

The Voronoi diagram is one of the most popular geometrical structures in computa-
tional geometry [1], which is a branch of computer science concerned with designing 
efficient algorithms for solving geometrical problems. It partitions a plane with n 
given points into n convex polygons such that each of which consists of the points 
closer to one given point than to any others. The Voronoi diagram is an important 
problem in many applications; including placement and motion planning, mesh gen-
eration and proximity problems. 

There are several parallel algorithms existing for computing the Voronoi diagram 
of n planar points on the CREW PRAM model [2]. For instance, Chow [3] uses inver-
sion and computes the convex hull of points in three dimensions. The algorithm runs 
in O(log3 n) time and uses O(n) processors. Preilowski and Mumbeck [4] present a 
time-optimal algorithm that employs the Neighbor-Point-Theorem to compute Vo-
ronoi polygon for each point. Their algorithm runs in O(log n) time only but uses 
O(n3) processors. Aggarwal et al. [5] parallelize a sequential divide-and-conquer 
algorithm and run in O(log2 n) time using O(n) processors. Similar to Chow’s result, 
Evan and Stojmenovic [6] present an O(log3 n) algorithm using O(n) processors.  
Cole et al. [7] also apply the divide-and-conquer approach to construct Voronoi dia-
gram. They present two algorithms, the first one runs in O(log n log log n) time using 
O(n log n / log log n) processors, the other one runs in O(log2 n) time using O(n / log 
n) processors. Some other related and recent works such as those Amto et al. [8]  
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reduce three-dimensional convex hulls to two-dimensional Voronoi diagrams and 
Blelloch et al. [9] implement a practical parallel algorithm for the Delaunay triangula-
tion on general distributions. 

The goal of this research is to present the proposed Wave-Front algorithm based on 
Preilowski and Mumbeck’s work and describe a parallel implementation using multi-
threaded model. A number of techniques to further exploit Thread Level Parallelism 
(TLP) have been researched. Some products including Intel’s hyper-threading have 
been announced [10]. The threaded model can be applied with great success to a wide 
range of programming, such as large scale, computationally intensive programs and 
client server applications. From a software or architecture perspective, user programs 
can schedule threads to logical processor as they would on multiple processors. Multi-
threading is specifically to take advantage of multitasking environment. In Wave-
Front algorithm, multitasking can easily be achieved and is visible from the behavior 
of the program. Hence, by using multithread, more tasks could be completed to 
maximize the running efficiency of the program. 

The reminder of this paper is organized as follows: Section 2 describes the 
neighbor-point theorem and multithreading. Section 3 presents the Wave-Front algo-
rithm. Section 4 shows the experimental results. Both of the sequential and multi-
threaded versions of the Wave-Front algorithm are implemented. The computational 
results show that the performance of threading version is quite effective. Finally, we 
conclude with some discussion in Section 5. 

2   Neighbor-Point Theorem and Multithreading 

In this section, we briefly describe the neighbor-point theorem and multithreading to 
help understand the Wave-Front algorithm. In later sections, we would describe its 
design and implementation.  

2.1   Neighbor-Point Theorem  

The capability of the neighbor-point theorem is to determine all the neighbor points 
for some point p from a given set of points, the Voronoi polygon for p is therefore 
obtained. In the following paragraph, we first introduce some definitions and then 
describe the neighbor-point theorem [4]. 
Assume, S, is a finite set of points. Then: 

1. Let Seg(xi, xj) be the segment of a line from xi to xj. 
2. Let PB(xi, xj) be the perpendicular bisector of Seg(xi, xj). 
3. Let L(xi, xj) be the straight line through xi and xj. 
4. L and R are the subsets of S and they lie left and right of L(xi, xj) going along 

the direction from xi to xj. 
5. Let Sleft := {s | s is the intersection-point of PB(xi, z) and PB(xi, xj) for z in L}. 
6. Let Sright := { s | s is the intersection-point of PB(xi, z) and PB(xi, xj) for z in R}. 
7. Define the following order “<” on the points of Sleft and Sright:  

If  p q in (Sright Sleft) then p < q if and only if p lies left of q on PB(xi, xj) go-
ing along the direction from xi to xj. 



 Design and Multithreading Implementation of the Wave-Front Algorithm 259 

After the definitions of related terms as given above, the Neighbor-Point Theorem can 
be described as follows (see Fig. 1). 

Neighbor-point Theorem: 
Let xi and xj in S, i j, then 
xj is a neighbor point of xi if and only if  max(Sleft) < min(Sright). 

max(Sleft)

min(Sright)

xj

xi

PB(xi,xj)

Seg(xi,xj)

xk

PB(xi,xk)  

Fig. 1. An illustration of neighbor-point theorem 

The neighbor-point theorem can be applied to construct Voronoi diagrams for both 
sequential and parallel algorithms. We describe the parallel algorithm originally pro-
posed in [4]:  

CREW-PRAM Algorithm: 

1. For all i = 1 to n { 
2.    For all j = 1 to n (j i) {  
3.       Check whether xj is a neighbor-point for xi using the Neighbor-point Theorem. 
4.        }. 
5. Compute the Voronoi polygon for xi by sorting the pieces got in step 1. 
6. } 

In step 3 of the algorithm, it needs n-2 processors except two for xi and xj and the 
running time is O(logn). The algorithm also needs O(n2) processors for steps 1 and 2 
when O(n2) pairs of points exist. Thus, in total, the algorithm needs O(n3) processors 
for steps 1 to 3. In step 5, it needs O(n) processors and O(logn) running time, since 
the Voronoi diagram is a planar graph and the number of edges is bounded by O(n). 
Therefore, the running time of this algorithm is O(log n) with O(n3) processors. The 
reason why it uses so many processors, O(n3), comes from the approach of checking 
neighbor points. It examines every other point with p to find its neighbor points. 
However, the neighbor points are usually not far away from p and the checking proc-
ess could be improved. This leads to our motivation to modify the algorithm.  

2.2   Multithreaded Model 

Traditional computer programming causes all events to occur in series, unless the 
programmer takes other measures to allow them to happen concurrently. Behren et al. 
[11] have shown that the weaknesses of threads are artifacts of specific threading 
implementations and not inherent to the threading paradigm. Thus, multithreaded 
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implementation in a right way in a particular application can certainly improve per-
formance. Using multithreaded model, the program can be executed asynchronously 
if more than one activity happen at a time [12-13]. There is little advantage to being 
asynchronous unless you can have more than one activity going at a time. Even 
though threaded model can be applied to a wide range of programming problems such 
as computationally intensive programs, high performance application programs, real 
time application programs and geometric programs such as Voronoi diagram, unless 
there are inherently concurrent tasks, one cannot accomplish better performance [14]. 
This program is inherently concurrent. Hence, adding multithread, improves perform-
ance greatly. In the following section we will explain how multithreading is used in 
the proposed Wave-Front version of the algorithm. 

3   The Wave-Front Algorithm  

We first present the Wave-Front algorithm in this section and then introduce how 
multithread is implemented to this algorithm. 

3.1   Design of the Wave-Front Algorithm 

As we mentioned in the previous section, the neighbor points are not far away in 
general and the checking may be limited to the area close to the specific point p. 
Therefore, we propose an idea using an h×h table and take turns to scan the points in 
the cells (see Fig. 2). 

 

Fig. 2. An illustration of the Wave-Front Algorithm. The left of the hxh table is corresponding 
to k (= 0) iteration and the right one is corresponding to k (= 1) iteration. The iteration is re-
peated until the Voronoi polygon for point p is found. 

To determine the neighbor points of some specific point p, we start to check the 
points in the allocated cell of p and then all of the cells next to the allocated cell, and 
then all of the cells next to the cells just scanned, the process is repeated until all of 
the neighbors are found. The order of scan on cells is like the propagation of wave-
front. If we imagine that a stone is thrown into the allocated cell of p, and then the 
points in the cells are checked only when the wave front just arrives at the cells. This 
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is why the improved algorithm is referred to the name of “Wave-Front”. In the im-
plementation, the scan is in the order of the iteration k (see Fig. 2 for the first two 
iterations). The iteration is terminated if the Voronoi edges are closed and hence the 
Voronoi polygon for point p is found, otherwise the process is continued to next itera-
tion. 

We now describe the Wave-Front algorithm as follows: 

Wave-Front Algorithm:  
sArray[h][h] : an h×h array that stores a given set of n points according to their x and 
y-coordinates. Note that any cell in the table, sArray[r][s], may have more than one 
point or may be empty. sArray[r][s] stores all of the points in the cell and is repre-
sented by a linked list.  

1. For all i = 1 to n { 
2.        Let k = 0, where k represents the kth iteration of the wave-front. 
3.        Let r, s be the index such that xi is stored in sArray[r][s]. 
4.       Check all the points in sArray[r][s] whether each of them is a neighbor-point of 

xi using the Neighhor point Theorem. 
5.        Record the Voronoi edges found in step 4. 
6.        While (the Voronoi edges are not closed.) { 
7.                  Check all the points in sArray[r][s] whether each of them is a neighbor 

point for xi using the Neighbor-point -theorem, where r and s is in the 
range of the kth iteration of the wave-front scan. 

8.                    Record the Voronoi edges found in step 6. 
9.                     } 
10.       }  

It is noted that the running time in worst case is still O(n3). However, if the data 
size n is large and the points of the set are uniformly distributed, then the efficiency of 
this algorithm seems to improve greatly. This is because the points we have to check 
for a point p are highly around p with a limited area. If n is large, the performance 
would be usually better. 

3.2   Multithreading Implementation of the Wave-Front Algorithm 

The above-mentioned algorithm uses “wave-front” to figure out the neighbor-points 
of a set of selected local points around a given point. In the kth iteration, it checks the 
points in the corresponding cells. The multithreaded version of the algorithm spawns 
T threads according to k. If T = 4, then four threads are spawned and simultaneously 
check the points corresponding to cells. Thus, by using T threads, similar tasks could 
be accomplished at the same time. Each thread can simultaneously search according 
to the kth iteration in which the threads are implemented. In this application, each 
thread can complete its work without waiting for other threads to complete execution. 
Thus, there is no waiting time involved in any thread. Another approach would be to 
spawn as many threads as possible to each cell as they scan. In the later approach, 
more threads would be spawned. More threads with a limited amount of task for each 
thread would mean more overhead due to spawning and deleting of large number of 
threads. In this research, we have tried both the approach to observe the running time. 
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The second approach does not do well as expected due to a larger number of threads 
and the overhead involved in performing similar tasks. The results will be presented 
in the next section. 

4   Experimental Results 

We first implemented the original approach to observe the performance and the 
Wave-Front algorithm in the sequential environment. Since the Wave-Front algorithm 
keeps a table of h×h cells, we have to consider the influence of the number of cells in 
the table. Hence, we try to find out which density (points per cell) would bring the 
best performance. After our experiments with different sizes of n, we found that the 
best performance occurred when the density is 0.1. The density could neither be too 
large nor too small. When the density becomes larger, there are more points in a cell. 
This increases the number of unnecessary checking. When the density is getting 
smaller and smaller, the unnecessary testing would be reduced. However, the per-
formance would sharply decrease if the density were too small. Since the time taken 
to process the empty cells would be increasing, and the computational time is  
becoming longer. 

Table 1 shows the running time for different sizes of n, when the density is fixed to 
0.1. We can find that the ratio of the time taken by the Wave-Front and the original 
one is decreasing when n is increasing. This illustrates the efficiency of the sequential 
version of the Wave-Front algorithm. 

Table 1. Comparisons of original and Wave-Front algorithms in sequential environment 

Points 100 200 400 600 800 1000 2000 3000 4000 

Original 0.15 0.77 3.62 8.92 16.85 27.52 122.2 290.42 542.44 

Wave-
Front 0.1 0.4 1.59 3.48 5.96 9.18 35.64 78.92 136.41 

Wave-
Front / 

Original 
67% 52% 44% 39% 35% 33% 29% 27% 25% 

The efficiency of Wave-Front could be observed from Figure 3 clearly. There is a 
sharp increase for the original algorithm when the data size n is greater than 1000.  
However, the curve does not increase rapidly using Wave-Front algorithm. This veri-
fies that the number of testing for some specific point p is always n -1 in the original 
algorithm and it is almost a constant in practice for the Wave-Front. 

We have also implemented the Wave-Front algorithm in the threaded model.  
The first implementation spawns fixed T threads for every T iterations. For in-
stance, two threads are spawned simultaneously for T=2 (see Fig. 2, k = 0 is the 
innermost square, k = 1 is the next innermost one, and so on). One thread is 
spawned for k = 0, and the other one for k = 1. After these two iterations are done, 
then two threads are spawned for k=2 and k = 3. This process is continued until the 
Voronoi polygon of p is found. 
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Fig. 3. Comparison of original vs. Wave-Front algorithm 

Table 2 presents the results when we use different numbers of threads for a fixed 
size table 600*600, and Table 3 shows the results for density = 0.1 (hence the table 
size h×h is adjusted by data size n). From the results of tables 2 and 3, we can find the 
overall performance of table 3 is superior to those of table 2. This verifies again the 
results of the adjustable size table at an optimal density = 0.1 are usually better than 
those of a fixed size table. From table 3, we can observe that the overall performance 
is getting better when we increase the number of threads to T = 8. However, it seems 
getting worse for T = 16 and 32.  Most of the neighbor points are around inner k. 
Even when T threads are spawned according to the number of k, the outer square for k 
may execute without finding any neighbor points. Thus, it only increases the running 
time. Hence we find the running time of T = 16 and T = 32 may not do better than  
T = 8.  

Table 2. Comparisons of running time for the Wave–Front algorithm. Spawning each of T 
threads for each square k for fixed size table (h×h=600*600) 

Points 100 200 400 600 800 1000 2000 3000 4000 

No threads 1.47 2.53 4.5 6.62 9.19 12.26 36.92 79.98 136.36 

2 threads 0.05 0.07 0.17 0.24 0.26 0.31 0.53 0.63 0.99 

4 threads 0.09 0.1 0.16 0.27 0.3 0.34 0.42 0.59 0.97 

8 threads 0.14 0.14 0.30 0.42 0.50 0.67 1.05 1.33 1.94 

16 threads 0.37 0.65 0.85 1.0 1.19 1.43 2.18 2.74 3.99 

32 threads 0.53 0.81 1.48 1.45 1.64 2.12 2.77 3.77 4.93 

Table 4 presents the data where each thread is spawned for each cell. Thus  
T threads are spawned for T cells. It is repeated until we find voronoi polygon. It is a 
fine-grain approach which may involve more overhead due to many simultaneous 
threads being spawned in an application. It is clear that even when we spawn four 
threads it does not perform well as compared to Table 3. Since each cell is of a small 
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area and not much computation can be accomplished simultaneously using several 
threads and so it does not perform well. It shows that the threads must have data in-
tensity to perform a task. This table also reveals another aspect of spawning many 
threads, which defeats our purpose of having more threads and not accomplishing 
several simultaneous tasks. Hence, the last row which presents the data using T=32 
does not perform better than the first row, using single thread. Besides, for a data size 
4000 using single threaded approach it gives 136.41 seconds. While, spawning T=32 
threads using one thread for each cell it gives 140.43 seconds. It clearly shows that 
spawning more threads do not necessarily improve performance, but rather slow 
down the performance. This program is a good example for a multithreaded version 
where threads can be implemented without interaction between them and it depends 
how the threads are implemented as opposed to say that the multithread not necessar-
ily speedup in a single processor environment. Threads are a powerful tool to improve 
the performance of a program if it is implemented by the programmer at the right way 
taking advantage of the simultaneous tasks that can be accomplished in a data inten-
sive program. 

Table 3. Comparisons of running time for the Wave – Front algorithm. Spawning each of T 
threads for each square k with density = 0.1. 

Points 100 200 400 600 800 1000 2000 3000 4000 

No threads 0.1 0.4 1.59 3.48 5.96 9.18 35.64 78.92 136.41 

2 threads 0.01 0.01 0.05 0.1 0.12 0.18 0.56 1.02 1.91 

4 threads 0.003 0.01 0.02 0.09 0.1 0.2 0.63 1.15 1.89 

8 threads 0.006 0.02 0.06 0.04 0.15 0.2 0.63 1.5 2.51 

16 hreads 0.02 0.03 0.16 0.21 0.27 0.34 1.03 2.18 3.11 

32 hreads 0.01 0.07 0.16 0.25 0.35 0.44 1.19 2.34 3.25 

 

Table 4. Comparisons of running times for the Wave – Front algorithm. Spawning T threads 
for each cell with density = 0.1. 

Points 

No threads 9.18 

2 threads 

4 threads 

8 threads 

16 threads 

32 threads 
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5   Conclusion 

In this paper, we present the Wave-Front algorithm for computing Voronoi diagrams 
based on the previous work of Preilowski and Mumbeck’s. Notice that this amended 
version of the algorithm is possible and useful because of two reasons. The first one is 
the special property of Neighbor-Point-Theorem, in which it is unnecessary to check all 
points in order to find out whether the Voronoi edges are closed for a specific point. 
Second, there is a property for the Voronoi diagram that the average number of edges of 
a Voronoi polygon is no more than six. Moreover, if the points are distributed uni-
formly, it would take less number of iterations before the Voronoi polygon is found. 

According to the computational results, we can find out that the performance of the 
Wave-Front algorithm is greatly improved than that of the original one, though they 
both have the same time complexity of O(n3) in the worst case. The reason is that the 
Wave-Front algorithm only checks a few points around a specific area in most cases, 
unlike the original algorithm which needs to take O(n) time. When the number of 
points increases, the time saved by the Wave-Front algorithm gets larger and larger. 

Besides the sequential implementations for the original and Wave-Front algo-
rithms, we have also implemented the multithreading model for Wave-Front algo-
rithm. The results show that the threaded implementation further improve sequential 
version to a great extent. The challenge is not just to use threads to improve perform-
ance, but rather how to implement in a data intensive geometrical program. In the 
future, we plan to implement this algorithm in an OpenMP environment where we can 
really test the parallel version of this algorithm under CREW model. A lot more inter-
esting research can be done in the area of multithreaded performance measurement 
especially on geometric data intensive programs. 
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Abstract. With the increasing importance of multiple multiplatform remote 
sensing missions, digital image registration has been applied into many fields, 
and specially plays a very important role in remotely sensed data processing. 
Firstly a brief introduction of existing parallel methods of wavelet-based global 
registration is given. And then the communication optimization for GP method 
is described. The optimized algorithm is named Group-Optimized-Parallel 
(GOP for short). To find out the reason of occasionally lower efficiency of GOP 
than other methods, a more careful analysis is presented in theory and proved in 
experiments. Moreover, we give a quantitative criterion, called Remainder 
Items, to choose the best solution in different input conditions. 

1   Introduction 

Image registration is defined as the process that determines the most accurate match 
between two or more images acquired at the same or at different times by different or 
identical sensors. Digital image registration has been applied into many fields, and 
specially plays a very important role in remotely sensed data processing. Because of 
the growing of data amount and requirement for intensive computation to process 
these data, parallel and automated image georegistration has become a highly desir-
able technique. 

In our earlier work, we have shown the status of research on automatic registration 
of remote sensing images, but also classified and analyzed the existing serial or paral-
lel registration algorithms from the point of a novel view [1]. For global image regis-
tration method is more suitable for automatic processing than the CP-based approach 
and much recent research [2-7] has focused on the use of wavelets for global image 
registration, a more elaborate description of development of parallel wavelet-based 
global image registration is given in [8] and a first evaluation of these automatic par-
allel methods is done in theory and experiments. In [8], we classified previous parallel 
methods into three types as Parameter-Parallel (PP), Image-Parallel (IP) and Hybrid-
Parallel (HP), and also proposed a new parallel strategy, Group-Parallel (GP), based 
                                                           
* This work is partially supported by the National 863 High Technology Plan of China under 

the grant No. 2002AA1Z201 and 2002AA104510, and the Grid Project sponsored by China 
ministry of education under the grant No. CG2003-GA00103. 
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on the analyses of disadvantages of old methods. But after the further study, we found 
that the communication mode of GP can be optimized, and GP strategy dose not al-
ways get better performance than other methods.  

In this paper, we firstly give a brief introduction of existing parallel methods of 
wavelet-based global registration. And then we describe the communication optimiza-
tion for GP method that proposed in [8] originally. The optimized algorithm is named 
Group-Optimized-Parallel (GOP for short). To find out the reason of occasionally 
lower efficiency of GP/GOP than other methods, a more careful analysis is presented 
in theory and proved in experiments. Moreover, we give a quantitative criterion, 
called Remainder Items, to choose the best solution in different input conditions.  

2  Overview of Previous Methods and GP Strategy 

2.1   Brief Introduction of Wavelet-Based Global Image Registration 

We assume that any input image is being registered relative to a known reference 
image. According to [9], image registration can be viewed as the combination of four 
components: 1) Feature space, the set of characteristics used to perform the matching 
and which are extracted from reference and input data; 2) Search space, the class of 
potential transformations that establish the correspondence between input image and 
reference image; 3) Search strategy, which is used to choose which transformations 
have to be computed and evaluated; 4) Similarity metric, which evaluates the match 
between input image and transformed reference image for a given transformation 
chosen in the search space. 

As to the wavelet-based global image registration, wavelet coefficients form the 
feature space; and only rigid transformations are considered as search space in most 
application; the search strategy follows the multi-resolution approach provided by the 
wavelet decomposition. In our experiments, the search space is composed of 2-D 
rotations and translations; and cross correlation measure is used as similarity metric. 
So far, the process of global image registration based on wavelets can be described as 
following: after performing the wavelet decomposition of both reference and input 
images, at the each level of decomposition, the wavelet-compressed version of refer-
ence image is transformed using different combinations of rotation and translations; 
for each transformation cross correlation between the input image and the transformed 
reference image is computed; the transformation corresponding to the maximum of 
cross correlation is the best transformation at current level, and becoming the center 
of a next level search scope that is reduced and refined. The iterative search starts 
from the smallest wavelet image towards the larger size images, and the final registra-
tion transformation is found at the full resolution image. Please see [3] for more de-
tails on this serial process. 

2.2   Existing Parallel Methods and GP Strategy 

For clear and consistent presentation, some concepts and notations are given firstly. 
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Fig. 1. Four parallel strategies for wavelet-based global image registration 
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parameter, and iip Ω∈  ( iΩ  is the range of ip ). i.e., a solution is composed of 

one or more mapping parameters. 
− S: search space composed of all solutions, |),,,{( 21 kpppS = ,11p Ω∈  

},,22 kkpp Ω∈Ω∈ . 

− R: the number of solutions in search space, i.e., RS =|| . 

From the description of section 2.1, wavelet-based global registration searches best 
solution in search space of each level of decomposition. In [8], the previous parallel 
algorithms [3][10-11] were formulated based on the relationship between the number 
of solutions (R) and how they are distributed over a number of processors (N), and 
classified into three types: 1) Parameter-Parallel (PP); 2) Image-Parallel (IP); 3) Hy-
brid-Parallel (HP). In our earlier experiments, HP excels PP and IP in the most cases, 
but we also find that the performance of HP sometime decreases with the increasing 
of N. This often happens when 0≠r and M is not very large. After in-depth analysis, 
the reason is found that the overhead introduced by IP for r remaining correlations 
counteracts the benefit from load balance. That is to say, the IP stage in HP mode is 
efficient only when the computation to communication ratio is high enough. To 
achieve this goal, we should make the sub-image dealt with by each processor as large 
as possible but amount of correlations as small as possible during the IP stage. Based 
on this analysis, a new parallel strategy, Group-parallel (GP), is proposed in [8]. 
Figure 1 shows the different idea of these four strategies, where NRq =  and 

NRr %= (% denotes that R leaves r modulo N), and g denotes the number of proces-
sors in each group. And for more details, please refer to [8]. 

3   Optimization for GP 

In GP (see figure 1(d)), at each level of decomposition, there are 4 communication 
processes happened: the first communication is happened in the PP stage. The global-
master node (Node0 for example) must gather the local results of PP stage from other 
nodes. The second and third communication is both happened in the second stage. 
Each  group-master (every group has a group-master node, e.g. Node0 for group 1, 
and Node )1)1(( +− gr  for group r) should gather local IP results from other nodes 

within its group and send the global IP result that is computed by use of gathered 
local IP results to the global-master node. This is a two-level reduction operation. The 
last communication is a broadcast operation, in which the global-master scatters the 
final result globally for next level of search. 

After in-depth analysis, we can find that the first and the third communication is 
independent from each other, so the first communication can be delayed and merged 
with the third one. Although the data amount to transfer is not decreased, the message 
number is reduced. Figure 2 shows the reduction of the number of message after the 
communication merging. We named the optimized GP as Group-Optimized-Parallel 
(GOP for short).  
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Fig. 2.  The number of message at each wavelet level before and after optimization 

4   Performance Analysis of Four Strategies 
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In this section, to calculate parallel speedup and efficiency, we firstly give the 
complexity formula of serial algorithm of automatic wavelet-based registration as 
equation 1: 
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In [8], complexity analysis has ignored the effect of communication times. If con-
sidering this effect, we can get the following complexity formulas of PP (equation 2), 
IP (equation 3), HP (equation 4), GP (equation 5, 6) and GOP (equation 7, 8). 
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Comparing equation 7and 8 with equation 5 and 6, it is proved in theory that GOP 
excels GP for its less communication cost. Because GOP has same computation proc-
ess as GP, we only discuss GOP in the remainder of this paper. 

Based on equation 1, 2 and 7, we can deduce the speedup and efficiency formulas 
of the parallel algorithms PP and GOP, seeing equation 9-12. These formulas show 
that the speedup of PP and GOP will both rise with the scale of system and data set. 
But if value of M and N became very large, the scalability of PP would be restricted 
for load imbalance. Contrarily, GOP has perfect theoretical analysis conclusion, i.e., 
keeping N unchanged, speedup GPNS −  approximates to N and efficiency GPNE −  ap-

proximates to 1 with the increasing of problem scale ( ∞→M ). This conclusion 
shows that parallel performance and scalability of GOP are better than PP. Moreover, 
based on iso-efficiency model [12], we can deduce iso-efficiency function of GOP 
(equation 13) from  equation  11  and  12,  where )(Nf GOPE−  is a linear function of N.  

By comparing equation 3, 4 and 7, we find that the items including 2M  are same 
as each other, so we will not enumerate the deduction process of speedup, efficiency 
formula and iso-efficiency function of IP and HP here. They will get the similar re-
sults as equation 11, 12 and 13. 
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Though the changing trend of speedup and efficiency of the above four strategies 
are similar, their parallel execution time are different. To find a quantitative criterion 
for choosing a best solution in different application, we need to analyze execution 
time in detail. Because the first three items of equation 2, 3, 4 and 7 are same in the 
order of magnitudes we only compare the Remainder Items, which are called RIs. 
These remainder items (RIs) of the four strategies are denoted as gophpippp tttt ,,, . The 

rules of selecting best strategy in different situations based on RIs are presented  
as follows: 

− When NR < . We can know from the foregoing analysis that DOP of PP is R, and 
salability of PP is limited. So we should select one of the other three parallel 
strategies (their parallel execution time is equal to IPT  in this situation). 

− When NR >  and 0% =NR . The RIs of PP, HP and GOP are equal, i.e., 
Nnttt gophppp ⋅=== . But the RI of IP is NRnNRtntip ⋅⋅+⋅⋅⋅= β . Apparently, 

complexity of IP is higher than the others. Hence, we should select one strategy 
from PP, HP or GP in this situation. 

− When 0%, ≠> NRNR  and 0% =rN  ( NRr %= ). Then we can deduce that 
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− When 0%, ≠> NRNR  and 0% ≠rN  ( NRr %= ). The computing formulas of 

hpippp ttt ,,  are as same as ones in the above condition of 0% =rN , but the formula 

of gopt  is changed. We deduce its formula based on equation 8, which 

is
)(

22

rNN

Mr
Nnt gop −⋅

⋅+⋅= . Apparently, complexity of ipt  is highest, but compari-

son of the other three strategies depends on value of some parameters. For exam-

ple, if 3=n , 1=r , 8=N and 256=M  then 0
8

2567

78

256 22

<×−
×

=− ppgop tt , 

so GOP is better than PP; if 3=n , 7=r , 8=N and 256=M  then 

0
8

256

8

2567 222

>−×=− ppgop tt , so PP is better than GOP. That is to say, in this 

situation, we should select the best strategy by computing RIs according to some 
parameters. That is why GOP strategy dose not always get better performance than 
other methods. 

5   Experiments and Conclusion 

For comparison, we also implement GOP algorithm on a same computer YH used in 
[8]. YH has 32 processors with 1GB local storage for each processor. Speed of YH 
CPU is valued as 1.66 gigaflops/sec. Topology of network is fat tree, and point-to-
point bandwidth is 1.2Gb/s. Various remotely sensed images with different size 
(M=256/512/1024/2048/3072) are used for testing. 

 

Fig. 3. Registration result of a pair of test images 

Figure 3 shows the registration result of a pair of test images, in which Figure 
3(c) is the output of the transformed input image to match the reference image. 
Figure 4 gives the comparison of speedups achieved by four parallel algorithms 
with different datasets (image size M changes from 512 to 3072) on our parallel 
platforms YH. 

(a) Reference image (b)Input image (c)Output image  



 A Proposal of Parallel Strategy for Global Wavelet-Based Registration 275 

0

5

10

15

20

25

30

1 2 5 8 10 15 16 30 32

N

sp

PP

IP

HP

GOP

0

5

10

15

20

25

30

1 2 5 8 10 15 16 30 32
N

sp

PP
IP
HP
GOP

0

5

10

15

20

25

30

1 2 5 8 10 15 16 30 32
N

sp

PP
IP

HP
GOP

 
(a) M = 512  (b) M = 1024  (c) M = 3072 

Fig. 4. Speedups of four algorithms achieved on YH with different datasets 

 

Fig. 5. Execution time of four algorithms achieved on YH with one test dataset (M=3072) 

From figure 4, we can conclude that GOP is better than PP in execution time and 
speedup. Furthermore, the optimized effect of GOP is better than HP in most situa-
tions, especially when 0% =rN . The performance of HP is fluctuant sometimes for 
its RI ( ipt ) is affected by several factors. These conclusions are in accordance with 

foregoing theoretical analysis. When value of M is large, the effect of unbalanced load 
becomes more obvious with the increasing of N. In figure 4, when N>16, the per-
formance of PP is worse than that of HP and GOP; and when N is up to 32, the 
speedup even begins to fall. Therefore, performance can be improved by balancing 
load, and the improving scope will increase with the increasing of M. 

The validity of RIs analyzed above is proved in figure 5. For example, when 

12=N , then 5=r , the RI of PP is 12)7( 2Mt pp ×= , the RI of  GOP is 

)712()25( 2 ××= Mt gop , so goppp tt > , accordingly, execution time of PP is longer 

than GOP in figure 5. But when 16=N , then 13=r , 16)3( 2Mt pp ×= , 

31613 22 ××= Mt gop , so goppp tt < , accordingly, execution time of GOP is longer 

than PP in figure 5. Hence, we can exactly select an optimum parallel strategy by 
calculating RI. 
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Future work will include the study of combination of global registration and CPs-
based methods with emphasis on both speed and accuracy. Automatic registration of 
remotely sensed data is a very complex problem, and as stated in [3], we feel that only 
a future system that integrates multiple automated registration techniques will be able 
to address such a task for multiple types of remote sensing data. 
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Abstract. We developed a concise but comprehensive analytical model
for the well-known sort merge Join algorithm on cost effective cluster
architectures.

We try to concentrate on a limited number of characteristic param-
eters to keep the analytical model clear and focused. We believe that a
meaningful model can be built upon only three characteristic parame-
ter sets, describing main memory size, the I/O bandwidth and the disk
bandwidth. We justify our approach by a practical implementation and
a comparison of the theoretical to real performance values.

1 Introduction

Today clusters of workstations are the focus of many high performance appli-
cations searching for viable and affordable platforms replacing expensive super-
computer architectures. A cluster system is a parallel or distributed processing
system consisting of interconnected stand-alone workstations working together
as a single, integrated computing resource [1]. We believe that a cluster system is
a suitable environment for parallel database systems. There is an urgent need for
novel database architectures due to new stimulating application domains with
huge data sets to administer, search and analyze.

Due to its inherent expressive power the most important operation in a re-
lational database system is the join. It allows to combine information of differ-
ent relations according to a user specified condition, which makes it the most
demanding operation of the relational algebra. Thus the join is obviously the
central point of research for performance engineering in database systems.

In the past a number of paper appeared covering this topic, like [2], [3], [4],
which proposed and analyzed parallel database algorithms for parallel database
machines. [5] presents an adaptive, load-balancing parallel join algorithm im-
plemented on a cluster of workstations. The algorithm efficiently adapts to use
additional join processors when necessary, while maintaining a balanced load.
[6] develops a parallel hash-based join algorithm using shared-memory multi-
processor computers as nodes of a networked cluster. [7] uses a hash-based join

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 277–286, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



278 E. Schikuta

algorithm to compare the designed cluster-system with commercial parallel sys-
tems.

In this paper we will present an analysis and evaluation of the Sort Merge
Join. This work is part of a running project for a comprehensive analysis of
parallel join operations. We did a similar research for all important parallel join
operations (e.g. Hybrid Hash Join [8]). A focus on analyzing hardware charac-
teristics of the underlying system is beyond the scope of this paper. So we are
interested in the specifics of the algorithms and not of the machines.

2 Parallel Database Operations

2.1 Declustering

Declustering is the general method in a parallel database system to increase the
bandwidth of the I/O operations by reading and writing the multiple disks in
parallel. This denotes the distribution of the tuples (or records, i.e. the basic
data unit) of a relation among two or more disk drives, according to one or
more attributes and/or a distribution criteria. Three basic declustering schemes
can be distinguished, range declustering (contiguous parts of data are stored
on the same disk), round-robin declustering (tuples are spread consecutively
on the disk), and hash-declustering (location of a tuple is defined by a hash
function).

The disjoint property of the declustered sets can be exploited by parallel
algorithms based on the SPMD (single program, multiple data) paradigm. This
means that multiple processors execute the same program, but each on a different
set of tuples. A realistic assumption of our model is that the relations of the
database system are too large to fit into the main memory of the processing
units. Consequently all operations have to be done externally and the I/O costs
are the dominant factor for the system performance.

2.2 The Join Operation

The join operation ‘merges’ two relations R and S via two attributes (or at-
tribute sets) A or B (respective relations R and S) responding to a certain
join condition. The join attributes have to have the same domain. Two different
types of join operators are distinguished, the equi-join and the theta-join. In
the following only the equi-join is discussed. Three different approaches for join
algorithms are distinguished, sort merge, nested loop, and hash based join. Basi-
cally the parallel versions of these approaches can be realized on a conventional
client-server scheme. The server stores both relations to join and distributes the
declustered tuples among the available clients. The clients perform the specific
join algorithm on their sub relations and send the sub results back to the server.
The server collects the result tuples and stores the result relation.
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3 Analytical Model

3.1 Model Parameters

In the following (see Table 1) we specify several parameters and a few derived
terms, which describe the characteristics of the model environment and build
the basis for the derived cost functions.

Table 1. Parameters of the cost model

m number of tuples of relation R (inner relation)
n number of tuples of relation S (outer relation)
p number of processors
n t m number of tuples per message
b bucket size (tuples per bucket)
s selectivity factor (percentage of the product of m and n

giving the result size
l f loop factor (number of loops necessary to build hash

buckets due to number of open file limitations)
read read one tuple from disk
write write one tuple to disk
receive receive one message
send send one message
find target find the right target client
hash store a tuple into a main memory hash table
probe probe a main memory hash table with a tuple
fill fill a tuple into main memory
compare compare the keys of two tuples in main memory and build

a result tuple if keys match.

The specific values of the basic parameters and the derived functions used
in the theoretical model to calculate ”real” numbers were profiled by a specific
test program on the real hardware. The values are given in section 4.

For the declustering of the data among the clients the server reads the two
input relations, described by equation (1),

server read = (m + n) ∗ read (1)

determines the respective target client by a declustering function with p as one
of its parameters (2)

server compute = (m + n) ∗ find target (2)

and sends the tuples (packed in messages) to the target client (3).

server send = (
m

n t m
+

n

n t m
) ∗ send (3)
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Fig. 1. Percentage of server-side cost types

After sending the messages the server is in an idle-state. It waits for the
results of the clients (4) and writes it to disk (5).

server receive =
m ∗ n ∗ s

n t m
∗ receive (4)

server write = m ∗ n ∗ s ∗ write (5)

The total cost of the server is defined in (7) by the sum of (1) to (5).

server cost = server read + server compute+ (6)
+ server send + server receive + server write

The work of the server, as I/O-costs (read,write), message-costs (send, re-
ceive) and computational costs, is obviously independent of the number of pro-
cessors used. Figure 1 shows this situation graphically by splitting the total
server execution costs into the parts on I/O costs (read and write operations),
communications costs (send and receive operations) and pure computational
costs.

3.2 Sort Merge Join

The parallel version of the sort merge join algorithm is a straight forward adap-
tion of the traditional single processor version of the algorithm. The inner re-
lation R is first partitioned using a split table (range declustering). A function
is applied to the join attribute of each tuple to determine the appropriate disk
site. As the tuples arrive at a client they are gathered in buckets. The buckets
are sorted in ascending order of the join attribute and written to two tempo-
rary files of equal size. Every client uses binary sort merge to sort its part of
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relation R. Parallel binary merge sort is described in [9]. An analysis and evalu-
ation of parallel binary merge sort is given in [10]. In our algorithm we use only
the suboptimal and optimal part of the sort algorithm. The suboptimal phase
(see (a) Figure 2) merges pairs of longer and longer runs (i.e. ordered sequences
of pages). In every step the length of the runs is twice as large as in the preced-
ing run. At the beginning each processor reads two sorted pages, merges them
into a run of 2 pages and writes it back to the disk. This is repeated, until all
buckets are read and merged into 2-buckets-runs. If all buckets are merged, the
suboptimal phase continues with merging two 2-page-runs to a sorted 4-page-run.
This continues until all 2-page-runs are merged. The phase ends, when the two
temporary files are sorted. At the end of the suboptimal phase 2 sorted tempo-
rary files exist on each node. During the following optimal phase each processor
merges the 2 temporary files (see (b) in Figure 2).

In a second phase the outer relation S is partitioned using the same split
table. Every client receives its tuples of relation S, builds and sorts buckets and
sorts the temporary files of relation S using binary sort merge. In a third phase
the sorted temporary files of R and S are merged and result tuples are built.

The work for the clients start with receiving the tuples of the inner and outer
relation from the server. Every client gets only m

p tuples of the inner relation R
and n

p tuples of the outer relation S. The costs for receiving are described by [7]
and for writing to the local disk by [8].

client receive =
m
p

t m
∗ receive +

n
p

t m
∗ receive (7)
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build temp files =
m

p
∗ write +

n

p
∗ write (8)

In the following step every bucket has to be sorted, which is

sort bucket = (
m
p

b
+

n
p

b
) ∗ b2 ∗ compare (9)

After sorting the buckets are written to the local disk. analogous to [8].
In the suboptimal phase and the optimal phase of binary merge we have to

sort the two input relation.

sort R = (
m

p
∗ log

m

p
) ∗ (read + compare + write) (10)

sort S = (
n

p
∗ log

n

p
) ∗ (read + compare + write) (11)

Next the sorted input relations have to be merged and result tuples have to
be built,

merge = (
m

p
+

n

p
) ∗ (read + compare) (12)

At last the algorithm sends back the join results. Finally the client has to
write the result tuples back to the server [13].

send result = (
m

p
∗ n

p
) ∗ s

t m
∗ send (13)

The complete costs of the client are given in [15]. The total cost for the sort
merge join [15] is the sum of the cost of the server and [15].

client sort cost = client receive + build temp+ (14)
+ sort bucket + sort R + sort S + merge + send result
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sort merge cost = server cost + client sort cost (15)

Figure 3 shows the theoretical speedup behavior of the sort merge join using
different number of processors and input tuples.

The costs per tuple change only slightly when the number of input tuple
increases. The costs per tuple increase because the main parts of sort merge are
from the order of O((m + n) ∗ log(m + n)). The results can be seen in Figure 4
for 1 to 4 clients.

4 Model Justification

To justify the presented model we evaluated and compared it to a practical
performance analysis were we implemented the algorithm.

Test-bed for our analysis was an off-the-shelf ”el-cheapo” PC cluster con-
sisting of 5 single processor nodes (computational units) running the Linux op-
erating system. The algorithms were realized with the C language and PVM
as communication library. The values of the parameters used in our tests are
given in Table 2. We used a test module to determine the values of the basic
parameters and the derived functions (measured in seconds) of our cost model

Table 2. Specific values of the basic parameters

m 50k,100k,250k,500k,1000k
n 50k,100k,250k,500k,1000k
p 1,2,3,4
n t m 100
b 1000
s 1/m
l f 10
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Table 3. Values for derived functions of the cost model

read 0,0000105 seconds
write 0,00001 seconds
receive 0,0025 seconds
send 0,0025 seconds
find target 0,000005 seconds
Hash 0,00001 seconds
probe 0,00001 seconds
fill 0,0000008 seconds
compare 0,0000008 seconds
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Fig. 5. Real speedup Sort Merge Join

(see Table 3). Figure 5 gives the real execution times for the Sort Merge Join.
All given values are the averages of at least 20 runs.

The real values correspond to the theoretical values, besides the specific re-
sult for the one-processor case, amazingly well. The asymptotic runtime behavior
for increasing workloads and processing nodes (speed-up) of the model and the
reality is about same. Not only the trend of the data is the same, but also
the real execution values match the ones calculated by the model. The differ-
ence was only about 10 percent, which is due to the simplified model ignoring
operating system specifics. Summing up this result shows that the simplified
approach described in the previous section models the reality very well and jus-
tifies it as a basis to analyze the algorithms behavior on a cluster architecture
thoroughly.

5 Conclusion and Lessons Learned

The results of the analytic model justified by the practical implementation leads
to the following lesson, which can be the basis for future data intensive applica-
tions on cluster architectures:
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– Disk IO, and not network bandwidth, is the limiting factor for distributed
data intensive IO operations.

– It can be expected that the cumulated network bandwidth of a typical clus-
ter is larger than the IO bandwidth. This situation is based on the current
technology and also supported by the actual technology trend that the char-
acteristics of network hardware develops faster than the disk hardware.

– Corollary: Clusters are a viable platform for data intensive applications.
– To build up an analytical model of cluster systems for data intensive oper-

ations it is sufficient to concentrate on the characteristics of main memory,
IO bandwidth and disk bandwidth.

– It is possible to model the execution time behavior of data intensive opera-
tions on clusters accurately, which allows the building of query analyzer for
parallel/distributed database systems.

– Summing up: Clusters can be a suitable platform for parallel/distributed
database systems.
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Abstract. In this paper, a parallel algorithm for data clustering is presented on a 
multi-computer with star topology. This algorithm is fast and requires a small 
amount of memory per processing element, which makes it even suitable for 
SIMD implementation. The proposed parallel algorithm completes in O(K+S2 - 
T2) steps for a clustering problem of N data patterns with M features per pattern 
and K clusters, where N.M = S!, K.M = T!, and M=R!, on a s-star 
interconnection network. 

1   Introduction 

Feature vector is a basic notion of pattern recognition. A feature vector v is a set of 
measurements ( Mvvv ,...,, 21 ) which map the important properties of a collection of 
data into a Euclidean space of dimension M [6]. Clustering algorithm partitions a set 
of feature vectors into cluster groups. It is a valuable tool in exploratory pattern 
analysis, and helps making hypotheses about the structure of data. It is important in 
syntactic pattern recognition, image segmentations, registration, and many other 
applications. There have been many methods proposed for clustering feature vectors 
[6], [7], [8], [9], [10], [11].  

One popular clustering technique is the squared-error algorithm. This clustering 
algorithm is as follows [5]. Let N represent the number of patterns which are to be 
partitioned and let M represent the number of features per pattern. Let F [0…N-1, 
0..M-1] be the feature matrix such that the F [i,j] denotes the value of j-th feature in 
the i-th pattern. 

 Let S1 , S2 , … , and Sk  be K clusters. Each pattern belongs to exactly one of the 
clusters. Let C[i] represent the cluster to which pattern i belongs. Thus, we can define 
Sk as 

   { [ ] ,0 1}ks i C i k k K= = ≤ ≤ −  

Let ks  be the cardinality or size of the pattern ks . The center of cluster k is a 

1×M vector defined as 

1
[ , ] [ , ], 0 ;

ki sk

center k j F i j j M
s ∈

= ≤ ≤  

The squared distance d2 between pattern i and cluster k is given by 

−= 2]),[],[(],[2 jkcenterjiFkid  
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The squared error for the k-th cluster is defined as   

2[ ] 2[ , ], 0 ;
ki s

E k d i k k K
∈

= ≤ <  

And the squared error for clustering is given by  
1

0

[ ] 2[ ].
K

k

ERROR K E k
−

=

=  

In the clustering problem, we are required to partition the N input patterns such 
that the squared error for the clustering becomes minimum. In practice, this is done by 
trying out several different values of K. For each K, the clusters are constructed using 
an iterative refinement technique in which we begin with an initial set of K clusters, 
and move each pattern to a cluster with which it has the minimum squared distance 
and re-compute cluster centers. The last two steps are iterated until no pattern is 
moved further from its current cluster. The final clustering obtained in this way, 
however, is not guaranteed to be globally minimum. In fact, different initial clustering 
can result in different final clusters.  

This paper1 proposes a parallel algorithm for pattern clustering on the star graph 
with a run time of O(K) and a memory usage of O(1). The algorithm combines several 
communication techniques in a novel method to perform pattern clustering on a NM-
node star graph. This algorithm relies on window broadcasting communication at 
some stages during computation, as will be discussed later. It also uses a special kind 
of processor ordering introduced in [1] in order to assign the data to the PE’s in the 
initialization phase. 

2   Routing and Data Communication in the Star Graph  

In this section, some useful definitions and notation are introduced. A routing 
algorithm, called Send, will be also introduced. This algorithm is used in the last 
phase of our algorithm.  

Definition 1. Let Sn-1(i) be the sub graph of Sn in which the last symbol of all its node 
addresses are equal to i. 

A Sn-1(i) is an (n-1)-star defined on symbols {1,2,…,n}-{i}. Thus, Sn can be 
decomposed into n sub-(n-1)-stars, Sn-1(i), 1  i  n. For example, a S3(4) would 
contain four 3-stars, namely S3(1), S3(2), S3(3), and S3(4).          

Definition 2. Let m1 and m2 be two distinct symbols from {1,2,…,n}. We use notation 
m1*m2 to represent a permutation of {1,2,…,n} whose first and last symbols are m1 
and m2, respectively, with * representing any permutation of the n-2 symbols in 
{1,2,…,n}-{m1, m2}. Similarly, m1* is a permutation of n symbols whose first symbol 
is m1, and *m2 is a permutation of n symbols whose last symbol is m2 [3].  

Definition 3. Two or more nodes from distinct Sk-1’s are corresponding if they have 
the same index in their respective Sk-1’s according to the processor ordering scheme 
which is introduced in Section 2.2. for example the nodes with addresses 2341, 1342, 
1243, 1234 are the corresponding nodes in a sample S4.  

                                                           
1 The detailed explanation of the proposed parallel algorithm is available in [2]. 
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 In our parallel algorithm, a useful function called Send is used to transmit the 
contents of the nodes of a Sk-1(i) to the corresponding nodes of another Sk-1(j). Since 
the host network is Sn, the last N-K symbols of the upper level Sk (in which the Sk-1(i) 
and Sk-1(j) are embedded) are the same. This function gets four values as inputs: i and 
j as the k-th symbols of two Sk-1’s , k as the dimension of the upper level sub graph in 
which Sk-1(i) transmits its nodes contents to the nodes in Sk-1(j), and n is the dimension 
of the host network Sn. Notation k,n in the send function represents that the last n-k 
symbols are the same. The pseudo code of the send function is present in [2]. 

Rule 1. Every node value in a particular  Sk-1(i) is sent to its corresponding node in Sk-

1(j) using Send function, if i and j are in a descending order in the symbol set (i.e.  j is 
less than i and greater than the other remaining symbols). 

Let S=X1 X2 … Xi-1 Xi  k,n, Xi ∈{1,2,3, … ,n} be the source node in the particular 
Sk-1, and the Send function be used to transmit the node contents of Sk-1(Xi) to Sk-1(Xi-1). 
The routing steps are as follows: 

Step1: X1 X2 … Xi-1 Xi  k,n   Xi X2 … Xi-1 X1  k,n 
Step2: Xi X2 … Xi-1 X1  k,n  Xi-1 X2 … Xi X1  k,n 
Step3: Xi-1 X2 … Xi X1  k,n   X1 X2 … Xi Xi-1  k,n 

In this rule, for the sake of clarity, we suppose that Xi>Xi-1 >Xi-2 …>X1. According 
to our processor ordering scheme the node X1 X2 … Xi-1 Xi  k,n has the greatest index 
in the Sk-1(Xi) and the node X1 X2 … Xi Xi-1  k,n has also the greatest index in the Sk-1(Xi-

1), therefore the node X1 X2 … Xi Xi-1  k,n which is selected as a destination node is the 
Corresponding node of the source node. 

Rule 2. Two consecutive neighboring nodes S1 and S2 in Sk(i) send data to consecutive 
neighboring nodes D1 and D2 in Sk(j), if i and j are in the descending order in the 
symbol set. 

Suppose that node  X1 X2 …  … Xi-1 Zi k,n  and node Y1 Y2 …  … Yi-1 Zi k,n  in 
Sk-1(Zi) are two consecutive neighbors, and  and Zi are in descending order in the 
symbol set such that {T} < {  , Zi} < {S} where {T} ∪ {S} = Symbol Set – {  , Zi}. 
After sending the contents of nodes in Sk-1(Zi)  to nodes in Sk-1(Yi), we have the 
following steps for sending data from node X1 X2 …  … Xi-1 Zi k,n  , 

Step1:  X1 X2 …  … Xi-1 Zi k,n      Zi X2 …  … Xi-1 X1 k,n   
Step2:  Zi X2 …  … Xi-1 X1 k,n              X2 … Zi … Xi-1 X1 k,n   
Step3:   X2 … Zi … Xi-1 X1 k,n   X1 X2 … Zi … Xi-1  k,n  

and the following steps for sending data from node Y1 Y2 …  … Yi-1 Zi k,n , 

Step1:  Y1 Y2 …  … Yi-1 Zi k,n     Zi Y2 …  … Yi-1 Y1 k,n   
Step2:  Zi Y2 …  … Yi-1 Y1 k,n           Y2 … Zi … Yi-1 Y1 k,n   
Step3:   Y2 … Zi … Yi-1 Y1 k,n Y1 Y2 … Zi … Yi-1  k,n  

The nodes X1 X2 … Zi … Xi-1  k,n and Y1 Y2 … Zi … Yi-1  k,n in Sk-1( ) are also 
consecutive neighboring nodes because exchanging  and Zi symbols dose not affect 
the ordering of nodes. 

Rule 3. In transmission from nodes in Sk-1(i) to nodes in Sk-1(j),  where i is the 
minimum symbol in the corresponding symbols set and j is the greatest one, k-2 
exchange steps are required within the Sk-1(j) to send data in the corresponding nodes 
to each other. 
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 If the contents of the node X2 … Xi X1 k,n is transmitted by function send to the Sk-1 

(Xi), where Xi>Xi-1 >Xi-2 …>X1 in Sk-1(X1), the following steps are performed in the 
first phase of the send function: 

Step1:  X2 X3 … Xi X1 k,n                              X1 X3 … Xi X2 k,n   
Step2: X1 X3 … Xi X2 k,n                               Xi X3 … X1 X2 k,n   
Step3: Xi X3 … X1 X2 k,n                               X2 X3 … X1 Xi k,n   

It’s clear that X2 X3 … Xi X1 k,n has the greatest index among other nodes in Sk-1 

(X1). Thus, in a correct transmission, the contents of this node should be transmitted to 
a node in  Sk-1(Xi) which has the greatest index (according to the processor ordering), 
but the use of the proposed algorithm doesn’t accomplish this task in the first 3 steps. 
To do so, K-2 exchange steps are required in Sk-1(Xi)  as follows:  

Step1:  X2 X3 … X1 Xi k,n          X3 X2 … X1 Xi k,n 
Step2:  X3 X2 … X1 Xi k,n X4 X2 X3… X1 Xi k,n  
 
 
Step k-2: Xi-1X2 X3… X1 Xi k,n   X1X2 X3… Xi-1 Xi k,n   

From Rules 1, 2 and 3, it can be concluded that each node in Sk-1(i) is sent to its 
corresponding node in Sk-1(j) by send function, if i and  j are in the descending order 
except when i is the minimum and j is the greatest symbol in corresponding symbol 
set. The following transmission sequence shows a correct order of transmission. 

Sk-1(Xi) Sk-1(Xi-1)    ….                    Sk-1(X1)                 Sk-1(Xi)  

where  Xi>Xi-1 >Xi-2 …>X1. 

3   The Parallel Algorithm 

The parallel algorithm consists of three main phases: Initialization Phase, Cluster 
Assignment Phase, and Centers update Phase. The number of patterns in this 
algorithm, N, the number of clusters, K, and the number of features, M, should satisfy 
conditions N.M=S!, K.M=T!, and M=R!. If the number of patterns, clusters or 
features are not in a factorial manner, one can add enough number of dummy entries 
so that the above conditions satisfy and the clustering results are not affected [5].  

3.1   The Initialization Phase 

During this phase, two index numbers are associated to each PE according to the 
mentioned processor ordering scheme. The first index shows the order of the PE in the 
host network Ss and the latter one is the order of the PE in the corresponding ST. Then 
the patterns are associated with different SR's in such a way that the i-th feature of a 
pattern resides in a PE whose index number satisfies the condition iindex

m

≡ . Then the 
first ST in SS is considered as the master cluster window (the choice of the initial cluster 
centers in the master cluster window is arbitrary), and its contents are copied into all 
other ST’s, so that the current cluster center selection is reported to all the other cluster 
windows. The register R1 of each node is used to store the distance of node to its cluster. 
The register R3 represents the value of the node distance to the current cluster. The 
registers F1 and C1 are used to store the values of features and their cluster numbers. 

k-2 steps  
are required 
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3.2   The Cluster Assignment Phase 

The aim of this phase is to compute the distance d2 (i,k) of each pattern in each cluster 
window from the current selection of cluster centers, and to choose the minimum 
distance to all cluster centers. We then assign this cluster to the pattern according to 
the selected choice. 

First, the distances between the features and the current centers available in each 
node of a SR are computed in a parallel fashion among all SR’s in the network as 
(Pattern feature - Center feature) 2

.  
 Then by the use of a function called Group Accumulate [1], the value of d2 (i,k) 

which represents the distance between the i-th pattern and the current center is 
calculated and compared to the old value; the smaller one is selected as the cluster 
where this pattern belongs to.  

 In the second step, the values of the SR’s present in all SR+1’s available in the SS are 
rotated once via the send function in parallel, as previously described. These steps 
will be repeated R+1 times, until all the SR’s present in all SR+1’s get each other’s data.  

The next step would be to rotate the data values of SR+1’s in all SR+2’s in parallel 
once, and repeat the first and second steps R+2 times. The addition of the levels of 
sub-graphs and their rotation of them continues until the ST+1 is reached; in other 
words, we reach one level higher than the cluster windows (ST’s). 

 By the end of the Cluster Assignment Phase, all the patterns have been assigned 
their cluster membership in the corresponding higher order node (according to the 
PE’s ordering). These steps are described in [2]. 

3.3   Centers Update Phase 

As mentioned before, all the cluster windows (ST’s) have been indexed such that 

every node contains a variable T which is equal to
!R

Index , which shows that what 

cluster center data each RS  in a cluster window is responsible for. This value is a 

pre-computed constant for each SR (which would contain a feature vector). This phase 
has two steps: Broadcast Cluster Center step and Cluster Center Update step. 

3.3.1   Broadcast Cluster Center Step 
In this phase, all the SR’s in SS broadcast their cluster numbers which have been 
computed in the previous phase and stored in their highest indexed node.  

As mentioned earlier, the center number of patterns is stored in a node with 
highest index within the SR’s. Let X1 X2 … XL R,T  be the node with highest index in 
corresponding SR. The following optimal broadcasting algorithm [4] can broadcast the 
content of this node to the processors in SR (XL). 

3.3.2. Cluster Center Update Step 
In this phase, all the SR’s in SR+1 exchange their values R+1 times. In each rotation 
step, the contents of nodes in SR’s , which include cluster number and the feature 
value is transmitted to its corresponding node in the consecutive SR. In each node in 
SR’s, if the cluster number T is equal to the cluster number it receives (from the 
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previous window SR), the PE adds its feature value to the feature value it gets, 
otherwise it does nothing. 

In the next step, the dimension of the last step is increased once, in fact SR+1’s 
exchange data R+2 times inside the corresponding SR+2. In each exchange operation, 
the above steps are repeated again until ST+1 is reached. 

Through the last step, all ST’s in a ST+1 exchange their nodes’ contents with their 
corresponding ST’s, T+1 times. Since corresponding SR’s in two different ST’s (SR’s 
with similar values of T) contain similar cluster center information, the nodes of each 
ST just add their former contents to the newly received ones; there is no need for any 
comparison or similar operation. 

The last step is repeated until we reach the SS. There will be [S(S+1)/2-
T(T+1)/2+K] additions and send operations. The pseudo code of this phase is also 
present in [2].   

4   Conclusions 

The star graph was proposed as an attractive alternative to the hypercube topology for 
interconnection between processors in parallel computers. It has been extensively 
studied in different aspects and many algorithms have been designed for it. In this 
paper, a squared error clustering algorithm for a star multi-computer was presented. 
This algorithm is fast and requires a little amount of memory per processing node. 
This algorithm completes in O(K+ S2 - T2) steps for a clustering problem of N 
patterns, with M features per pattern, and K clusters, where N.M = S!, K.M = T!, and 
M=R!, on an N.M–node  multiprocessor with star topology. 
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Abstract. In this paper we propose a new parallelization scheme for
Simulated Annealing — Hierarchical Parallel SA (HPSA). This new
scheme features coarse-granularity in parallelization, directed at
message-passing systems such as clusters. It combines heuristics such
as adaptive clustering with SA to achieve more efficiency in local search.
Through experiments with various optimization problems and compar-
ison with some available schemes, we show that HPSA is a powerful
general-purposed optimization method. It can also serve as a framework
for meta-heuristics to gain broader application.

Keywords: Simulated Annealing, Parallelization, Metaheuristics, Hi-
erarchical Clustering.

1 Introduction

Simulated Annealing(SA), firstly proposed in [7], is a randomized optimiza-
tion algorithm widely applied to various combinatorial and continuous prob-
lems. Compared with other randomized algorithms, such as GA, Tabu Search,
various evolutionary algorithms, it possesses a formal proof of convergence to
global minima[6] under some restrictions on cooling scheduling and temperature
parameters[10]. Despite this strictness, SA in practice retains the ability to avoid
local minimum and to locate near-optimal solutions.

SA is computation-intensive algorithm and features sequential intrinsics;
there has been much work on its parallelization [4,3,8,11,2]. With different par-
allel granularity, these parallel schemes are targeted at various kinds of parallel
machines. Schemes of coarse granularity usually have to deal with scalability
problems. We’ve designed a new parallel SA scheme in which processes are orga-
nized in a three-level hierarchy, addressing scalability problems effectively while
achieving better coverage over the search space. Experiments show that it out-
performs conventional parallel SA in either convergence speed or solution quality.
This article is organized as follows: in Section 2 we will have a short overview
of sequential and parallel SA and summarize related works. Detailed design and
implementation of HPSA is presented afterwards in Section 3. In Section 4 we
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show HPSA outperforms available parallel SA in either speed or solution quality
through various experiments. Finally We conclude that HPSA could serve as a
general-purposed optimization scheme and point out our future work.

2 Sequential SA and Its Parallelization

2.1 Sequential SA

Simulated Annealing[7,1,10] is an optimization algorithm in analogy to the an-
nealing process in metallurgy. For a formal description of SA, we give definition
over these terms:

S : Search Space;
Cost : S → IR, Cost Function Defined over S;

N : S → 2S , Neighborhood Function;
T : Temperature, T ∈ IR+.

SA is used to locate a solution sm in S that minimize function Cost, given
the neighborhood relation N . Usually, N is symmetric over S: ∀s ∈ S, t ∈ S,
t ∈ N (s) → s ∈ N (t). The basic idea of SA is to find an initial point in S and
an initial temperature T0, then conduct a random local search process within
S under the control of T . The process carries on until T approaches zero close
enough. A basic flow chart of SA is shown in Fig.1.

PROCEDURE Sequential SA
BEGIN

s ← Initial Solution in S
T ← Initial Temperature T0
DO

DO
s∗ ← N eighbor(s)
ΔC ← Cost(s∗) - Cost(s)
IF ΔC < 0 OR Accept(ΔC,T) THEN

s ← s∗
END IF

UNTIL Equilibrium
T ← Decrement(T )

UNTIL Frozen
END PROCEDURE

Fig. 1. Sequential SA

The outer loop of SA generally deals temperature. It starts from T0 and
terminates when T is low enough, which also terminates the algorithm. The
inner loop(Metropolis Loop) which is conducted under a certain temperature,
mainly deals with local search. A solution s∗ in N (s), is generated and judged
by Cost(s∗). If s∗ is better, i.e., of lower cost, s is replaced by s∗. If it is worse,
it is accepted statistically according to the Metropolis criteria[7].
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2.2 Parallelization of SA

According to the classification of parallelization of Metaheuristics in [5], parallel
schemes for SA fall into three categories:

– Fine granularity parallelization for inner loop
• Functional parallelization on move evaluation
• Data parallelization of multiple-move evaluation

– Parallelization based on search space partitioning
– Multiple concurrent runs exploring the solution space

Since Type 1 schemes [3,8,4,2,3] feature fine granularity, they fit SMP or
SIMD machines. The high communication frequency between processes hampers
the effectiveness of such schemes on loosely-coupled systems, such as clusters or
even distributed systems. Type 2 schemes require an effective segmentation over
the search space so that final output can be summarized directly basing on partial
results from concurrent processes[5]. These schemes are problem-dependent, so
there’s much constraints applying them to general problems. In Type 3 schemes
processes are organized in non-intersected subsets, which we call clusters, to
conduct search process, while communication between processes follows some
patterns. For further description of Type 3 schemes we define:

P : { pi | 1≤ i≤ N}, set of processes;
C : { ci | ci ∈ 2P , ci �= ∅,

⋃
i ci = P , ci

⋂
cj = ∅ for i �= j, 1 ≤ i, j ≤ m},

set of clusters formed from P .

These parallel schemes posses coarse granularity. Each process pi in P ini-
tiates with a randomly chosen solution in S and carries on with its own chain
until SA terminates. During the search process, local information is dynamically
interchanged among process clusters cj (here we assume pi ∈ cj) after all the
processes within cj has undergone certain steps of tempering, so that processes
within cj gain a better knowledge of the search space. Usually a solution s′ is
chosen or created for all the processes within cj to carry on instead of their
original solutions si. Process clusters could dynamically adapt during the search
process.

MMC-PSA in [9] is a representative of Type 3 schemes. In MMC-PSA C ≡
{P}, i.e., only one constant process set exists. The replacement strategy is to
replace solutions of all the processes with the best one sbest. While this replace-
ment scheme’s intuitively beneficial, currently best solution sbest may well be a
local minimum. If current solutions of all processes in P are to be overridden,
there’s a possibility that processes which may potentially achieve global min-
imum sm are deviated and lose adjacency to sm. Given an extra large search
space with many local minima, it is more probable for MMC-PSA to get trapped
into a local minimum with fair cost, which is not our objective. Also the com-
munication pattern of MMC-PSA does not fit large-scale systems. Especially,
in asynchronous MMC-PSA, maintaining a globally accessible best solution is
extremely costly in a distributed environment. HPSA is designed with these
problems in notion. It’s similar to MMC-PSA in that it is also based on multiple
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chains. Through dividing computation power over potential areas in the search
space and confining most communication within process clusters, HPSA solves
scalability problems faced by MMC-PSA and other similar schemes.

3 Hierarchical Parallel SA

HPSA is targeted at message passing systems, typically cluster environments.
Generally HPSA can be classified as a coarse-grained, i.e., Type 3 scheme. It is
similar to MMC-PSA in that it is also based on Multiple Markov Chain. Main
design considerations are listed below:

– Processes include P , a set worker processes, and a farmer process;
– P is dynamically divided into clusters: ci’s;
– Farmer is responsible for dynamically organizing clusters, i.e. changing C,

to achieve optimal distribution of processes, keeping:
– Processes within the same cluster have adjacent solutions, hence keeping

high reachability within each cluster and minimizing the possibility of killing
potential ones;

– Communication is either intra-cluster or between cluster and farmer.

3.1 Main Structure

Farmer process is mainly responsible for setting up and maintaining clusters.
When the algorithm begins, no cluster exists. Dissociated processes, which do
not belong to any cluster report to farmer directly. When all processes have re-
ported to farmer, clustering decision is made and processes are informed of the
cluster they belong. Each process is uniquely associated with a cluster, which
is confined with an MPI communicator. In each cluster a head process is cre-
ated to report to farmer at intervals about information of local search. Farmer
decides to reshuffle clusters when a certain number of clusters have reported
to have undergone great changes from their original positions. On the decision
of reshuffling, farmer responds cluster heads with a message flag which indi-
cates dismissal, which is broadcasted within the cluster. Processes which have
received messages with dismissal flag on will become dissociated and report to
farmer afterwards, just like when the algorithm begins. After all the clusters
have been noticed of dismissal, farmer enters the phase same to the time when
the algorithm initiates. A cluster reports to farmer that it’s quitting when all
of its processes have reported to have ended the annealing processes. When all
the clusters have reported quitting, farmer quits, terminating the algorithm.

Communications inHPSAfall into two categories: intra-cluster communication
and communication between clusters and farmer. Intra-cluster communication is
carried out at the interval of n tempering iterations. Within a cluster the communi-
cation is synchronous, i.e., a process synchronizes with others to find out their best
solution. Afterwards, processes will continue local search from this best solution.
Under synchronous communication, there’s no need to keep record of the globally
best solution; also we are free from the overhead of exclusively accessing it.
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Inter-cluster communication is fully asynchronous. Non-associated processes
report to farmer as soon as they’ve reached local equilibrium under current
temperature, sending out their current solutions; afterwards they wait for the
cluster assignment from farmer. Heads of clusters report to farmer when local
synchronization times has reached a threshold. After sending out local informa-
tion to farmer, head processes wait until farmer replies. Farmer would either
reply indicating the cluster to either carry on annealing or dismiss. On receiving
dismissal messages, head process would dismiss all its fellow processes within
the cluster and they will all enter non-associated state.

All the processes in HPSA are organized into a multiple-level hierarchy. When
clusters are formed, it contains three levels: the highest level contains farmer
process only; the secondary level contains all cluster head processes; the lowest
layer contains ordinary working processes. When clusters are disassociated, it
is a two-level structure. Under either mode, communication is controlled within
directly-adjacent nodes in the hierarchy.

3.2 Clustering Decision in HPSA

On farmer we adopt Agglomerative Hierarchical Clustering to organize processes
into clusters. So the process of building C can be divided into two steps:

– Building Hierarchical Clustering Tree
– Forming C

Fig.2a is an example of dendrogram of hierarchical clustering. As is shown,
configurations to be clustered are labelled from 1 to 12. A full tree is formed
with internal nodes labelled from 13 to 23, according to their generation time
during the clustering process. While conventionally in hierarchical clustering a
stop criterion is used to terminate the clustering process, such as cluster count
reaches a threshold, in HPSA we decide to build the whole cluster tree since
available process count is usually small and not likely to exceed several hundred
and the overhead of building the whole tree is trivial. Cluster identification is
specific to problems. For problems such as Protein structure prediction in [12], a
quantitive threshold may be provided basing on experiences. For other problems
of implicit distance measurement, threshold may be provided heuristically, for
example, 1/10 of Radius.

As for those problems for which no distance threshold is available, other
heuristics can be applied to identify clusters. For example, clustering decisions
can be made basing on variance changes between different clustering options. For
example, clustering decisions can be made basing on the variation series from
leaf node up to the root in the clustering tree. See Fig.2 for an example. The
variance trajectory of Node−4 in Fig.2a is shown in Fig.2b. Usually the variation
series is non-descending. So we can detect one-step changes in variation series
and put the clustering barrier between the pair of nodes with greater slope. In
the previous example, all the nodes under Node − 18 will form a cluster.
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Fig. 2. Hierarchical Clustering Example

4 Experiments

4.1 Implementation and Configurations

HPSA is implemented in MPI to support message-passing environments such as
clusters. We have tested HPSA over various TSP problems.

For symmetric TSP problems, the definition of neighborhood structure and
distance between solutions varies according to implementations. In HPSA we
use conventional neighborhood definition for TSP[3]. With this local topology, it
requires much computation to attain the distance between solutions. In HPSA
we introduce a method to approximate distance between different TSP solutions:
the ratio of uncovered cities by common sub-chains among all the cities of two
solutions. For comparison we have implemented MMC-PSA [9,11] and MIR-
PSA(Multiple Independent Run).

Experiments are carried out on an 8-node cluster, each node featuring 4-way
SMP of Pentium-III Xeon 700MHz CPU and 1GB Ram. The software envi-
ronment is Linux 2.4.20 and mpich-1.2.5. All nodes are connected by 100Mb/s
switch. On the cluster totally 64 MPI processes are engaged in the parallel SA,
including the farmer process.

4.2 Test Results

We have randomly picked several TSP benchmarks from TSP-LIB:
eil101, tsp225, ch150, kroA100 and kroC100, with best solutions known. Two
aspects of HPSA are evaluated: the First Hit Time(FHT) of a certain cost level
and Quality of final result. Table.1 shows the test result of FHT, and cost-levels
were selected as 102%,105% and 110%. Since the annealing processes are dif-
ferent only in the initial temperature, so the percentages of FHT in the whole
annealing process is listed. The average FHT of 10 independent runs are re-
trieved from each test suit for HPSA, MMC-PSA and MIR-PSA. We have also
tested effects of fixed scheduling on HPSA. Given a fixed initial temperature,
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Fig. 3. Test Result II

especially one of a low value, the quenching process would take shorter time.
The quality of final result generated by different parallel SA for given problems
are listed in Fig.3.

Table 1. FHT Results

FHT 102% 105% 110%
Problem HPSA MMC MIR HPSA MMC MIR HPSA MMC MIR

ch150 83.0% 83.5% 87.0% 66.2% 64.2% 66.3% 44.0% 44.9% 34.6%
eil101 69.6% 73.2% 68.2% 57.5% 60.0% 51.9% 44.3% 48.3% 45.9%

kroA100 74.8% 77.2% 75.0% 61.2% 62.2% 64.8% 40.1% 37.0% 41%
kroC100 70.3% 70.1% 72.0% 57.7% 57.3% 61.4% 42.2% 33.1% 37.2%
tsp225 87.7% 93.3 91.0% 79.5% 59.5% 77.0% 50.0% 41.7% 47.8%

From Table.1 we can see that HPSA gains a margin over MMC-PSA and
MIR-PSA if we use a lower cost level. But when cost level rises, there are more
chances that any of the three may overtake the other two. Also given a fixed
schedule, the quality of final result averaged by 10 runs, as is in Fig.3, shows
that HPSA outperforms MMC-PSA and MIR-PSA. The fact that MIR-PSA
outperforms MMC-PSA is congruent with the tuition that given a low starting
temperature, MMC is more likely to kill potential processes.

The running time saved by HPSA is trivial according to our experiment
results. Most of the time MMC-PSA and HPSA consume similar amount of time.
Through localizing communication by assigning clusters of processes to adjacent
processing units, HPSA may gain further timing-advantages over MMC-PSA.

5 Conclusion and Future Work

HPSA is a parallel SA scheme that is located between MMC-PSA and MIR-PSA.
By dynamically clustering processes and manage them in a two-level hierarchy, it
easily handles the scalability problem most conventional parallel SA schemes face.
Through experiments we show that for TSP problems, HPSA gains advantages
over MMC-PSA and MIR-PSA on the large. With further growth of distributed
systems, HPSA is a more promising algorithm among parallel SA schemes.
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For our future work, clustering criterion of HPSA is to be refined so that it
can handle problems with speculative distance threshold is provided, which may
not be accurate enough and has to be refined. Mixed clustering schemes would
be more adaptive, combining both heuristics and experiential results for cluster
identification. In future work we will apply HPSA to various contemporary ap-
plications, such as protein 3D structure prediction. Since HPSA can serve as an
general-purposed optimization method, we will also put much emphasis on its
interface design, so that we can cut down implementation efforts of applying it
to other problems.
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Multi-color Difference Schemes of Helmholtz
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Dodecahedron Partitions�
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Abstract. In this paper, the problem of partitioning parallel dodecahe-
drons in 3D is examined. Two schemes are introduced and their conver-
gence rate discussed. A parallel fast solver was implemented and tested
experimentally, with the performance results presented.

1 Parallel Dodecahedron Partition in 3D

Give a three linear independent vectors: e1, e2, e3, we set bi-orthogonal vectors
n1, n2, n3;

(ej , nk) = δj,k (j, k = 1, 2, 3), n4 = n1 − n2, n5 = n2 − n3, n6 = n3 − n1.

There are six normals of six planes via the four directions e1, e2, e3 and e4 =
−e1 − e2 − e3. For any 3-D point P , we define P = (t1, t2, t3, t4, t5, t6) by

t1 = (P, n1), t2 = (P, n2), t3 = (P, n3), t4 = (P, n4), t5 = (P, n5), t6 = (P, n6)

with t4 = t1 − t2, t5 = t2 − t3, t6 = t3 − t1.
A basic parallel dodecahedron domain is defined as follows

Ω = {P |P = (t1, t2, t3, t4, t5, t6)| − 1 ≤ tν ≤ 1, (1 ≤ ν ≤ 6), t4 = t1 − t2,

t5 = t2 − t3, t6 = t3 − t1} (1)

The basic parallel dodecahedron domain has 14 vertices, 12 hyper-planes and 24
edges on the boundary.

It is worth to note that all of parallel dodecahedrons form a tiling of R2 shown
as Figure 1 and many crystal polyhedrons in material science can be composed
from such kinds of dodecahedrons.

� Project supported by National Natural Science Foundation of China (No. 10431050)
and the Major Basic Project of China ”High Performance Scientific Computing”.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 301–308, 2005.
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Fig. 1. A dodecahedron partition Fig. 2. Three colors ordering

2 Two Schemes for Laplacian Operator over
Rhombic-Dodecahedron Partitions

In 3-D parallel dodecahedron domain case, the Laplacian operator can be can
expressed using the following two operators

Δ = (n1, n1)(e1, ∇)2 + (n2, n2)(e2, ∇)2 + (n3, n3)(e3, ∇)2

+2(n1, n2)(e1, ∇)(e2, ∇) + 2(n2, n3)(e2, ∇)(e3, ∇) + 2(n3, n1)(e3, ∇)(e1, ∇),

and

Δ =
4∑

j=1

Aj(ej , ∇)2 +A12(e1 +e2, ∇)2 +A23(e2 +e3, ∇)2 +A31(e3 +e1, ∇)2 (2)

where

A1 = (e2 × e3, e3 × e4) + (e3 × e4, e4 × e2) + (e4 × e2, e2 × e3),

A2 = (e3 × e4, e4 × e1) + (e4 × e1, e1 × e3) + (e1 × e3, e3 × e4),

A3 = (e4 × e1, e1 × e2) + (e1 × e2, e2 × e4) + (e2 × e4, e4 × e1),

A4 = (e1 × e2, e2 × e3) + (e2 × e3, e3 × e1) + (e3 × e1, e1 × e2),

A12 = (e1 × e3, e2 × e4) + (e2 × e3, e1 × e4),

A23 = (e2 × e1, e3 × e4) + (e3 × e1, e2 × e4),

A31 = (e3 × e2, e1 × e4) + (e1 × e2, e3 × e4).

Based on the above two operator identities, we may derive some 13-point or 15-
point difference schemes, respectively. The 15-point scheme corresponds piece-
wise linear finite element of 3-D Laplace equation within the rhombic dodecahe-
dron partition. In this special discrete case,
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(ej , ek) = (1 − 4
3
δj,k)h2, j, k = 1, 2, 3, 4., A12 = A23 = A31 = 0,

the above 15-point scheme degenerates to 9-point scheme. Let

c1 = e1 − e4, c2 = e2 − e4, c3 = e3 − e4, c4 = e1 − e2, c5 = e1 − e3, c6 = e2 − e3

it is natural to lead to a 13-point scheme with second order accuracy over the
rhombic-dodecahedron partition case as follows

L13u(P ) = 12u(P )−
6∑

i=1

(u(P + ci)+ u(P − ci)) = −16
3

h2(Δu(P ) + O(h2)) (3)

Note that in the rhombic-dodecahedron partition case al points can be di-
vided into three colors in the sense that for each fixed point there are no neighbor
points of this point belong to the same color. We may denote the three color to
be yellow, black and red. It is interesting that among the three color points the
are divided into two groups. The first two colors belong to a group, on which the
number of neighbor points equals to four and all neighbors are red color. And
the number of neighbors for the red color points equals to eight. Based on the
above three colors ordering we may derive the following so-called 5-5-9 scheme

LY
5 u(P ) = 4u(P ) −

4∑
i=1

u(P + ei) = −2
3
h2(Δu(P ) +

h

9
ru(P ) + O(h2));

LB
5 u(P ) = 4u(P ) −

4∑
i=1

u(P − ei) = −2
3
h2(Δu(P ) − h

9
ru(P ) + O(h2));

LR
9 u(P ) = 8u(P ) −

4∑
i=1

(u(P + ei) + u(P − ei)) = −4
3
h2(Δu(P ) + O(h2)) (4)

where r is a third order differential operator

r = 2
∂3

∂z3 − 3
∂3

∂y2z
− 3

√
2

∂3

∂xy2 − 3
∂3

∂x2z
+

√
2

∂3

∂x3

With matrix notation the above scheme can be written as⎛
⎝ 4I 0 AY R

0 4I ABR

AT
Y R AT

BR 8I

⎞
⎠

⎛
⎝uY

uB

uR

⎞
⎠ = −2

3
h2

⎡
⎣
⎛
⎝ ΔuY

ΔuB

2ΔuR

⎞
⎠ +

h

9

⎛
⎝ ruY

−ruB

0

⎞
⎠ + O(h2)

⎤
⎦ (5)

where two matrices AY R and ABR are sparse with four non-zero terms (−1)
at most in each row and column. Hence for Dirichlet boundary conditions the
matrix A is non singular because of its weak diagonal dominant.
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3 Convergence Rate

Lemma 1. If

A =
(

A11 A12
A21 A22

)

is invertible as well as A11 and A22, then

A−1 =
(

A−1
1 −A−1

1 A12A
−1
22

−A−1
2 A21A

−1
11 A−1

2

)

or

A−1 =
(

A−1
1 −A−1

11 A12A
−1
2

−A−1
22 A21A

−1
1 A−1

2

)

where
A1 = A11 − A12A

−1
22 A21, A2 = A22 − A21A

−1
11 A12.

Repeating to referee Lemma 1 leads to the following

Lemma 2. If

A =

⎛
⎝ 4I 0 AY R

0 4I ABR

ARY ARB 8I

⎞
⎠

is invertible then

A−1 =

⎛
⎝ A−1

Y
1
8A−1

Y AY RARBÃ−1
22 − 1

4AY RA−1
R

1
8A−1

B ABRARY Ã−1
11 A−1

B − 1
4ABRA−1

R

− 1
4A−1

R ARY − 1
4A−1

R ARB A−1
R

⎞
⎠

where

AR = 8I − 1
4
(ARY AY R + ARBABR), AY = Ã11 − Ã12Ã

−1
22 Ã21,

AB = Ã22 − Ã21Ã
−1
11 Ã12

Ã11 = 4I − 1
8
AY RARY , Ã12 = −1

8
AY RARB , Ã21 = −1

8
ABRARY ,

Ã22 = 4I − 1
8
ABRARB .

Based on the above Lemma, it is easy to verify the following convergence
theorem.

Theorem 1. Even though the above 5-5-9 scheme (4) only has first order lo-
cal truncation error, it also has second order global convergence rate as well as
13-point scheme (3).
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4 Approximate Matrix Eigen-Decomposition
Preconditioning

As is well known, an approximate sparse inverse may be a good preconditioning
[1]. Now we propose that a reasonable approximate eigen-decomposition, based
on fast algorithms, also can be taken as a preconditioner. In this case, it needn’t
require the preconditioner B to be sparse, but the working amount of Bu must
less O(N2), e.g. O(NLogN), where N is the matrix order.

Suppose Ao is an approximation of A. Let E = I − A−1
o A, if ρ(E) < 1, then

A−1 = {I − E}−1A−1
o = {I +

∞∑
k=1

Ek}A−1
o

We may define various levels of preconditioners for the matrix A

B0 = A−1
o , Bk = {I +

k∑
j=1

Ej}A−1
o , (k = 1, · · · ).

If A is symmetry, then

(B0Au, u)
(u, u)

= 1 − (Eu, u)
(u, u)

,
(BkAu, u)

(u, u)
= 1 − (Ek+1u, u)

(u, u)
(k = 1, · · · ).

As an example, let A = Ao + εQ, E = −εQ, then

(B0Au, u)
(u, u)

= 1 + ε
(Qu, u)
(u, u)

,
(BkAu, u)

(u, u)
= 1 − (−ε)k+1 (Qk+1u, u)

(u, u)
,

(k = 1, · · · ).
Thus, to be an efficient preconditioner, B must be an approximate inverse of
A in some sense and Bu must be done easily. The second reason can explain
why so many people interested in taking sparse matrices as approximate in-
verse preconditioners. However, in numerical PDE problems, the discrete Green
function is completely dense, it is hard to get high efficient sparse approximate
inverse preconditioners directly. In some cases we may find an approximate eigen-
decomposition. The left question is can we find a fast algorithm for Bu in mag-
nitude of O(NLogN). A typical successful example is to solve Laplace equation
in a cube domain by using the traditional FFT.

5 Parallel Fast Solver and Numerical Experiments

Based on the above analysis now we turn to find a preconditioner

B = W ′DW, W = (Wjk) D = diag(dk)

where the eigen-function matrix
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Fig. 3. 3D 15-point stiffness matrix
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Fig. 4. Reordering towards the original

Wjk = e
i π
2 j·k

= i
((3j1−j2−j3)k1+(3j2−j3−j1)k2+(3j3−j1−j2)k3)h

and the related approximate eigenvalue diagonal matrix

1
dk

=8 − 2 cos(k1 + k4 − k6)hπ − 2 cos(k2 − k4 + k5)hπ − 2 cos(k3 − k5 + k6)hπ

−2 cos(k1 + k2 + k3)hπ + Ch2qo.

where the constant C is depends on the volume of Ω3D and schemes.
Figure 3 and Figure 4 represent the non zero structure of the discreteHelmholtz

system over 3-D dodecahedron with periodic conditions, according to natural or-
dering and reordering towards the original point (0, 0, 0), respectively.

Once one obtains an eigen-decomposition for a preconditioner B = W−1DW ,
the left key problem is to find a fast multiplication of z = Wr.

Based on our extended Fast Fourier Transform algorithm over parallel do-
decahedron partition, see [5] and [6], it is not hard to design a parallel fast solver
for the above two schemes.

Test: Fast 3-D Helmholtz solver on a unit rhombic dodecahedron domain
with six direction periodic boundary conditions.

Figure 5 lists CPU time comparison of our approximate eigen decomposition
preconditioning algorithm to the usual ILU, run with the famous software PETsc

Table 1. Iteration counts and CPU time (Sec.) comparison for a rhombic dodecahedron
domain

N CG HFFT ILU(0) ILU(1) ILU(2) ILU(4) ILU(8)
4 0.0014 0.0018 0.0027 0.0065 0.0197 0.0664 0.0792
8 0.0638 0.0127 0.0707 0.1066 0.2026 1.3643 15.176

16 1.1868 0.1831 1.0544 1.2791 1.9904 9.1244 130.154
32 20.107 1.8897 14.977 17.302 23.373 72.985 2454.5
64 328.01 18.133 230.40 231.81 284.90 / /
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Fig. 5. Dodecahedron iteration: CPU comparison

Table 2. Iteration counts and CPU time (Sec.) comparison for non rhombic
dodecahedron

Iter. CPU
N CG ILU(0) HFT CG ILU(k) HFT
8 69 26 16 0.1017 0.0903 0.1140

16 138 50 19 1.9603 1.5171 1.9380
32 272 91 21 33.417 21.935 21.372
64 532 179 22 528.841 355.67 214.65

[2]. Table 1 shows, in this case, high level ILU(k) (k¿0) does not work, our fast
algorithm is one magnitude faster than the traditional ILU for h = 1

64 .

Test 4: Fast 3-D Helmholtz solver on a non rhombic dodecahedron domain
with six direction periodic boundary conditions. Table 2 shows in this case high
level ILU(k) (k¿0) does not work, our fast solver still works with lower efficiency
than rhombic dodecahedron domain case.

More parallel numerical experiments will be reported on the conference.

Acknowledgement. The figures and part computing are done by Yao Jifeng
and Yang Chao.
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GridMD: Program Architecture for Distributed
Molecular Simulation
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Izhorskaya 13/19, 127412 Moscow, Russia

Abstract. In the present work we describe architectural concepts of
the distributed molecular simulation package GridMD. The main pur-
pose of this work is to underline the construction patterns which may
help to generalize the design of an application for extensive atomistic
simulations. The issues such as design-time parallel execution implica-
tion, flexibility and extensions, portability to Grid environments and
maximal adaptation of existing third-party codes and resources are ad-
dressed. The library is being currently developed, with gradually growing
number of available components and tools. The basic GridMD engine is
a free software and is distributed under the terms of wxWidgets library
license [1].

1 Motivation and Strategy

The main subject of atomistic simulations is to study the microscopic behavior of
a system of particles and to deduce physically important quantities from the mi-
croscopic model. Function of potential energy depending on particle coordinates
may be taken from physical models of different kinds: classical, semi-empirical
(with large number of parameters to be fitted for any specific system) or ab-initio
(with much less number of fitting parameters and more generality). Having the
potential defined, the next step is to extract system properties from it either
by solving equations of motion (Molecular Dynamics) or by sampling the en-
sembles of phase space configurations selected by some criteria (Monte Carlo
methods), or by searching the suitable configuration in phase space (transition
state search, geometry optimization, ligand design, etc.). Sometimes the meth-
ods of exploring the system are combined in complicated numerical experiments.
The most popular experiments in MD and MC have however relatively simple
scenarios: take the system in some initial state and propagate it through the
chain of other states by Newton equations solution or temperature-conditioned
random process. Physically most important part of the model is the definition
of the interaction potential. Looking at the simulation from the higher level
as a tool to obtain physically significant results, researchers face the problem
of process and data management which they must solve spending much effort
on developing complex codes. Statistical averaging and variation of experiment
parameters are always necessary to produce reliable data from numerical simu-
lation [2]. Another fact is large simulation times for complex problems and the
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need to distribute computations. The alternative of taking existing simulation
package and adjusting it for the problem may also require significant time effort
to overcome the limits and inconsistencies in the third-party code.

The idea to create “another parallel Molecular Dynamics package” may seem
not very promising taking in account large amount of fruitful work done in
the field by Molecular Simulation community [3,4,5,6,7]. However, exactly this
popularity of the subject and availability of different codes inspired us to begin
developing Grid M(olecular) D(ynamics) library (GridMD)[8] to serve as flexible
integration tool which may utilize as much of the existing models and methods as
possible and integrate them into a single framework with distributed execution
capabilities. The main strategy of GridMD is to have clear interfaces for all
components, representing common simulation aspects, which may be especially
important for simulation techniques [9] using combined potentials. In the current
work we will cover mostly the upper layers of GridMD, responsible for distributed
execution, leaving the description of MD-specific layers for further publications.

The GridMD code is designed as C++ class library providing construction
tools for atomistic simulations. The library is intended mainly for usage by pro-
grammers who want to quickly build the simulation application. This purpose is
somewhat analogous to the purpose of GUI library supplying its tools and pat-
terns for easy development of applications with graphic interface. The library
is as much platform-independent and flexible as possible. Any tools and com-
ponents, which are platform-dependent or require additional third-party com-
ponents (for example MPI libraries, Grid interfaces, MD packages etc.) may be
used as extensions but are not strictly required. This simplifies selective usage
in research and academic purposes and encourages friendly learning the library
from simple aspects to more complicated. The intended target application is
a statically compiled executable which is transferable to other hosts with the
same OS. The components of the library have clear interplay patterns [10] and
the third-party tools ranging from interaction potentials to Grid execution en-
vironments can be interfaced on different layers.

2 Numerical Experiments

The general structure of GridMD Experiment concept is shown on Fig. 1. The ap-
plication framework logic assumes the definition of one experiment per application,

Inputs

Experiment

Intermediates Outputs Scenario

Parameters Execution graph

System

Iterators

File managerAnalyzer

Fig. 1. Logical composition of Experiment component
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this is however not strictly required. The Experiment consists of the following main
components: Inputs, Outputs and Intermediates are data objects (files, numeric or
symbolic parameters);Scenario contains the strategy of how the experiment is exe-
cuted and this knowledge is encapsulated in Execution Graph; System Iterators are
concrete linear process strategies driving the (atomic) system through the chain of
states, the actual Molecular Simulation is performed by mdIterators.

Input Parameters. The numeric and symbolic input Parameters play spe-
cial role, because they may be used as basis for creating experiment scenarios.
The parameters may originate from different levels of the simulation (interaction
potential parameters, propagator parameters, physical initial conditions, algo-
rithmic parameters). GridMD provides a mechanism of registering the parame-
ters via named Variable concept to make the Experiment aware of the available
parameters and automatically create the corresponding entries in application
configuration files if required. The typical parameter-based scenarios are pa-
rameter variation, averaging over a randomly selected sets in parameter space,
parameter fitting. GridMD provides the developer with a set of predefined ba-
sic scenarios. Scenario and Stages. The Scenario concept standardizes the logic
of application execution and allows to split the experiment into a set of sepa-
rate processes (stages). The key point is that the stages may depend on each
other through input and output but are not communicating during the execu-
tion. This process dependence is illustrated by execution graphs (Fig. 2). The
lines show the process Stages with arrows indicating time direction of execution
flow, the nodes represent process dependencies. Generally the stages coming out

production

Init

System

cycle

Finalize

logical

stage2

stage1

stage2

stage1

Checkpoint

Restart

data files:

trajectory

log

data files:

trajectory

log

a b

A2 B2A2 B1A1 B2A1 B1

select parameter A

select parameter B

c d e

s0 s1 s2 s3 s4

Fig. 2. Basic execution graph elements used in Molecular Simulations: a – simple lin-
ear single-process stage, b – chain of processes with intermediate data generation and
checkpoints. The intermediate data is indexed by stage ids. Different experiment scenar-
ios with their execution graphs: d – branching of single processes, the most frequently
used scenario for parametric modeling, e – branching with checkpointing, important for
lengthy simulations and distributed environments with time-limited queues, f – general
tangled incompletely determined execution.
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of a node depend on the stages coming in, meaning that the outgoing stages
can not be started until the ingoing are successfully completed. Note that con-
crete Scenario implementation may have its own understanding of a successfully
completed node, sometimes not requiring that all ingoing stages are finished
(important for unreliable distributed environments). We distinguish the logical
nodes and stages which may be introduced to Execution graph for structural pur-
poses only and not reflecting encapsulated computational activity (white circles
and thin lines) and production nodes and stages that represent computations
(black circles and thick lines). The production stages, connecting mandatory
Init and Finalize production nodes may be transferred to other hosts for remote
execution.

Execution graphs can take different forms, generally the execution graph is
not completely defined in advance by the application start. The Scenario com-
ponent maintains the graph and can be divided into manager and worker parts.
The worker part is used to start the required stage of the scenario. To simplify
the development, GridMD uses single-application paradigm, so the worker and
manager parts are contained in one executable. When distributed processing is
required, the executable must be transferred to a remote system, switching to
worker mode is usually based on the command line parameter passed to the
executable. The Scenario component has four major tasks:

– execution graph construction before or in course of experiment execution,
storage of up-to date graph state;

– determining the pending for execution production stages on the basis of the
current graph state or terminating the execution if no stages are left;

– updating the graph state according to the results of the stage execution;
– invoking actual production stage execution for the pending stage by the

request, identifying the stage.

The first three tasks are manager tasks and the last one is the worker task. The
nodes and stages are indexed by symbolic identifiers, uniquely specifying their
positions in the graph. The up to date graph itself is accessible for browsing by
worker application components, which may wish to identify what part of the
work is to be done based on the position of the stage in the graph.

Stage identifiers may contain enough information for starting a produc-
tion stage, not requiring the implementation components to go into execution
graph details. The rules for creating and parsing symbolic identifiers may de-
pend on the Scenario. Although GridMD supports very general formulation of
execution graphs, the main attention is paid to the most popular and clear
forms (Fig. 2 c, d). For example, for the form from Fig. 2 c, used for pa-
rameter sweep, the symbolic stage identifier contains the branch number, mak-
ing the definition of parameter set to start with in worker mode
straightforward.

File Management. The node and stage identifiers may be used for the purpose
of indexing files generated or required by worker components. This is done by
scenario File Manager. By default it only composes the fully qualified local
system file names from the identifiers and specified reference names, but also
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may be used for remote storage management. For example, the remote Grid
data storage for intermediate data may be preferable in the cases when the phase
space trajectory has to be recorded by production stages of Molecular Simulation
experiment. The costs of data transfer to the local system may be high in case
of limited local bandwidth. This transfer is usually also unnecessary because the
trajectory data is used as intermediate for experiment result analysis, which may
be as well performed remotely. Thus the intermediate data storage management
can be delegated to the experiment Scenario and execution graph-based file
management system. This system must then accomplish a task of locating the
file by its name and graph id and is easily implemented, for example, on the
basis of such services as Globus RLS [11].

Analyzer. Another component of the Scenario is Analyzer. It is included
separately because frequently the analysis phase of Molecular Simulation is per-
formed after the creation of intermediate trajectory data. It is normally less
demanding computationally than the production phase but may be repeated
several times with different parameters. The analysis scenario is connected with
production scenario and uses by default the same execution graph. The Analyzer
component is used to construct and tune the analysis phase of the experiment,
which logically is just another version the the same experiment. GridMD pro-
vides a set of standard analysis tools for the trajectories generated by MD:
property extraction as function of time, time correlations, particle correlations,
distributions. These tools support ensemble averaging for execution graphs of
the forms from Fig. 2 c, d. and may be accomplished by the same executable
in analysis phase. The only difference between analysis and production stages
of the scenario is the ”MD propagator” of the system: the Newton equations
solver is replaced by trajectory file reader, which loads the trajectory files gen-
erated by production stages. Some Analyzer components (such as tempera-
ture or energy log writers) may be as well used in production phase for
monitoring purposes.

System Iterator. The System Iterator component is the core of any produc-
tion stage, encapsulating the strategy of iterative cycle with possibility of check-
pointing. This component may be requested to perform a number of pending
iteration cycles and then record its complete state, supplying the transferrable
files required for restarting. It must also inform the Scenario component about
the termination when no more pending iterations are left. Optionally System
Iterator may supply information about the total number of its cycles and/or
the computational cost per cycle, expressed in normalized units. Note that this
information is not always known, but is very useful in job splitting strategy. The
chain scenarios, which can split the jobs in time can utilize this information to
control the duration of each chain.

System iterator designed for Molecular Simulations (mdSimulator) is supplied
with GridMD. It serves also as a manager for the physical part of the experiment,
having atomic systems, interaction potentials, propagators and other model tools
as components.
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3 Integration to the Grid

As described in the previous sections, the design of GridMD implies easy Grid
integration, because the application itself generates a sequence of jobs to be ex-
ecuted. The aims of distributed execution environment are then limited to the
actual transfer and execution of jobs, and also accompanying tasks such as job
monitoring and scheduling. Global job execution is managed in GridMD by Job-
Spooler component which receives the stage execution requests from Experiment,
converts them to appropriate system or external commands submitting jobs and
informs the Experiment of the stage execution status.

The execution environment tool to be used as primary testbed for Grid in-
terface of GridMD is NIMROD/G [12,13]. This project utilizes concepts of com-
putational experiments and parameter variation which are very close to that of
GridMD. The parameter sweep scenarios, shown on the Fig. 2 c may be directly
mapped to NIMROD experiments, and the scenarios from the Fig. 2 d can be
converted to a sequence of NIMROD experiments. The web portal functionality
of NIMROD provides monitoring and resource selection facilities which are not
managed by GridMD but necessary for efficient operation.
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Abstract. The computing power provided by high performance low-cost PC-
based Cluster and Grid platforms are attractive, and they are equal or superior 
to supercomputers and mainframes widely available. In this research paper, 
we present the design rationale and implementation of Visuel, a toolkit for 
performance measurement and analysis of MPI parallel programs and real 
time resources monitoring in cluster and grid computing environments. The 
proposed toolkit is web-based interface to show performance activities of all 
computing nodes involved in the execution of a MPI parallel program, such 
as CPU and memory usage levels of each computing node, and monitors all 
computing nodes of a computing platform by displaying real time 
performance data. In addition, this toolkit is able to display comparative 
performance data charts of multiple executions of MPI parallel application 
under investigation, which facilitates the “what-if” analysis. The usage of this 
toolkit shows that it outperforms in easing the process of investigation of 
parallel applications. 
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1   Introduction 

In recent years, the cluster computing technology has become a cost-effective 
computing infrastructure, because it aggregates resources of computational power, 
communication and storage [6, 8]. It is also considered a very attractive platform for 
low-cost supercomputing.  

Cluster of workstations are easy to build, cost effective and highly scalable. It 
consists of a number of personal computers or workstations that are interconnected 
through a high-speed network (Gigabit Ethernet, Myrinet or Infiniband) for 
information exchange and coordination among them. They run commodity operating 
systems, such as Linux. In addition, we can connect a number of cluster platforms to 
form a grid platform, which advantage is to obtain more computational power at low 
cost. Grid computing offers a model for solving massive computational problems 
using large numbers of computers arranged as clusters embedded in a distributed 
infrastructure. Grid computing has the design goal of solving large problems as any 
single supercomputer, whilst retaining the flexibility to work on multiple smaller 
problems. It involves sharing heterogeneous resources (based on different platforms, 
hardware/software, computer architecture, computer languages), located in different 
places belonging to different administrative domains over a network using open 
standards. 

With advances in networking technology, interconnecting PCs and workstations is 
not a problem anymore. Despite of this fact, there is still much to do in the software 
domain. Parallel programs can behave in a number of unexpected ways, because of 
their complex structure, the number of computing nodes used to execute the 
application in a cluster or grid platform, the dataset used by the parallel code, the 
regularity of applications and algorithms in space and time, the heterogeneity of 
software and hardware platforms, among a number of other reasons. In addition, 
effective partitioning, allocation and scheduling of application programs on a network 
of workstations are crucial to achieve high performance. Thus, the performance is 
very sensitive to the strategy used to distribute data to the processors or clients [1]. 

There are several performance monitoring toolkits available, to visualize 
graphically the performance of an application’s execution, e.g., VAMPIR [11] and 
DIMENAS [9]. One way to improve the performance of a parallel application is to 
analyze its performance metrics, e.g., CPU load, memory usage, I/O load, among 
others, and see what happened with the execution of that particular MPI parallel 
application at given conditions. In this paper, we designed and implemented Visuel 
toolkit for cluster and grid environments, providing in this way graphical performance 
data visualizations of MPI parallel applications executed in either cluster or grid 
platforms.  

The remainder of this paper is organized as follows. In section 2 is discussed some 
related researches in performance and monitoring tools for distributed systems.  
Section 3 introduces the Visuel toolkit and its implementation for cluster and grid 
platforms. Later in section 4, a MPI parallel program is executed using Visuel toolkit, 
showing performance data and comparative performance data charts. Finally, in 
section 5, a brief conclusion and future researches are presented. 
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2   Background 

Several performance-monitoring tools are available as recent researches in distributed 
platforms, in order to achieve higher performance and to visualize graphically the 
performance data of an application’s execution, e.g., VAMPIR [11] and DIMEMAS [9].  

A number of monitor tools that generate HTML pages containing performance 
graphical images and data are also available. MRTG (Multi Router Traffic Grapher) 
[4], based on Perl and C. It is a tool to monitor the traffic load on network links. It 
generates HTML pages containing PNG images, which provide a live visual 
representation of the traffic. It consists of Perl script that uses SNMP to read the 
traffic counters and a fast C program that logs the traffic data. RRD (Round Robin 
Database) [7] is a system that stores and displays time-series data (e.g., network 
bandwidth, machine-room temperature, average load). The RRD stores in a compact 
way that does not expand over time.  

The advantage of MRTG over RRD is that it is easier to use, whilst RRD has 
more graphical display options than MRTG. However, the main disadvantage is that 
MRTG has fixed format data (it can only shown the data over time), and it depends 
fully on the use of SNMP to obtain the data, otherwise, it cannot work. The 
advantage of MDS is easy to get information and quick, but it does not have 
graphical display options. 

Several well-known tools such as Ganglia Cluster Toolkit [2] and CACTI [5] are 
particular implementations of RRD tool developed by independent research teams 
around the world. As mentioned before, tools such as VAMPIR, Ganglia, 
DIMEMAS, and CACTI can only show the data over time of each one of the 
computer nodes in a cluster system, not possible to show in particular periods, such as 
the start and end of execution of an application in a grid system. 

3   System Overview 

The Visuel toolkit is designed and implemented based on RRD tool [7]. The main 
reason why we started to work on this toolkit is that we need a tool to visualize the 
performance data of MPI application during its execution, the moment it starts until 
the moment it finishes. In addition, we need a tool which we can perform “what-if” 
analysis, that is, to compare performance results of a parallel application during its 
development stage, and know whether it is cost-effective using a given number of 
computing nodes. 

Visuel toolkit is scalable, i.e., it is able to measure long running MPI applications 
on as much computing nodes in either cluster or grid platforms as they are involved in 
the computations. It is able to generate from minutes to several hours MPI parallel 
programs’ executions. This toolkit supports heterogeneous and homogeneous clusters 
of workstations; this tool can work on any platform where RRD tool is able to run and 
installed.  

In next subsections, design and implementation of this monitoring and analysis 
performance toolkit are introduced and discussed.  
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3.1   Components of the System 

The Visuel performance toolkit is composed of two components. The first one is 
Performance Visualization Manager (VM), which provides to the user graphical 
visualization of application execution’s data, while the second component is the 
DP*Graph Code Visualization Manager (CVM), responsible to bring parallel timing 
graph representation using DP*Graph, as discussed in [13]. The Visuel toolkit scheme 
is shown in figure 1.  

Visuel Toolkit 

Node 1

0

Node 0

1

Node 2

3

Node 3

2

 

Fig. 1. Visuel toolkit and its components 

Essentially, the visualizations are processed in three steps, as shown in figure 2.  

1. rrdtool create: set up a new Round Robin Database (RRD), 
2. rrdtool update: store new data values into an RRD, 
3. rrdtool graph: create a graph from data stored in one or several RRD. 

 

Fig. 2. Visualization creation process in Visuel toolkit 

The Performance Visualization Manager (VM)’s main objective is to monitor the 
amount of resources used to execute a MPI parallel program, from its start to end 
points, e.g., CPU load, memory usage, network bandwidth. These data are used for 
performance analysis and tuning as next step. 

Different from other monitoring tools that provides performance data since the 
system is on, not being able to provide specific measurements in a specific time. 
Additionally, we cannot have in our chart past time data for analysis. The application 
developer can use performance data obtained from successive executions to perform 
code tuning, in order to observe the performance improvements in most recent tuned 
parallel program. 
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3.2   Execution Data Collection 

The data collection and later visualization are performed according to following steps:  

Step 1: for the purpose of record the performance data selected at this initial step, the 
RRD database is built every time on those computing nodes involved in our 
computation. 

Step 2: before executing our MPI parallel program, the master node should execute 
MDF (Monitor Daemon Parent process), which goal is to fork MDC (Monitor Daemon 
Child process) to each of involved computing node. The MDC in each computing node 
involved is going to detect when master node starts with the distribution of tasks 
(segments of code of MPI parallel program), its job is at this moment recording the 
performance data, originated from the execution of MPI parallel program. Before the 
beginning of execution, each involved computing node is in “waiting” state, since the 
tasks did not reach to the computing nodes yet. See figure 3 for details. 

 

Fig. 3. Master node (MDF) parent process forked to a number of child processes (MDC), which 
is equal to the number of computing nodes involved in the computation 

Step 3: As the MPI parallel program is started to run in each of involved computing 
nodes, MDC in each computing node is acknowledged. MDC will get defined system 
resource usage from each computing node, and through network file system protocol, 
these performance data are written back to RRD database in Master Node and log file.  

At the moment of overlapping two data charts of the same MPI parallel program 
executed, since their execution time are different, they will appear side by side in 
different execution times. The log file is used to correct this problem, and it helps us 
in overlapping the two performance data charts in the same execution, beginning at 
the same start point. As MDF detects the end of execution of MPI parallel program, 
this process will broadcast a message to each involved computing node for the sake of 
stopping monitoring the computing nodes and the process of obtaining performance 
data can be stopped. See figure 4 for detailed explanations of this step. 

Step 4: During the programmer starts the performance tuning process, by reviewing 
several executions of the same MPI parallel program, the programmer can choose 
some of several executions of this MPI parallel program to display a combined data 
chart of these selected executions. The scheme in figure 5 shows the details of this 
selection process.  
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Fig. 4. File system in RRD database and log file 

 

Fig. 5. Selection of specific executions of a MPI parallel program during its development 

Step 5: The Visuel toolkit will clean up pending processes by checking each of 
computing nodes, since these only cause marginal errors in performance data. 
Otherwise, it is possible to cause programmers misinterpret obtained results.  

3.3   MDS Data Acquisition and Visualization 

MDS (Monitoring and Discovery System) is information services provider of Globus 
Toolkit [11, 12]. It is based on LDAP protocol, which assists in acquiring system 
information. It is divided to 2 parts. The former one is Information Providers (IPs), 
which is used for information collection. The latter is GRIS, which is used to search 
specific information we need. Get Info is a collection of scripts used to collect all 
computing nodes’ GRIS. First, we must run a slapd daemon. Later, we utilize grid-
info-search or globus-job-run to get every computing nodes’ info and save them as 
a log file. 

Several versions of MDS available does not support Globus Toolkit in MacOS, and 
consequently, if the computing node is Apple’s RISC-based processor, we use 
globus-job-run to execute the customized script we developed for MacOS, while any 
other computing node that run MDS, we use globus-info-seach to collect those 
information we need. 
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Information system is divided into three parts:  

Part 1: Information Providers (IPs) are used for information collection. User 
cannot get information by IPs directly. It must be used by GRIS, 

Part 2: Grid Resource Information Service (GRIS) that is used to search specific 
information we need, 

Part 3: Grid Index Information Service (GIIS) is used to find where nodes are and 
we can via this to use other nodes’ GRIS. GIIS doesn’t need run on every node, being 
just needed only on the master node.  

We have two ways to connect GRIS. One is to connect directly. Use this way we 
have to connect every nodes by ourselves. The other is to connect by GIIS. If via 
GIIS, we only use one instruction and then will return all nodes’ information we need, 
as show in figure 6. 

 

Fig. 6. MDS usage scheme to obtain information 

     

Fig. 7. Hostfile in the grid-hostfile              Fig. 8. List of folders inside main folder 

Get Info is a collection of scripts used to collect all computing nodes’ GRIS. 
Hostfiles are referenced by these scripts, and it is used to record the number of 
computing nodes we have. We use cluster platform name to be the hostfile name. All 
of these information are stored in a folder named grid-hostfile, as shown in figure 7.  



322 K.-C. Li et al. 

The process to add/removing computing nodes in Visuel toolkit has three steps. In 
the first step, user must input cluster platform name and computing node name. As 
second step, some scripts are executed to check the computing node, which is 
authenticated and added. Finally, in the last phase, users just refresh the webpage, 
when it will be shown in the computing node webpage together with other computing 
nodes.  

4   Using Visuel Toolkit 

We have used Visuel toolkit to study several MPI parallel applications. In this 
research paper, we will show the execution and visualization of a MPI parallel matrix 
multiplication program. 

The experimental environment is a grid platform built using a number of cluster 
platforms available in our laboratory. The first cluster platform, namely Intel 
Heterogeneous Cluster, is built using a number of Intel processors of different speeds 
(P2 300MHz to P4 2.8GHz) and amounts of memory (from 128MB to 768MB), 
interconnected via Fast Ethernet. The second cluster platform is a homogeneous 
platform, built up using 17 PCs with AMD Athlon 2400+ CPUs and 1GB memory in 
each node, interconnected via Gigabit Ethernet. The third homogeneous system, 
named Apple Cluster, is built up using 2 nodes with PowerPC(970) 1.6GHz CPU and 
1.25GB memory. Finally, the fourth homogeneous cluster system is built using 4 
computing nodes, where each of them contains 1 AMD Sempron 64-bit 2800+ CPU 
and 1GB memory, interconnected via Gigabit Ethernet.  

As user logs in the management system, the user will see a list of programs, 
executables and visualizations of his research in the main screen. The user can remove 
or edit older or unused files, to compile recent created new parallel programs, choose 
to delete older and unused visualized files and choose to delete older and unused 
compared files to be deleted. See figure 9 for the visualization of the user’s workplace. 

Before proceeding with manual selection of computing nodes, the Visuel toolkit 
shows the listing of all computing nodes available, its system information, speed, 
numbers of CPUs, memory capacity and OS kernel installed.  

 

Fig. 9. User’s workplace screen shot 
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Under little usage, the background of machine name is Blue, meaning that CPU 
usage is between 0%~80%. When under quite full utilization, the color is Red, while 
color Green is displayed that specific computing node is off. See figure 10 for 
computing node page of Visuel Toolkit for our local PDPC/PU Grid platform. 

 

Fig. 10. PDPC/PU Grid platform computing node selection webpage 

 

 

Fig. 11. Parallel program performance visualization 

Once finished the execution of MPI parallel application, performance data of 
selected execution are available and it is able to be displayed anytime. As in figure 11, 
specific performance data of each computing node is displayed separately.  

The developer can perform “what-if” analysis, that is, comparison of several runs of 
same parallel program, for example, minor changes in his program code, modifications 
in the loop levels, data distribution. The Visuel toolkit allows the developer to perform 
comparisons of different runs, by calling previous results. Note that performance data 
of each computing node are draw for each performance data category, e.g., CPU load, 
memory usage. Example of comparisons can be seen in figure 12. 

The first experiment involves the development and execution of parallel versions 
of matrix multiplication program, using four computing nodes of our grid platform. 
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The execution of parallel application is shown in figure 11, while figure 12 shows the 
comparison of two different versions of the matrix multiplication program, where the 
“red line” executes “ijk” and the “black line” executed “ikj” shown in this chart. 

Performance evaluations are quite easy using Visuel toolkit. By looking at each 
selected computing node, it is possible to see and compare performance “before” and 
“after” modifications in the developer’s parallel program.  

 

 

Fig. 12. Performance data comparison screenshot 

5   Conclusions and Future Work 

We show in this paper the viability of implementing a toolkit that brings to developers 
performance data visualizations originating from executions of his parallel 
applications. In addition, this toolkit is a place where the developer can perform 
“what-if” analysis on his parallel application, in order to tune the application either to 
achieve to higher performance or to fulfill the developer’s parameters. 

As future work, several directions of this research are ongoing. The first activity is 
to include this performance visualization in our PDPC/PU (Parallel and Distributed 
Processing Center/Providence University) webportal. This webportal provides access 
of registered members to run their parallel applications on cluster and grid computing 
platforms in a secure way, as also easier will be the management to system 
administrators. 

Once this visualization tool is included in the computing system, the developer is 
able to develop and modify his parallel program as much as he needed, and work on 
performance analysis of his parallel program with successive attempts under “what-
if” analysis, efforts to try to obtain higher performance of his parallel program.  

As part of our investigation, we will analyze possibilities that thread migration and 
thread level parallelism techniques are included in DP*Graph Code Visualization 
Manager, in order to assist with achieving higher performance in the developer’s 
parallel applications. 

Another idea is to implement automatic computing nodes selection algorithm and 
integrate it in our cluster and grid computing platforms. Computing nodes in each site 
are chosen based on information provided in real-time basis, then the Visuel toolkit 
can also be used to perform “what-if” analysis, in the sense that which of selected 
computing nodes should execute what pieces of sequential code, since in a 
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heterogeneous cluster and grid computing environments, the processors of computing 
nodes are different in speed. However, the automatically computing nodes selection 
problem is still an open challenge. 
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Abstract. In order to charge the computer power in the grid, we have made an 
effort to work towards a standard pricing unit. Currently there is a lot of work 
done towards the development of grid economy models and architectures. But 
when it comes to charging, the usual metric which has been popularly used is $ 
per CPU per Hour which seems to be too simple. Our effort is to make this met-
ric more meaningful to both grid service provider and client. We argue that in a 
particular grid host the metric should reflect the true load consumed by the cli-
ents and the delays caused due to the other loads. Further it should eventually 
reflect the network, memory etc consumed by the client as well.  

Previously we have studied about the prediction in the grid after introducing 
the division of the load average at the kernel level. This gave more meaning to 
the historical load collection as CPU historical load data had been collected 
separately for each login user.  Interestingly, later on the division of load strat-
egy has been helpful in the development of a meaningful tariff mechanism and 
would be demonstrated in this paper.  

Eventually this fare mechanism would be used to predict the computational 
costs, which would certainly contribute to the scheduling in the grid. 

1   Introduction 

Varying CPU load has a significant effect on the running time of CPU-bound applica-
tions.  Indeed, for certain types of applications the running time of a computer-bound 
task is linearly proportional to the average CPU load it encountered during the execu-
tion [5]. Important information is the composition of the users who are logged in a 
grid host at a particular time. The focus of this paper is to develop a tariff mechanism, 
which reflects the net load average and delays due to other loads etc. Our focus is on a 
grid of computers. Our contribution is to introduce a fairer approach for charging the 
client. This is better than the existing flat $/CPU/hour mechanism.  

Working towards a tariff mechanism has been motivated by previous work done by 
David Abrahamson on Nimrod/G project [1, 2, 3]. They have proposed economic 
based models for managing resource allocation in Grid computing environments. The 
Nimrod-G has been one of the main landmarks in this regard. The economic approach 
provided a fair basis in successfully managing decentralization and heterogeneity that 
is present in human economies. The models can be based on bartering or prices.  In 
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the bartering-based model, all participants need to own resources and trade resources 
by exchanges. In the price-based model, the resources have a price, based on the de-
mand, supply, value, and the wealth in the economic system. 

But the dynamic nature of the grid encourages us to develop a standard yet a 
changing price unit. In a grid, which is implemented through Globus, a user will have 
to register himself with the provider and needs to be allocated a separate login ac-
count. Thus the user is only allowed to submit his HPC jobs to this particular account. 
Therefore if we can measure the load under that particular user-login, such collection 
of historical load profiles will influence the behavior of that of other user logins. This 
fact emphasizes the importance of the division of the load signal, which we have 
already conducted to improve the prediction solution in grid. 

The division of load means after making some necessary changes to the kernel 
code, the load signal could be collected separately for each login user. Previously we 
have shown that using the division of the load signal we would predict the load signal 
better. The division of load signal is going to be helpful in the development of a better 
pricing/tariff mechanism 

2   Problem Statement 

Our aim is to introduce a dynamic pricing/tariff mechanism for the grid. Our analysis 
has been done at the source or service provider level. 

We argue that the currently most popular charging method which is $ per CPU per 
hour is unfairly static. The grid is multi user system; this means multiple users should 
be able to submit jobs simultaneously, if they chose to do so. For example if there are 
3 users who have been registered with a particular host/service provider, when the 
actual owner is not logged in, then all these 3 users are eligible to submit jobs.  Under 
such complex situations it would be unfair to have a static charging mechanism.  

3   Analysis of the Load Signal 

3.1   The Load Signal and the Run Time of a Task  

Dinda and O’Halloren has related the running time of a task [5], nomt  to the average 

load it experiences while it runs using the following continuous time model: 
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Here )(tz is the load signal, shifted such that )0(z is the value of the signal at the 

current time, nowt . The nomt
is free load runtime and exect

is under load normal run-
time. It has been assumed that the majority of the workload runs at similar priority.  
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4   Theory of Tariff Mechanism 

4.1   Dynamism of Tariff Under Changing Load Profiles 

A particular user runtime is get elongated as a result of all the other user submissions.  If 
we can calculate the free load runtime from the elongated runtime and background load, 
then we would be able to charge in a fairer manner. This is because the charging should 
be based on the runtime of a particular job under free background load or no load. 

4.1.1   Calculation of the Correction Factor for the Charge C $/CPU/Hours 
We ague that a correction for the traditional grid or cluster computer charge 
$/CPU/hours is necessary as  

There should be a consideration for the delays due to the background load. 
The charges should also depend on the load average  
The Calculation Process for a correction factor for delays due to background loads: 

Fig. 1. Running under background loads 

The Job-1 has been submitted to the grid node. After a time delay of AB1, Job-2 
has been submitted to the same node. The load profile of job-1 has been plotted on the 
Fig. 1. Thereafter the load profile of job-2 has been added on with that of Job-1. 
Therefore what Figure 1 indicates is normal load diagrams. In Fig. 2 we have super-
imposed (would be) free load curves of Job-1 and Job-2.   

Let us say in Fig. 1 B1B2 is one sampling period in the kernel. In fact in Digital 
Unix this is 1s and in the most of other Unix and Linux this is 5s. We will say this 
distance is measured in sampling units.  
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Fig. 2. Super imposed free load curves 

Therefore  
121 unitsamplingBB =  

)1('2'1 δ−= unitsamplingBB   

We assume that sampling unit elongated by δ as a result of the background load. 
Further let us say the background load due to Job-1 at time t  is )(1 tla . 

At time t , under the load )(1 tla  1 sample unit has been elongated to 2_exectΔ  
Applying equation (2) for the task 
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We can say from equation (3) that at time y for duration of dy  

the new charges should be = C
yla

dy ×
+ )(1 1

 
 

Where C is the charge $ per CPU per seconds  
We state that the client should be charged after reducing the delays due to back-

ground load. This means the client should be charged for the free load runtime. In 
general case, the total cost can be explained by the following equation.   
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The cost calculated based on the free load runtime= Ct loadlfrre ×_
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The existing Unix/Linux has the sampling rate of 5s and therefore the load average 
has been reported every 5s. 

Let us assume for the period of 5s, error multiplication factor is stable.  
Therefore for any 5s duration, new cost =  
Cost calculated based on the free load runtime =  

C
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Since there is no change of load average over 5s, )(1 yal is a constant. 
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Therefore from the first 5s sampling to the Nth 5s sampling the runtime multiplication 
factors can be calculated as 

rnrrr mFmFmFmF .......,3,1,1
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The Calculation Process for a correction factor for load average dependency: 
The load signal or load average of a job at a particular time is an important factor 

for charging. In general load average 1 means 1 task is scheduled and load average 2 
means 2 tasks are scheduled. As far as the supplier is concerned there should be an 
increase in charging when he increases the number of task on schedule. 

Let us say our normal computer charge is C $/CPU/load average/second or C 
$/CPU/task/second. As far as a job is concerned if scheduled, both per load average 
and task depict the same meaning. 

If we consider the total runtime then the resultant Load factor, Lf = average of load 
signal during the runtime. 

                Therefore          ==
exect

exec

a dttz
t

lLf
0

)(
1

(7)

If we consider a certain 5s duration,  

then average of load signal during the runtime =
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Therefore from the first 5s sampling to the Nth 5s sampling the Load factor can be 
calculated as

nLfLfLfLf .......,3,2,1

Therefore at a certain 5s duration the correction factor = rr mFLf ∗

At a certain 5s duration corrected computer  charge = ( )rr mFLfC ∗∗

The total correction factor = mFLf ∗

Therefore corrected computer power charge= ( )mFLfC ∗∗

5   Experimental Methodology and Results 

Experiment 1: 
In the first part of the experiment, the job 1 has been submitted to account ,1U  and let 
the job run until it finishes. Then in the second part the job 1 has been submitted to 

,1U  and job 2 has been submitted to 2U after time of delayT . Thereafter in the 3rd part 
the job 1 has been submitted to ,1U  and job 2 has been submitted to 2U after time of 

1delayT and job 3 has been submitted to 3U  after time of 2delayT . In all 3 occasions, the 
client job is job 1. The job 2 and job 3 are background jobs. Once the job 1 finishes, 
calculate the cost1 according to the runtime and C $/CPU/s. Thereafter using the 
multiplication correction factor in section 4 the new cost2 have been calculated. The 
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costs have been compared.  Please refer to figure 3 for details of actual runtimes and 
load averages. 
Experiment 2: 
Take 4 pcs in the middleware grid and submit jobs in the following manner 
pc1- Job-A, background1: pc2- Job-A, background2: pc3- Job-A, background3:  
pc4- Job-A, background4: Then calculate the cost of the Job-A in each occasion.   

6   Calculations 

Experiment 1:  we have used 1 pc. The C $/CPU/load average/second = 2 grid $ 
Experiment 1 part 1: 
There is no background load, therefore from equation 6 the resultant mF=1 
From equation 7 and Figure 3.1, resultant Lf = 0.77. 
adjusted C = 2 * mF * Lf = 2 * 1 * 0.77 = 1.54 
cost1= runtime*adjusted C = 850 * 1.54 = 1309 grid $ 
cost2 without correction = runtime * C=850 * 2 = 1700 grid $ 
The Figure 3.2 shows the calculated profiles of mF and Lf   using equations 5 and 8 
every 5s.  
Experiment 1 part 2: 
From equation 6 and Figure 3.3, the resultant mF = 0.58. 
From equation 7 and Figure 3.3, the resultant Lf = 0.83. 
The adjusted C = 2 * mF * Lf = 2 * 0.58 * 0.83 = 0.9628 
The cost1 = runtime * adjusted C = 1100 * 0.9628 = 1059.08 grid $ 
The cost2 without correction = runtime * C=1100*2 =2200 grid $ 
The Figure 3.4 shows the calculated profiles of mF and Lf   using equations 6 and 8 
every 5s.  
Experiment 1 part 3: 
From equation 6 and Figure 3.5 the resultant mF = 0.42. 
From equation 7 and Figure 3.5 The resultant Lf = 0.86. 
The adjusted C = 2 * mF * Lf = 2 * 0.42 * 0.86 = 0.7224 
The cost1 = runtime * adjusted C = 1380 * 0.7224  = 996.91 grid $  
The cost2 without correction = runtime * C=1380*2=2760 grid $ 
The Figure 3.6 shows the calculated profiles of mF and Lf   using equations 5 and 8 
every 5s.  

Fig. 3.1. of experiment 1.1   Fig. 3.2. of experiment 1.1 
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Fig. 3.3. of experiment 1.2                Fig. 3.4. of experiment 1.2 

Fig. 3.5. of experiment 1.3   Fig. 3.6. of experiment 1.3 

Fig. 4.5. of experiment 2.3   Fig. 4.6. of experiment 2.3 

Experiment 2:   we have used 4 pcs. The C1 $/CPU/load average/second = 2 grid $, 
The C2 $/CPU/load average/second = 2.2 grid $, The C3 $/CPU/load average/second 
= 2.5 grid $, The C4 $/CPU/load average/second = 2.8 grid $ 
Experiment 2.1: 
The cost1 = runtime * adjusted C = 900 * 1.092 = 982.8 grid $ 
The cost2 without correction = runtime * C= 900 * 2 = 1800 grid $ 
The Figure 4.2 shows the calculated profiles of mF and Lf   using equations 5 and 8 
every 5s.  
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Experiment 2.2: 
The cost1 = runtime * adjusted C = 1000 * 1.2584 =1258.4 grid $ 
The cost2 without correction = runtime * C=1000 * 2.2 = 2200 grid $ 
The Figure 4.4 shows the calculated profiles of mF and Lf   using equations 5 and 8 
every 5s.
Experiment 2.3: 
The cost1 = runtime * adjusted C = 1200 * 1.2505 = 1500.6 grid $ 
The cost2 without correction = runtime * C=1200 * 2.5 = 3000 grid $ 
The Figure 4.6 shows the calculated profiles of mF and Lf   using equations 5 and 8 
every 5s.
Experiment 2.4: 
The cost1 = runtime * adjusted C = 1270 * 1.4336 = 1820.672 grid $ 
The cost2 without correction = runtime * C=1270 * 2.8= 3556 grid $ 
The Figure 4.8 shows the calculated profiles of mF and Lf   using equations 5 and 8 
every 5s. 

7   Conclusion and Further Work 

The multiplication factor mF and the load factor Lf have been derived considering the 
influence of background load on a particular job. In fact some background load al-
ways exists as some administrative jobs run as “root”. In the experiment 1 we have 
demonstrated that with the change of background load mF is ever changing. The Lf 
too would change over time. In the experiment 2 we have submitted job-A to 4 pcs of 
the “Middleware grid” under different background load conditions.      

In the experiment 1 we have first lounged job-A. The experiment has been repeated 
3 times under different background loads. The total cost for job-A has been calculated 
and compared under experiment 1, section 6. In part 1 the runtime of Job-A is 850s 
sans any background load means mF=1. As the load changes the resultant Lf = 0.77. 
After considering the factors, the cost1 = 1309 grid $. But otherwise the cost2 be-
comes 1700 grid $. In part 2 with 1 background load resultant Lf = 0.83 and resultant 
mF = 0.58.  The cost1 = 1059 grid $ and cost2 = 2200 grid $. In part 3 with 1 back-
ground load resultant Lf = 0.86 and resultant mF = 0.42.  The cost1 = 996.9 grid $ and 
cost2 = 2760 grid $. 

In part 1 as Job-A runs under free load mF=1. The difference between cost1 and 
cost2 is 391 grid $. This means one would have unfairly paid 391 grid $ extra, if the 
previous flat charging mechanism would have been used. But in part 2 with 1 back-
ground load this difference has increased to 1141 grid $. In part 3 with 2 background 
loads the difference has further increased to 1763 grid $. In part 2 and 3 as the back-
ground load increases the difference between cost1 and cost2 increases and such in-
crements in difference further reinforce the necessity for a fairer charging mechanism.   

In the experiment 2 we have run job-A in 4 different computers under different 
background load conditions. The charging of each computer differs. They charge 2, 
2.2, 2.5, 2.8 grid $ respectively. Using the experimental results in section 5, the total 
running costs have been separately calculated and compared under experiment 2, 
section 6. In 2.1 with background load-1 resultant Lf = 0.78 and resultant mF = 0.70.  
The cost1 = 982.8 grid $ and cost2 = 1800 grid $. In 2.2 with background load-2 re-
sultant Lf = 0.80 and resultant mF = 0.65.  The cost1 = 1258.4 grid $ and cost2 = 
2200 grid $. In 2.3 with background load-3 resultant Lf = 0.82 and resultant mF = 
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0.61.  The cost1 = 1500.6 grid $ and cost2 = 3000 grid $. In 2.4 with background 
load-4 resultant Lf = 0.80 and resultant mF = 0.64.  The cost1 = 1820.67 grid $ and 
cost2 = 3556 grid $. The least costs 982.8 grid $ is for pc1, yet had we used the flat 
charging mechanism it would have been 1800 grid $.  

In a previous experiment [8] we have performed the prediction of the load profiles/ 
runtimes using free load profile of a particular job. The prediction results have been 
hence used for scheduling the jobs in the grids. In our future work we would be able 
to predict the set of costs for a particular job in the grid and that information too 
would be useful for better scheduling in the grid. 
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Abstract. In Order to increase the overall performance, we have studied meth-
ods for improving load prediction, which would help improve load balancing in 
the Grid. Current software designed to handle distributed applications does fo-
cus on the problem of forecasting the computer’s future load. The UNIX five-
second-host load has been collected and used to predict the host load, but the 
solution of forecasting can be further improved if CPU historical load data had 
been collected separately for each login user. Another important aspect of his-
torical data collection is that before submission to the grid, the user separates 
his HPC program into sizable parallel programs and test runs them supposedly 
on load free computers. This means the user can obtain the load profile of the 
parallel program on a load free computer together with other important informa-
tion. Once the free load profile is known, load behaviour of a job under certain 
variable background load conditions can be predicted. Thus the forecast can be 
performed for each user before adding the weighted values towards the final so-
lution of prediction. In this paper we have proved that load prediction using free 
load profiles provided better results. In fact once the user based load data are 
collected, the forecasting is somewhat like that of the Stock market.  

1   Introduction 

In a multi user host computer to which more than one user can submit their jobs, the 
applications are in active competition with unknown background workloads intro-
duced by other users. Varying CPU load has a significant effect on the running time 
of CPU-bound applications.  Indeed, for certain types of applications the running time 
of a computer-bound task is linearly proportional to the average CPU load it encoun-
tered during the execution [1, 5]. The focus of this paper is predicting the CPU load of 
shared computing resource. Our focus is on a grid of computers. Our contribution is 
to introduce a new approach for the collection of historical data, which is based on 
individual users in the system. That is to calculate and store the load averages against 
the individual users separately. Important information is the composition of the users 
who are logged in at a particular time. Then, we will introduce a new prediction 
methodology, which is based on free load profiles, which were obtained beforehand. 
Our work though focuses a grid of computer networks and has been based on the 
previous work done in the field of CPU load prediction by Dinda and O’Hallaron  
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[1, 2, 3, 4, 5]. Further we have been quite influenced by the previous works of By-
oung-Dai Lee and Jennifer M. Schopt [9]. At last but not least we have studied les-
sons from Rich Wolkski’s work including Network Weather Service [3, 10].  

2   Problem Statement 

We argue that the individual CPU load can be predicted using free load profiles of 
that particular job and historical CPU load values collected for that particular individ-
ual user. The final CPU load prediction would be calculated from the weighted indi-
vidual user load predictions. In this paper our aim is to prove that the free load profile 
technique is always give better predictions than previous such efforts in total load 
signal predicting [1] using only AR(16). 

The important assumptions are that the set of application input parameters that can 
affect the application run time is known. We do not consider parallel applications 
with run times that are non deterministic or that depends on the distribution of the 
input data. Ex. Iterative Jacobi Computation [9]. 

3   Analysis of the Load Signal 

3.1   Theory of the Load Signal 

The existing Unix/Linux host load average or load signal has been calculated in the 
kernel after sampling the task-list run-queue of the CPU. In this case the processes 
that are runnable and therefore waiting in the queue, executing on CPU, or suspended 
(uninterruptible) waiting for some other external condition, have been counted for 
further calculation [7].

Tasks (n) =TASK_RUNNING (and Runnable) + 
TASK_UNINTERRUPTIBLE 

(A) 

This can be written in more conventional mathematical notation as: 

)1()()1()( // rr etnetloadtload σσ −− −∗+∗−= . (B)

If )(tload is the current estimate of the load average (signal), )1( −tload is the estima-

tion of the load average from the previous sample, and )(tn is the number of currently 
active Unix/Linux processes. The sampling period is σ and reporting period is r .

3.2   The Experimental Analysis of the Division of Load Signal 

After making some necessary changes to the kernel code, the load signal can be col-
lected separately for each login user. In a previous experiment [6, 8], we have proved 
that at any time t  the collective divisible load, which is the resultant load signal, is 
equal to the total load signal as demonstrated by Figures 1 and 2.  

i.e. Total UnUrUUUU ++++++= ..............321
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Fig. 1    Fig. 2 

4   Theory of Load Signal Prediction 

4.1   The Load Signal and the Run Time of a Task  

Dinda and O’Halloren has related the running time of a task [5], nomt  to the average 
load it experiences while it runs using the following continuous time model: 

nom
t

exec

exec
t

dttz
t

t
exec

=

+
0

)(
1

1

 
(1) 
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4.2   Prediction of Load Signal 

We argue that the calculation of the predicted resultant CPU load is better than pre-
dicting the CPU load based on the historical total CPU load values which have been 
the traditional way of the prediction of the load average.  

Suppose the users ,1U  ,2U  3U  and ,4U ……… nU  are users at a particular time t  
Then at that time 1+t  where times step is 5s.  
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Final predicted resultant CPU load = 
=

n

r 1

( rW ) Predicted CPU load of rU + 

CORRECTION 

(C) 

In the Separate Load Average case the historical values of ,1U ,2U ,3U …. ,nU  and 
root have been included in the prediction methodology.  After predicting them sepa-

rately, the resultant would be calculated as .10 ≤≤ Wr  In general as at the time of 

prediction if ,1U ,2U ,3U ………. ,nU  is 0 the historical data of such a component or 
components would not be taken into consideration for prediction assuming that they 

would not revive soon. This means any of the weighted values norW ..........54,3,2,1 =0.   

If ,1U ,2U ,3U ………. ,nU  NOT 0 then norW ..........54,3,2,1 =1.  

4.3   Prediction Methodology 

4.3.1   Load Free Profile Matching 
The load free profile of the application is the most important part of our prediction 
strategy. The following steps would show that how we can predict the future load, 
using load free profile of the application. 
The Calculation Process: 

Fig. 3. Superimposed load curves 

The Job-1 has been submitted to the grid node. After a time delay of AB1, Job-2 has 
been submitted to the same node. The load profile of job-1 when run on a load free 
machine has been plotted on the Figure 3. Thereafter the load free profile of job-2 has 
been superimposed with that of Job-1. Therefore what Figure 3 indicates is superim-
posed diagrams. Let us say in Figure 3, B1B2 is one sampling period in the kernel. In 
fact in Digital Unix this is 1s and in the most of other Unix and Linux this is 5s. We 
will say this distance is measured in sampling units.  

Therefore  
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Fig. 4. Normal running under background load 

In Fig. 4, we have assumed and plotted the might be plot of Job-1 and Job-2. 

)1('2'1 δ+= unitsamplingBB   

We assume that sampling unit elongated by δ as a result of the background load. 
Let us say the background load due to Job-1 at time t  is )(1 tla . 

At time t , under the load )(1 tla  1 sample unit has been elongated to 2_exectΔ  
Applying equation (2) of section 4 for the task 

)}(1{ 1_2_ tltt aunitsampexec +∗Δ=Δ  (3) 

)}(1{ 1 tldtdy a+=  

Our main assumption is that )(1 tla is same over 1 sampling unit and over 

)1( δ+unitsampling  

Therefore we would do the following integration. 
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Where nomt is free load runtime and exect is normal runtime 
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Under the influence of load of Job-1, B1’C’ section has new normexec tt _2_2 >

Anyway still the maximum load average of Job-2 is the same. As a result of the 
additional load of Job-1 B1C has been elongated to become B1’C’. 

The same can be said about the Job-1 as well. 
The error generated due to our major assumption would be proven very small. Cur-

rently Unix/Linux uses sampling period of 5s. If we reduce it the error generated can 
be further reduced.  

Usually, we expect up to 3 users would submit jobs to a node. In generally 3 users 
mean 3 jobs and 3 jobs means the maximum load average around 3. It is generally 
accepted and we too have empirically found that if the load average exceeds beyond 
3, it would hinder performance.  

5   Experimental Methodology and Results 

Our infrastructure hardware consists of Pentium-3 hosts, which are part of the “Mid-
dleware Grid” of School of Electrical Engineering, University of Sydney. Currently 
“Middleware grid” consists of 27 Intel Pentium-3 Linux workstations. In each pc, it 
has been configured to measure the load signals separately, that is in accordance with 
the log in user.  

Experiment 1:  Firstly the job 1 has been submitted to account ,1U  and job 2 has been 
submitted to 2U after time of delayT . The moments before the job 2 is submitted, the 
predicted run times of job 1 and job 2 has been calculated using the methodologies 
discussed in the section 4. Thereafter they have been compared against the actual 
runtimes of job 1 and job 2. By changing the value of delayT , the experiment has been 
repeated thrice.

Experiment 2: Firstly the job 1 has been submitted to ,1U  and job 2 has been submit-
ted to 2U after a time delay of 1delayT . The moments before the job 2 is submitted, the 
predicted run times of job 1 and job 2 has been calculated using the methodologies 
discussed in the section 4. Thereafter the job 3 has been submitted to 3U after a time 
delay of 2delayT . The moments before the job 3 is submitted, the predicted run times 
of job 1, job 2 and job 3 have been calculated using the methodologies discussed in 
the section 4.   Thereafter they have been compared against the actual runtimes of job 
1, job 2 and job 3. By changing the value of 1delayT and 2delayT  the experiment has 
been repeated thrice. 

Experiment 3: In this experiment, 10 computers of the middleware grid have been 
used. Firstly all 10 computers have been submitted with 10 different HPC jobs. Say 
the pcs are ,1p ,2p ,3p ………. 10p . The name of the grid user account is user5a. 

After 1delayT  s 10 identical HPC jobs have been submitted the grid user account 
user5b. This time the jobs are to be done a particular task. They are Bio-informatics 
applications that analyses certain Gene expressions. We have borrowed them from 
High Performance Computing Support Unit University of New South Wales. The 
jobs are considered to be independent. Please refer to the table 2 for results. 
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Table 1. The Job submission and results of Experiment 3 

nameComputer  5p  6p  7p  8p  9p  10p  

sJfreeLoadauser )105(,5 −  2058  2175  2605  2685  2725  3035  
TdelayDelay ≈  298  308  315  930  1265  1300  

0,5 freeJLoadbuser  885  885  885  885  885  885  
)(5'Pr sauruntimeedicted  2488  2688  3277  3357  3497  3671  
)(5' sauruntimeMeasured  2405  2518  3175  3220  3520  3750  
)(5'Pr sburuntimeedicted  1380  1442  1454  1458  1601  1651  
)(5' sburuntimeMeasured  1322  1400  1580  1445 1685  1700  

Fig. 5    Fig. 6. Case 1.1a-Exp1 

Fig. 6. Case 2.2a-Exp2   Fig. 6. Case 2.2b-Exp2 

6   Conclusion and Further Work 

The predictor we used is based on Free Load Profiles and the Division of Load Sig-
nal, which has been introduced to measure the load separately.  Further as a result of 
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the division of load signals our predictor will be able to weight the individual pre-
dicted results in accordance with a selected algorithm.

As Dinda has performed load prediction using AR(16) so that we have compared it 
with ours. In Figure 5 we have presented the plot of RMS error of AR(16) over 100 
samples. In the same diagram we have plotted the case of the Hybrid method which is 
slightly better than AR(16). Our Hybrid method consists of curve matching technique 
and AR(16). When there is a repetition in the submission of the job it switches on to 
curve matching. In this comparison [8] we have predicted only 60s into the future, yet 
you find an ever-increasing RMS error. The problem with AR(16) is as the lead time 
increases margin of error too increases. We have shown that our new approach had 
helped to reduce the margin of error considerably.  Apart from that our new approach 
can predict the total runtime of an application. In fact this is the main advantage over 
the existing AR(16).  According to the results of current experiments we would pre-
dict up to 3600s (1 hour) with about 5% error.   

In the experiment 1 we have first lounged job 1. After Tdealy1, we predicted the 
profile of job 2 before lounging it. Thereafter the actual load profile has been plotted 
using collected load signals. In Figure 6 Case1.1a shows the predicted and measured 
load curves of job1. In the complete diagrams Figure 6: Case1.1a, Case1.2a and 
Case1.3a depict the behavior of job1. The complete diagrams Figure 6: Case1.1b, 
Case1.2b and Case1.3b depict the behavior of job2.  In all 3 cases the average predic-
tion error in runtime is less than 5%.   

In the experiment 2 we have first lounged job 1. After Tdealy1 we predicted the 
profile of job 2 before lounging job2. Thereafter after Tdealy2 predicted the profile of 
job 3 and then lounged. The actual load profile has been drawn using collected load 
signals. In Figure 6 Case2.2a shows the predicted and measured load curves of job1 
and job 2. In Figure 6 Case2.2b shows the predicted and measured load curves of job 
3. The complete diagrams of Figure 6: Case2.1a, Case2.2a and Case2.3a depict the 
combine behaviors of job 1 and job 2. The complete diagrams of Figure 6: Case2.1b, 
Case2.2b and Case2.3b depict the behavior of job 3. In all 3 cases the average predic-
tion error in runtime is less than 10%.     

In the experiment 3 we have tested our prediction methodology in the grid envi-
ronment. We have used the 10 computers of the “Middleware grid”. It has been 
shown that most suitable 5 pcs were predicted as far as runtime is concerned. The 
table 1 shows the actual and predicted runtimes of the first set of jobs and the 2nd set 
of job. In this manner we will be able to predict the shortest runtime for the Bio-
informatics applications that analyses certain Gene expressions.  

The response time of the predictor itself is an important factor we have taken into 
consideration. Another factor is the execution time of the predictor. We have ob-
served that although both these factors are somewhat higher than the AR (16), they 
are within tolerable range.  

Improving the accuracy of the predictor is the major focus of this paper. We also 
must keep the response time and execution time of the predictor within an acceptable 
range. In fact they should be well less than the sampling period 5s. Future work will 
address the usage of prediction techniques for scheduling jobs in the “middleware 
grid”. 
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Abstract. For network service, it is obvious that “PUSH” method is
more efficient than “PULL” method for bandwidth consuming. One
problem for “PUSH” method is that the client is difficult to keep track
with the status of server. Traditional polling method is bandwidth con-
suming and put much burden on server. Active link is an active network
based service which builds a tree structure between clients and server.
Different clients and service can share link information if they have the
same middle nodes in the link path. This mechanism can reduce band-
width consumption and burden of server.

1 Introduction

Internet is still expanding, as well as the type and number of services are increas-
ing day by day. Many applications require clients to keep track with the server.
So far, there are two popular way to achieve this: one is that client sends query
timely to the server, this is called “PULL” method; the other way is that client
wait silently for notification of changes from the server, this is called “PUSH”
method. The difficulty for “PULL” method is to determine the interval of poll;
if it is too long, it will lose freshness; if it is too short, it will bring heavy burden
on network throughput. And both methods have a common shortage that one
application cannot share information with other applications. The availability
of service can be classified into two parts: the state of the service and the con-
nectivity of the network. Active networking technology [1] provides activity for
the network, it makes possibility to share the information between different ap-
plications. Active link is a service based on active network to achieve this goal.
The mechanism has been successfully implemented on the ANTS 1.3.1[2].

2 Active Link

Active link provides an active method for status tracking between server and
cache nodes. If a cache node intends to detect the state of server in traditional
� This paper is supported by the Nation Science Foundation of China (No.60173059).

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 345–350, 2005.
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network, a typical way is to send a query message to detect whether the server
is ok or not. The state can be divided into two parts: the state of network
connection and the state of the server. When the server receives a query message,
it will send a reply message. If the cache node receiving reply message, it means
that the server is ok; if the cache node cannot receive a valid reply message
within a given period, it will retry the above action for several times and if still
no result back it can make a judge that the server is transiently out of service.
If the cache node wants to trace the state of server it will send query message
repeatedly to the server. This method has the following problems: (1)The major
problem is bandwidth consumption and heavy burden on server. (2) If no reply
message sending back, it’s difficult for cache node to identify the fault is caused
by the network connection or the server.

Active networking technology provides a way to solve these problems. In
active link, the status tracking can be achieved by a dynamic service and it can
be shared among different cache nodes, thus it can reduce network bandwidth
and relieve the server from heavy burden of replying to all cache nodes.

2.1 Principles

Assume a cache node intends to keep track with server’s state. Firstly, it sends
request capsule to the server. As well as server receiving the request, it sends
back a reply capsule; each node on the route from server to the cache node will
activate the active link service, which will monitor the next and the previous
node to see whether the neighbor is reachable. As shown in figure 1, this result
in a dual link from the server to the cache node and a group of node pairs. In
figure 1, it has generated three node pairs: (CacheNode, AN1), (AN1, AN2) and
(AN2, Server). Each node in the pair will inspect the availability of the other.
The availability of the server includes connectivity and service availability, and
as to other nodes, it just includes connectivity. The normal state is that all nodes
in the link connected together and the service is running. If the service on the
server is down, the adjacent node, in this case AN2, will aware of the failure
and notify the client along the link. AN2, AN1 and cache node will release the
resource and may do their predefined procedure such as sending alert to web
user. If the connectivity is broken, nodes in the same link pair cannot reach each
other. Both of them will send a connection fail message along the two sublinks
until reaching the cache node or server. All nodes that receive the message will
release the resource. The client will fall in a temporary state and find another
route to the server. In figure 1, assuming that pair (AN1, AN2) is broken, AN2
will release the resource and send a message to the server; the server then releases
the resource too. AN1 does the similar action but sends a message to cache node;
the node received the message then convert to a temporary state. It will try to
find another route then; if it finds one, it resume to available state otherwise it
will convert to connection fail state and it will send message to the server timely
to detect the service.

Multiple cache nodes can share link in the same route end to end. As shown
in figure 3, the route from C1 to S is [C1, R1, R5, S] and the route from C2
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C AN2 SAN1

Active Node Query capsule Virtual Link

Fig. 1. Each node keeps track with adjacent nodes, and makes a virtual link between
server and cache node

to S is [C2, R1, R5, S]; they can share pair (R1, R5) and (R5, S). R1 and R5,
as they are active routers, can easily record share information and save network
bandwidth especially in large scale networks.
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Fig. 2. Traditional query method will accumulate the flush; the server would burden
heavily when cache nodes number increasing

Since every node in the route just keeps track with adjacent nodes, it is also
easy to reuse them with different servers or different services running on the
same server.

The one major advantage of active link is to share information among differ-
ent links. The server’s state is kept not only in cache node but also spread all over
network; it becomes possible to share information among different cache nodes.

2.2 Status Tracking Information Sharing for One Server

The level of share is determined by (1) network topology and (2) deployment of
the related server. Tree is a usual topology applied in Internet. For convenience,
full binary tree is considered as network topology in following discussion. The
server is the root node; all cache nodes make up the leaves and middle nodes
(usually router) make the branch. Let T be a full binary tree. (From now on,
the tree is always a full binary tree.) Let m + 1 be the levels of T and let nj be
the total node number in the level j(0 ≤ j ≤ m). Then nj should be: nj = 2j .

Let P denotes the amount of query packet that a cache node sent per second
and let S denotes the size of a query packet. We assume the response packet has
the same size with the query packet. In traditional way, the server will receive
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Fig. 3. By active link, the query and response are distributed to each active router; so
the server has a fixed burden no matter the number of cache nodes
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Fig. 4. Virtual link information can be shared for different service. The links colored
blue are shared by two different servers.

query packets from all cache nodes and then send response packet to respective
node. So the throughput in the server Bs is

Bs = 2PSnm = 2m+1PS (1)

To compare, for active link, the throughput in the server Bs′ is

Bs′ = 2PSn1 = 4PS (2)

It is obvious that Bs’ is a constant whereas Bs will increase greatly if the levels
of tree increase. The reason for this is that each middle node partake the total
task. And all its children will share each middle node’s information. Take the
case of figure 3, the information of (R1, R5) can be shared by C1 and C2; and
the information of (R5, S) can be shared by C1, C2, C3 and C4. The higher the
middle node in the tree level, the more cache nodes can share the information
from the node.

2.3 Information Share for Multi Server

Moreover, information can be shared among different servers. Figure 4 shows an
example for sharing information between two services which deployed in different
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nodes. As figure 4 shows, C1 keeps track with S1 and S2 and these two links can
share pair (C1, R2). The same thing is also occurred in node C2. It is obvious
that the nearer the two servers are, the more the two link sets can share. To an
extreme, the two servers are deployed in the same node and the clients can share
all the connectivity information.

3 Implementation

We use ANTS (Active Network Transport System) [2][3] to implement a prototype
of active link. There are two reasons to chooseANTS: one is that ANTS is one of the
famous activenetworking runtime environments; the other is that it is implemented
by JAVA, a promising language based on OOP (Object Oriented Programming).

In active link, each client tracks status of the server, and the routes of infor-
mation tracking set up a virtual link.Figure 5 shows how a link establishing. It
can be divided into three steps:

Fig. 5. The process of one link establishing

1. The cache node sends a RequestCapsule to server.
2. The server, if accepting the client request, sends a ResponseCapsule to the

cache node.
3. Each node in the route from the cache to the server will invoke a ’ping’

action by sending PingCapsule repeatedly to adjacent node(s) in the route.
The node adjacent to the server will also send a PingServiceCapsule to detect
the service’s state.

After above steps the link will be established. The client should set the original
link state to ok and do following works:

1. If all of ping actions, including the PingCapsule and the PingServiceCapsule,
return true to each node, then the link is ok. otherwise,

2. If one or more ping action(s) fail(s), two neighboring nodes will receive no
reply and they will send a DestroyCapsule to client and server reversely along
the link respectively. Then each node in the link would release the resource
allocated for the link.
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3. When the client receives a DestroyCapsule, it sets its state to a temporary
state. It will try to build another link to the server. If another link is available,
it then changes its state to ok; otherwise it would change its state to failure.

4 Conclusion

Active link makes an effort on information share in active networks. Active link
is an active network based service which builds a tree structure between clients
and server. Different clients and service can share link information if they have
the same middle nodes in the link path. This mechanism can reduce bandwidth
consumption and burden of server.
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Abstract. Computational Grids provide an emerging highly distributed com-
puting platform for scientific computing. Recently, service oriented architecture
(SOA) is a trend of implementing software systems including Grid computing
systems. SOA provides more flexibilities for Grid users at the service level. Since
performance is still one of the major concerns in Grid environments, Grid service
performance issues needs to be extensively investigated and studied. However, a
lot of issues are still open to be explored and few work has been done on them.

In this paper, we propose a Grid service monitoring architecture for flexible
monitoring on various Grid services. We implemented it for monitoring WSRF
(Web Service Resource Framework) services in this paper. We show how the ser-
vice oriented Grid monitor work with a simple example WSRF-compliant Math-
Service. Moreover, the relationship of the monitor and Grid super scheduler is
also analyzed. In this way, the scheduler may produce service performance ori-
ented policies that ensure optimal quality of services for Grid applications.

Keywords: Grid Performance Monitoring, Grid Service Performance, Service
Oriented Grid Architecture.

1 Introduction

In recently years, Grid computing is a fast developing technology as an approach to do
high performance scientific and engineering computation. Grid performance evaluation
and modeling, as an important supporting factor for Grid architecture, is still imma-
ture and not extensively explored. The performance information are usually not fully
considered in Grid middleware design as well. The Grid middleware usually does not
reveal or utilize performance information (e.g. performance model, evaluation results,
etc) that can be used to improve the efficiency of Grid scheduling.

Scheduler oriented Grid performance evaluation is an approach that enables per-
formance evaluation, monitoring, and modeling units closely cooperates with or even
become a component of Grid scheduler so that the Grid scheduler is able to get more
information about the performance of both computation resource and application and
hence improve the scheduling policy for Grid jobs and ensure the quality of service.

Meanwhile, with the widespread emergence of Web services and service-oriented
architecture [6] implementations in enterprise IT environments, service orientation is
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a trend for implementation of Grid architectures. In this environment, the Grid service
performance problem can no longer be ignored.

In this paper, we propose a Grid service monitoring architecture for flexible mon-
itoring on various Grid services. We implemented a prototype for monitoring WSRF
(Web Service Resource Framework) services. We also show how the service oriented
Grid monitor work with a simple example WSRF-compliant MathService. In addition,
the relationship of the monitor and Grid super scheduler is also analyzed in order for the
scheduler to produce service performance oriented policies that ensure optimal quality
of services for Grid applications.

The remainder of this paper is organized as follows: section 2 introduces Grid ser-
vice and performance in computational Grid environments and presents the Grid service
performance monitoring architecture and its interaction with Grid super scheduler; The
implementation details of our Grid service performance monitoring architecture and
a simple example are introduced in section 3; Some related work are introduced in
section 4 and finally we give a conclusion in section 5.

2 Service Oriented Grid Performance Architecture

2.1 Performance of Grid Services

The performance of Grid is not well defined, neither is the performance of Grid services.
The obstacles are mainly the nature of Grid (heterogeneity, dynamism, wide distribu-
tion, etc) and these make traditional performance metrics not directly applicable to Grid
environments.

In Grid environments, the following metrics can be considerred to monitor for Grid
services:

– Availability: whether a Grid service is present and ready for immediate use.
– Throughput: how many requests can be serviced in a given time period.
– Latency (or response time): how much time elapses between the request and the

response.
– Scalability: whether a Grid service is horizontally and vertically scalable.

2.2 Grid Service Performance Architecture

A Grid performance architecture consists of multiple components such as performance
monitor, performance modeling, interfaces between performance components and Grid
middleware (e.g. Grid super scheduler), etc. Figure 1 shows the monitoring components
at the resource site. The Grid services located/running at the computing resource are
monitored by local monitoring service called sensor. The sensor abstracts the lower
level format of Grid services (e.g. WSRF services, OGSI/OGSA services, etc). When
a Grid service monitoring request comes, the sensor invokes some local monitoring
mechanisms to get the required information of the services. The information is then
feed back to the requiring monitoring component. This is a “pull” mode of information
retrieval. It can also be “push” mode, in which case the local sensor actively gets the
monitoring data of Grid services and feed back to remote monitoring component even if
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local computing resource
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Fig. 1. Service monitoring for Grid computing resources

Fig. 2. The Service Monitor and Grid Super Scheduler

there is no requirements. In practice, the implementation can be based on either mode,
or the combination of both.

Grid service monitoring can be a relatively independent module. It can also a com-
ponent that feeds back information to Grid super scheduler. Figure 2 shows the posi-
tion of service monitor in Grid super scheduler architecture. The Grid user can monitor
the performance of the Grid job, and the data collected by monitor can also be fed to
performance modeling and performance tuning modules, which in turn affect the Grid
performance evaluation. The Grid super scheduler takes the performance evaluation re-
sults into consideration, select the most appropriate resource, and distributes the job to
the local scheduler of the selected resource.

In this scenario, the user submits the job to the computational Grid via his local
agent. The local agent forwards the user’s resource requirements to the super
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scheduler, which will interact with the virtual resource index to find the most suitable re-
source. Here the virtual resource index may contain the performance model (this can be
achieved by, for example, analyzing historical benchmarking results) and correspond-
ing parameters (e.g. hardware/software configuration) of the computing resources. The
super scheduler may take the performance model into consideration and find the most
appropriate resource for the user’s job. The information of the selected resource will be
sent back to the user’s local agent, so that the local agent can submit the Grid job to the
remote site with the selected resource. When the job is being executed, the job moni-
toring module is activated. The job status and some performance data are collected and
sent back to the agent and the scheduler, so that the user is able to view the performance
and status, while the super scheduler is able to update or adjust the existing performance
model or policy accordingly. If possible, the super schedule might also do performance
tuning and optimization by migrating the job to some other computing resources in case
of the monitored performance is not as good as expected (this can happen especially for
QoS guarantee). In this scenario, the performance issues are considered by the sched-
uler in almost every step of the job submission and execution. This ensures that the job
scheduling policies are performance-aware and the overall Grid performance is optimal.

3 The Implementation and Example

3.1 WBEM and CIM

In implementation of the Grid monitoring service, we utilize the Web-Based Enterprise
Management (WBEM [2]). WBEM is a set of Internet standards which gives the ability
to interconnect between different management standards and environments. WBEM al-
lows to manage both software (OS, applications) and hardware (computers, network de-
vices) by creating a common player which unifies and simplifies management through
WBEM compliant applications. There are a lot of WBEM implementations by different
vendors including WBEMServices (Sun Microsystems), Pegasus (The Open Group),
OpenWBEM (Caldera), SBLIM (IBM), WMI (Microsoft), etc.

The data specification model for WBEM is the Common Information Model [1],
which is an objected oriented description of information. WBEM uses XML/CIM lan-
guage for encoding CIM objects. The communication protocol for WBEM is HTTP.

The sensor we mentioned is a server called CIM Object Manager, which is the
central element of the WBEM environment architecture.

3.2 Service Monitoring Based on WBEM/CIM

We implemented a service provider called “Grid service monitor” and plugged it into
the WBEM/CIM architecture. As for the triggering mechanism, we use WS-Notification
specified by WSRF. Figure 3 illustrates the Grid service monitoring architecture.

3.3 An Example for Performance Monitoring

As a testing example, a MathService is selected from GlobusToolkit4 user manual as
a WSRF-compliant service to provide mathematical computing. Meanwhile, we use
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Fig. 3. The Grid service monitoring implementation based on WBEM/CIM

our Grid service monitoring provider to monitor the status of the MathService. The
MathService does nothing but some mathematical computations.

Figure 4 shows the monitored service information through CIM workshop service
and

Fig. 4. The service information monitored by CIM workshop service

4 Related Work

Very few work has been done on Grid service performance monitoring. GSMon [5],
developed at Tsinghua university in China, is one of the few systems for monitoring
Grid services. However, GSMon sticks to OGSI/OGSA services and does not provide
an abstract layer for various Grid services.
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There are some other research work focused on Grid performance monitoring and
evaluation. Few of them are inherently embedded into a Grid super scheduler and most
of them are stand-alone. Many of them are extended from local performance tools.

Netlogger [3] is a distributed application, host, and network logger. It can be used
for performance and bottleneck analysis and correlating application performance with
system information. But it is basically a central collector and does not scale well with
the number of resources.

Network Weather service (NWS) [4] is a distributed system that periodically moni-
tors and dynamically forecasts the performance of various networks. It scales well with
the number of Grid resources, but it does not measure the Grid application performance.

Recently work include Grid job superscheduler architecture and performance in
computational Grid environments by Shan et al. [7]. In their work they propose several
different policies for superschedulers and use both real and synthetic workloads in sim-
ulation to evaluation the performance of the superschedulers. They also present several
Grid performance metrics including response time and Grid efficiency.

5 Conclusion

In this paper present our work on Grid service performance monitoring. We provide
some analysis of the performance of Grid services and then proposed an architecture
design of our service oriented Grid performance monitoring and its prototype imple-
mentation utilizing WBEM/CIM and WS-Notification mechanism. The implementa-
tions of other components of the architecture are still in progress. Our future work may
include how to adjust Grid super scheduling policies based on monitoring information
fed back by Grid service performance monitors; defining the interfaces for interactions
between monitors and schedulers, etc.
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Abstract. Distributed defense is a promising way to neutralize the distributed 
Denial-of-Service attacks by detecting and responding the attacking sources 
widespread around the Internet. Components of the distributed defense system 
will cooperate with each other to combat the attacks. Compared with the 
centralized defense systems, distributed defense systems can discover the 
attacks more timely from both source end and victim end, fight the attacks with 
more resources and take advantage of more flexible strategies. This paper 
investigates 7 distributed defense systems which make use of various strategies 
to mitigate the DDoS attacks. Different architectures are designed in these 7 
systems to provide distributed DDoS defense solutions. We evaluate these 
systems in terms of deployment, detection, response, security, robustness and 
implementation. For each criteria, we give a recommendation on which 
technologies are best suitable for a successful distributed defense system based 
on the analysis result. Finally we propose our idea on the design of an effective 
distributed defense system. 

1   Introduction 

Distributed denial-of-service attacks (DDoS) bring a tremendous threat to the Internet. 
The report form the Computer Emergency Response Team (CERT) says the security 
incidents each year have doubled since 1988 [1]. A large number of network servers, 
routers and hosts have been pulled down worldwide by the DDoS attack. Effective 
approaches to defeat DDoS attack are desperately demanded [2, 3]. 

Although some current solutions can detect DDoS attacks and drop the attacking 
packets in some circumstances, there is still no successful solution to DDoS attacks. 
Most of the current DDoS defense systems are centralized and isolated systems 
which are used to protect a single network. It is very difficult for the centralized 
defense systems to detect the attack before it was launched or at the beginning of the 
attacks. When the attacks are full-fledged, it becomes more difficult for defense 
systems to resist the flooding. And centralized defense systems themselves are more 
vulnerable to be attacked by the hackers. The centralized defense systems are mostly 
deployed on the victim network because of the economic reasons. Thus such defense 
systems are irresponsible systems which could only respond to the attacks, but not to 
stop the attacks.  
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Distributed defense systems overcome the shortcomings of centralized and isolated 
defense systems. Deployed on all around the Internet, distributed defense systems can 
detect the attacks before they are launched by inspecting the traffic on many edge 
networks in which the computers are compromised by hackers. The most important and 
attractive feature of the distributed defense system is that the components in the 
distributed defense system can cooperate with each other to fight against DDoS attacks.  

This paper focuses on the distributed solutions to the anti-DDoS issue. To obtain 
an insight of the current methods used in the current distributed defense system, we 
evaluate 7 systems according to some criterion proposed by us. This evaluation is also 
beneficial to identify the weakness of the current distributed systems to motivate the 
development of better solutions. Based on the evaluation result, we propose a 
distributed defense system which will not only adopt the current mature and effective 
technologies, but employ some new methods to neutralize DDoS attacks in a more 
effective way. 

2   Evaluations on the Strategies of Distributed Defense System 

We sample 7 distributed defense systems. They are DefCOM (Defensive Cooperative 
Overlay Mesh) [4], IDIP (Intrusion Detection and Isolation Protocol) [5], ACC 
(Aggregate-based congestion control) [6], ASSYST (Active Security System) [7], 
Secure Overlay Services (SOS) [8], MANANET [9], COSSACK [10]. Different 
strategies are employed by these systems. We can not say one system is better than 
the other because different systems are applied onto different scenarios. However, we 
can compare the strategies used by these systems to get the insight of what strategies 
are more useful in the campaign with DDoS attacks. This section proposes some 
criterion to compare these strategies. Table 1 shows the summary of comparison 
among these 7 systems. We hope that the evaluation of these strategies can lead to the 
development of better strategies and even distributed defense systems. 

Table 1. Comparison of 7 distributed defense system 

Criterion SOS DefCOM MANANet COSSACK IDIP ACC ASSYST 
Deployment Source 

/Victim 
Throughout 
the network 

Victim end 
as a group 

Source 
/Victim 

Distribute
d groups 

Throughout 
the network 

Throughout 
the network 

Security IPSec PKI N/A CA IPSec N/A N/A 
Detection Filtering Traffic tree 

discovery 
PEIP Spectral 

Analysis 
Intrusion 
detection 

Congestio
n detection 

Intrusion 
detection 

Response Rate-
limiting 

Rate-
limiting 

Rate-
limiting 

Dropping 
all packets 

Dropping 
all packets

Rate-
limiting 

Dropping 
all packets 

Robustness Strong Weak Weak Weak Weak Weak Weak 
Implementation Difficult Difficult Difficult Easy Easy Difficult Difficult 

2.1   Deployment  

Since a distributed defense system has many nodes that can be homogenous or 
heterogeneous nodes, these nodes must be deployed at different locations in the 
network. The functionalities of defense nodes include detection of potential attack, 
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alarm generating and multicasting, attack source finding, and attack traffic 
controlling. Different nodes can be deployed at the edge networks and core networks. 

Some approaches such as DefCOM [4], ACC [6] and ASSYST [7] deploy their 
nodes throughout the network. This deployment requires that every participating node 
must be able to perform the detection and traffic controlling functions, communicate 
and coordinate well with each other. It could raise the unnecessary traffic burden at 
the intermediate nodes. Moreover, it could not be the best place to detect the attack at 
the intermediate nodes. We envision the best deployment is the mixture deployment at 
both source end and victim end. The reason for this deployment is that first, the victim 
end aggregates the most information for the detection and can achieve the most 
accurate detection true positive rate; second, by detecting preliminary attack 
signatures at source end allows the defense system to mitigate a DDoS attack at its 
initial phase; third, the source end traffic controlling can protect the network’s 
availability to a max degree because not only the victim but also the rest of network 
can be free of network congestion. 

2.2   Detection  

We classify the detection functions into three categories, signature-based detection, 
traffic anomaly detection and traceback [11][12]. Signature-based detection is very 
accurate because it can find specific characteristics of attacks. It is applied in many 
current intrusion detection systems and some of the distributed defense system we 
mentioned in the related work [5, 14]. A main drawback of it is that it can only detect 
known attacks, but not the unknown/new attacks or some variants of previous attacks. 

DDoS attacks bring network anomaly such as the sudden surge of network traffic 
volume, increase of the packets with random source IP addresses, and asymmetric 
amount of packets associated with some network protocol such as TCP SYN. 
Detection and filtering is a straightforward approach to defend such attack. The 
objective a successful distributed defense system should be the fast and sensitive 
detection by using a fine granularity detection method. 

IP traceback is the ability to trace IP packets to their origins [11]. Among the 
traceback mechanisms, packet marking schemes are relatively easy to implement, and 
require a modest computation load and bandwidth [12]. Actually, packet marking 
traceback can be applied in two ways. One is the real-time traceback, which is to find 
the attacking sources during the attack and then punish the sources. Another 
application is DDoS detection and filtering. If the packets are marked, the information 
carried by the packets can be used to detect DDoS attacks [15].  

2.3   Response 

Rate-limiting is the most popular strategies used in the current distributed defense 
systems, such as in DefCOM, SOS, ACC and MANANet. Because no defense 
systems can detect the attacking packets with 100 percent accuracy, it is advisable to 
limit the rate of high-bandwidth flows rather than to drop all the suspicious packets. 
Rate-limiting also gives the defense system flexibility to adjust the limit to which the 
suspicious network traffic is suppressed. The disadvantage of the rate-limiting 
strategy is that it will allow a certain amount of attacking packets to pass through. 
This will bring problems when rate limiting is deployed on the network in which there 
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are resource-demanding applications (e.g. video stream) and the bandwidth is not big 
enough. However, currently there seems to be no better solutions unless the detection 
accuracy can be improved to a satisfying extent.  

2.4   Security 

A distributed defense system must be able to protect the information to be exchanged 
from being intercepted by the hackers. Current security mechanisms such as IPSec, 
PKI, CA are sufficient to meet the requirement to obtain the above two goals. The 
examples of security implement can be found in [5, 8] (IPSec), [4] (PKI), and [10] 
(CA). Some research has been done to deal with the denial of service problems in the 
security protocols [13, 14]. Here we do not specifically consider how to defend the 
security architecture because we assume the motivation of the DDoS attacks is to 
prevent the legitimate users from accessing the desired resources, but not to crash the 
security architecture, which is more difficult to achieve. 

2.5   Robustness 

Here robustness means the degree to which the distributed defense system itself can 
resist the attacks. When the distributed defense system is deployed and is known to 
the hackers, they will launch attacks to the distributed defense system so that they are 
further attack the protect networks. Although the distributed defense system is less 
vulnerable to such attacks than the centralized defense system, it is still possible that 
the distributed defense system fails due to the attacks targeting it. Unfortunately this 
issue is less concerned in the design of the current distributed defense system.  

2.6   Implementation 

If a distributed system is in good design and has good experimental results, such 
system still can not be accepted by the security community if they are not easy to be 
implemented or even impossible to be implemented under current Internet 
infrastructure. Among the 7 distributed defense systems, DefCOM, SOS, ASSYST, 
ACC and MANANet need routers to support specific functions. We can see that a 
large portion of current distributed defense systems require the Internet infrastructure 
to be modified. That is one of the reasons why no successful solutions which can 
defeat DDoS attacks are available up to now. 

3   Our Proposed Distributed Defense System 

We propose a distributed defense system as shown in Figure 1. 
Our system has the following characteristics: 

(1) Deployed on source end networks and victim end networks. Nothing is required 
to be installed on intermediate networks (ISPs). Currently ISPs are not willing to 
deploy anti-DDoS systems on their networks because they can not obtain economic 
benefits from such systems. Not involving with ISPs, our system is more likely to be 
accepted by the security communities. And the components in our system will run on 
the servers connected to routers so we do not have the need to modify routers.  



 Distributed Defense Against Distributed Denial-of-Service Attacks 361 

mirror 

IPSec 
Marked 
packets 

Confirmation 
of attacks 

component 

Source 
network 

Source 
network

Detect and 
rate-limit 

Victim 
network 

mirror mirror 

 

Fig. 1. Architecture of our distributed defense system 

(2) Attack detection is done by analyzing the attack signatures and traffic anomaly. 
As for the analysis of the traffic anomaly, we will take advantage of neural network 
algorithms so as to potentially identify new attacks which can not be identified by 
analyzing the attacking signatures. And also we will use packet marking technology 
to improve the detection accuracy. The suspicious packets in the source network will 
be marked by the component monitoring that source network. When the marked 
packets reach the destination network, the component in the destination network will 
take this information from the marked packet into consideration when judging if there 
is a DDoS attack occurring and where the attacks originate from. If the marked 
packets are confirmed to be the attacking packet, attacking alarm will be sent to the 
component in the source network. By the combination of attacking signature 
detection, network traffic anomaly detection and packet marking, we anticipate that 
our system can achieve a high accuracy of detection of DDoS attacks. 

(3) IPSec is used to encrypt the communications among different components in 
our distributed defense system 

(4) Rate-limiting is taken advantage of to suppress the DDoS traffic 
(5) Each component will have a corresponding mirror site to improve system’s 

robustness. 

4   Conclusions 

In this paper, we investigate 7 distributed defense system against DDoS attacks and 
compare these systems according to the deployment, detection, response, security, 
robustness and implementation. Based on these discussions, we propose our 
distributed defense system which encompasses many superior features enabling our 
system a potentially better solution to the DDoS attacks. As an example of distributed 
defense system, MDAF shows strong capability to identify and filter out attack 
traffics and let most of legitimate traffics pass through. 
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Abstract. A combined architecture is described to protect the system against 
malicious attacks as well as unplanned system failures. Discussions are laid on 
its characteristics, structure, safety assurance technologies. Safety kernel (shell) 
and integrity policy for criticality are used to ensure the system safety. Further-
more, to implement rules of integrity policy, the reflective technology based on 
metaobject is adopted and how to apply reflective technology to implement 
these rules is analyzed in details. Finally, an experiment illuminates the feasibil-
ity of the proposed architecture.   

Keywords: Distributed Control System, Safety Kernel, Security and Safety As-
surance Architecture; Integrity Policy for Criticality. 

1   Introduction 

The safety and security (in brief, we call them s&s in the rest of this paper) of net-
work-based systems is considered as a crucial issue to guarantee the proper behavior 
of sophisticated distributed applications [1]. Systems that are now being built are fre-
quently required to satisfy these properties simultaneously [2]. However, due in part to 
the evolutionary growth of the approaches to safety and security specification tech-
niques, they have largely been developed in isolation. There are many nodes in dis-
tributed control system, of which the s&s assurance is divided into two parts: one is 
within domain[3]; the other is between domains. The safety requirement of these sys-
tems at least includes two aspects. One is to protect critical devices to avoid wrong 
damage resulting from software errors. The other is to ensure that a non-critical task 
(for example, the passenger information system) not be able to corrupt an extremely 
critical task (such as the automatic pilot)[4].  There are many solutions to these new 
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safety problems. A compromise among the high cost solution and the non-
effectiveness solution, is using safety kernel (shell)[5] and integrity policy. They are 
not needed to validate all the tasks with the same effort, but only those which accom-
plish critical tasks and those which provide data to critical devices. Integrity policy for 
criticality is different from Biba policy, the more critical a component is, the more it 
needs to be trusted so the higher must be its level of integrity.  

This complexity constitutes the main problem in distributed control systems: 
how to deal with safety/security effects in an integrated way, as a basis for developing 
homogeneous protection solutions. In this paper, we further focus on the issues of 
mediation by enforcing a multilevel integrity policy and safety kernel (shell) technol-
ogy, and base on our previous work [6] to present a assurance architecture PSAD 
which combine safety and security effects together.  

2   The Structure of PSAD 

2.1   The Exterior View of  PSAD 

PSAD has three levels, see figure 1: 

 

Fig. 1. Exterior view of PSAD 

1. The management level: it is made up of modules to complete the installation, 
debugging, monitor, maintenance and rebuilding of PSAD. 

2.  The agent layer of security and safety assurance services: it consists of all the 
security and safety agents, and they cooperate with each other to ensure the se-
curity and safety of the system. 

3.  The realization level of security and safety assurance services. 

Integrity policy for criticality defines rules on data flow that ensure that no low 
integrity data can corrupt high integrity objects. The s&s management database stores 
all related information concerning the security and safety of the system. 

2.2   S& S Service  

Figure 2 describes s&s service agents and their relationships in PASD.  

 Appliance agent: it saves instructions of all types of appliances supported  
in domain and standard security and safety information; it also records security 
and  safety  requirements  of  appliances.  In addition, it checks the rationality of  
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Fig. 2. Relationships of s&s service agents 

security and safety requirements of appliances according to standard security 
and safety information and makes proper response. 

 Safety kernel agent: It provides safety kernel service for protected devices. 
 Monitor agent: it receives data collected by s&s management agent and records 

the data in security and safety management database through its agent. 
 Environment agent: it carries through initial security check to users, appliance 

data and data from other domains.  
 Outside domain data agent: it is used to deal with heterogeneous problems.  

In PSAD, we quote five kinds of standard communication security service prescribed 
by International Organization for Standardization ISO for OSI environment. S&s 
safety services within domain: 

 Safety kernel service: Safety kernel service is classified into four groups. They 
are used respectively in maintaining equipment control policies, policies for the 
state of Internet applications, diagnostic policies for equipment’s mistakes and 
policies for responding to mistakes. 

 Integrity authorization service: it refuses an access that can provoke a contami-
nation of a higher or non-comparable integrity level. 

 Database service: It quotes the database security services in open system envi-
ronment. That is, apart from access control of OSI, data secrecy and integrality 
service, it also includes two kinds of services: to keep safety consistency of data 
stream and to prevent deducing data. 

 Security and safety check service: it detects events relating to security and 
safety. 

2.3   The Realization of Safety Service 

Safety policies in safety kernel are described by FSM (finite state machine). As we 
analyze CRTOS[8] and RT-Linux, safety kernel mechanism can provide in many 
ways[6]. In our design, safety kernel is put in RTOS and the safety kernel mechanism 
is still provided by operating system. When no safety service is needed, the system 
will not provide such service. 
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We define an object is an entity that provides one or more services that can be 
requested by a client. It is composed of both internal data items (known as attributes) 
and methods (which provide services). We use three kinds of objects and flow control 
policies of these objects in paper [4]: SLOs (single level obejects), MLOs (multi-level 
objects) and VOs (validation objects). Here we study how to use metaobjects[7] to re-
alize authorization based on integrity policy for criticality (see figure 3). In figure 3 
the flow control policies are in the integrity management aware (IMA) which is in-
serted in operating system kernel. Assume component 1 with criticality level of 1 
wants to invoke a read/write method of component 2 with level 3.  

Fig. 3. Authorization realization based on integrity policy

MetaObject intercepts information of this call req.. 
MetaObject asks for IMA to authorized this call req.. 
IMA returns authorization information to MetaObject. 

  Meta_HandleMethod checks the validity of authorization information, and rea-
sonable call request will be supported, namely, transferring this call request to 
BaseObject. Unreasonable call request will be refused. 
BaseObject returns results to MetaObject.   

 and complete the authorization of results. If the results is reasonable, 
MetaObject transfers them to component 1 by process , else deals with errors and 
informs component 1. 

3   Implementation on TCS[6]  

Unlike paper [6], here three PCs and DC are used respectively to simulate TCS (see 
figure 4). IMA(Integrity management aware) of domain 3 is inserted on PC3 to test 
the feasibility of the proposed approach and the performance of separate IMA in the 
domain with more than one nodes. Hardware configurations are:  PC1: Intel Pen-
tium , PCI bus, 32M RAM;  PC2: Intel Pentium , PCI bus, 128M RAM;  
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PC3: Intel Pentium 120, PCI bus, 32M RAM;  DC: i386 EX (40 MHz), CRTOS 
2.0[8], 3712K. TCS’ security and safety requirements includes:  Without receiving 
PC1’s instructions, PC2 or DC should make sure that traffic lights in the same cross 
don’t be set to green simultaneously.  To ensure data integrality in TCS. 

 

Fig. 4. Topology of TCS 

Domain 1 is the mother domain of domain 2 and 3. Domain 2 and 3 is equal, their 
security & safety system have same structure. The structure of domains’ s&s system 
is like that in [6]. Here we introduce the realization of integrity policy of domain 3. In 
domain 2 or domain 3, environment agent, safety kernel agent, management database 
agent are realized respectively by task SC, SK and Proc. SK provides safety kernel 
service. WD imitates SK’s monitor, once it finds that SK behaves abnormally, it will 
stop the SK immediately and start another safety kernel SK’, which is a back-up of 
SK. The COMM task issues orders to change the color of traffic lights which conflict 
with each other in their directions according to the instructions received by SC. Soft-
ware Trafficlight simulates traffic light and changes its color in accordance with the 
orders from COMM. If the traffic light does not change the color for 5 times in suc-
cession according to orders from COMM, SC will send information M1, M2 or M3 to 
domain 1 and ask for its help. Compared with domain 2, domain 3 has an additional 
test, namely integrity policy test. The IMA used of integrity authorization is imple-
mented as a kernel modular of RTLinux on PC3. Every object which appears at run-
time on the host computer (object name, type, level, method types, and accessible ob-
jects for validation objects) is as following: 

SLO Trafficlight{Criticality=1; Sensor(r), Executive(w), COMM(w), 
SK/SK’(w)}; 
SLO Proce{Criticality=2; Securitycheck(object), SC(w)}; 
SLO WD{Criticality=3, SK(r), SK(w), SK’(r), SK’(w)}; 
MLO IMA{Criticality=3; Authorization (Object)}; 
MLO SC{Criticality=3; Proce(r), COMM (w), SK(r), dataoutside(r), dataout-
side(w)}; 
MLO COMM{Criticality=3; SC(r), SK/SK’(w), SK(r), Trafficlight(r)}; 
MLO SK’{Criticality=2; Safetycheck(Object), Trafficlight(r), Trafficlight(w)}; 
MLO SK {Criticality=2; Safetycheck(Object), Trafficlight(r), Trafficlight(w)}; 
VO FT-Sensor{Criticality=2; VSensor(r)}; 
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If any non-referenced object appears, it is supposed to be at the lowest integrity 
level, with all methods in read-write mode. Sensor data are given a low integrity 
level since they are unreliable. It is common to use several redundant sensors to be 
able to tolerate the failure of some of them. Of course, a more trustable information 
than any single sensor will be produce by this way. So the criticality of VO FT-
Sensor is set to 2.  

To prove the validity of the experiment (without IMA), we set three arrays for 
COMM: Data1, Data2 and Data3. Data1 consists of correct orders changing traffic 
lights’ color. Data2 adds incorrect orders on the basis of Data1 in order to check the 
security assurance function of domain 2 if without interference from domain1. Data3 
adds more than 5 incorrect orders on the basis of Data2 to check the correctness and 
security of function of domain 2 or domain 3 if domain1 has interfered them. Results 
of the experiment prove that the security & safety system are valid. The experiment is 
repeated 10 times for the same tasks and the results are averaged over these runs. Af-
ter using security and safety system, the efficiency of domain 2 is 98% of the initial 
one. We use same data in domain 3 and repeat test for 10 times. The average invoca-
tions with IMA is 632 μs, however the average invocation without IMA is 95 s. The 
invocation overheads is consisted of : Communication delay induced by the inter-
cept or trap of reflection technology; Time overhead dues to integrity authorization 
in IMA; Transfer overhead between  user state and kernel state. 

4   Conclusion 

In this paper a architecture was described to protect the system against malicious at-
tacks as well as unplanned system failures. In our simulation, the safety kernel and in-
tegrity policy enforcement mechanisms are inserted in a micro-kernel so that they 
cannot be bypassed and to minimize time overheads during object invocation. Ac-
cording to test data, the bulk of the integrity authorization overhead is due to the 
metaobject trapping mechanisms and the communications times they induce. We need 
to improve the performance of refection technology. Now we are working on our 
simulation system, there is more and more work left. 
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Abstract. A new approach to fight against Internet worms through the use the 
worm-killing worm has been presented. This paper attempts to model the inter-
action between the two worms using the divide-and-conquer strategy. We ex-
tends the idea of the killer-worm and divide it into three basic types. 1) Patching 
type: It only installs the patches on the susceptible machines; 2) Predator type: 
It only kills the worm (it may also patch the infected machines); 3) Composition 
type: It does both the jobs. The state transition diagram of the two worms and a 
mathematical model for every type are given. The results by dynamic simula-
tion with the help of MATLAB are obtained. 

1   Introduction 

Since the Morris [1] worm arose in 1988, active worms have become a persistent 
security threat on the Internet. Active worms propagate by infecting computer sys-
tems and by using infected computers to spread the worms in an automated fashion. 
In 2001, the Code Red [2] [3] [4] and Nimda [5] [6] worms infected hundreds of thou-
sands of systems, causing millions of dollars loss to our society. The SQL Slammer 
[7] [8] appeared on January 25th, 2003, and grew into its full-fledged state in just 10 
minutes with its super fast scan rate. Only seven months later, on August 11th, the 
famous Blaster worm [9] broke out and spread out quickly on the Internet. 
Worm.Netsky, Worm.Lovgate, and Worm.Sasser etc. are all notorious and awesome 
worms in 2004 [10] [11].  

Malicious mobile codes, known as computer viruses or worms, have become a sig-
nificant social problem recently. To protect against malicious worms, traditional hu-
man-intervened response is no longer adequate to preempt the epidemic. Worm inci-
dents all above have served as existent serious proofs. A new defense mechanism to 
counter the attack in time has been proposed for some while [12] [19] [22]. It is 
known as the good-will mobile code [12] or anti-worm [19]: worm-killing worm. We 
call it killer-worm in this paper. Its main characteristic aspect is that it spawns exactly 
as worms do. In fact, it is a worm, except that it is a good-will one that cures the in-
fected and preventively patches vulnerable machines.  

The main idea of the killer-worm is that through and only through worm-like 
spawning, it can par with fast worms in speed.ïComparing with the commercial anti-
virus applications nowadays, the killer-worm approach has one important advantage: 
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It is not a C/S application model with bottleneck while updating the latest files. How-
ever, there are many controversial aspects too. How does the killer-worm gain entry? 
How to set up trust association among normally mutually distrustful administrative 
network? What additional security problems will arise? Despite these concerns, there 
were several reports [13] [14] [15] saying that some real killer-worm mobile codes, 
dubbed Code Green, CRclean, and Nachi, were actually released to the Internet to 
fight the Code Red and Blaster. No doubt the new era of killer-worm needs much 
more going on study. In this paper we put aside the ethics and other non-technical 
ramifications and focus only on the interaction between the worm and killer-worm. 
First, we try to recognize the killer-worm by the divide-and-conquer strategy, which 
helps us to know the effectiveness and efficiency of the killer-worm technology under 
different circumstances. And then we give mathematical models on the worm and 
killer-worm accordingly. We believe the result can help to design the killer-worm 
more properly.  

The rest of this short paper is organized as follows. Session II discusses related 
work and the system assumption. Three types of killer-worms are analyzed in Session 
III with the divide-and-conquer strategy. Session IV presents and simulates different 
models with the help of MATLAB(the details are omitted). Discussion and conclu-
sion will be in Session V and Session VI, respectively. 

2   Related Work 

The Internet is a huge dynamic system. The easy access and wide usage makes it a 
primary target for malicious activities. An Internet worm model provides insight 
into worm behavior. It helps to identify the weakness in the worm spreading chain 
and provides accurate prediction for the purpose of damage assessment for a new 
worm threat. Internet worms are similar to biological viruses in their self-replicating 
and propagation behaviors. Thus the mathematical techniques developed for the 
study of biological infectious diseases can be adapted to the study of computer 
Internet worm propagation. Our work bases on the simple epidemic model (SEM) in 
some extent. Zou etc. derive the simple epidemic model by using infinitesimal 
analysis in detail [16]. Other work on worm propagation includes the KM model 
[17], the two-factor model [18] [19] [22] etc. These all help us to model the two 
worms propagation. 

The notation of worm-killing worm has been in the folklore for some time. In [12], 
the Lotka-volterra equations are employed to model the prey-predator dynamics be-
tween the worm and the killer-worm. The shortcoming of the prey-predator model is 
that it didn’t concern the environmental capacity, i.e., the number of susceptible hosts. 
Yang [19] proposed a SIAR model on the interaction between the two worms. How-
ever, they didn't distinguish the different behaviors of killer-worm which in reality 
could be varied according to given requirements. This paper attempts to model the 
interaction between the two worms using the divide-and-conquer strategy, which 
means we extend the killer-worm into several types in detail because of actual vari-
able circumstances. We will discuss it later in session III and session IV. 
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3   The Divide-and-Conquer Strategy in Analysis of Killer-Worm 

Before modeling on the propagation of the two worms, one important thing should be 
clear: what a killer-worm will exactly do. We know its behavior is designed by "good-
will" so that we stop for some while and think about the "good-will" carefully. Here 
we use the “Divide-and-conquer” strategy. It means that we study different cases and 
try to define different types of killer-worm accordingly. The basic idea is that the 
killer-worm can be assigned different jobs. For example, it may immunize the suscep-
tible node or kill the worm or do the both. With such considerations, we extend the 
idea of killer-worm and decide to divide it into three basic types:  

 Patching type: It only installs the patches on the susceptible machines. 
 Predator type: It only kills the worm (it may also patch the infected machines). 
 Composition type: It does both the jobs and is the relatively strongest killer-

worm. 

We admit that there may be other more complicated types. Our proposal may be 
perfected in later work. In Session IV, we will analyze the application timing, present 
state transition diagram of the two worms and give a mathematical model for every 
type. We also show the results by dynamic simulation with the help of MATLAB. We 
shall omit the details of those results because of limitation of the paper length.  

4   Modeling on the Two Worms Propagation 

4.1   Case 1: Patching Type 

Most of Internet worms always exploit the existing vulnerability in order to gain ac-
cess to the system. An initial method to contain the spread of worm is to reduce the 
number of the victims as many as possible. And we believe that to be immunized 
ahead is much better than to be recovered from infection. A very common way to 
protect the susceptible machines is to patch them. In addition, we know that worm can 
spread in a very fast way (in tens of seconds!) [20]. As a result, the time taken for 
patching is very crucial. Nowadays current approaches to patch distribution are pri-
marily centralized, namely the C/S application model. Hence both the server/push 
approach, in which servers broadcast patches to client machines, and the client/pull 
approach, in which clients download the patch from a server, suffer from bottlenecks 
when updating the latest files due to centralization.  

Here we introduce a killer-worm that patches the system to solve the problem. It 
acts like a worm infects the system in order to catch up with the worm speed. Fur-
thermore, patching type has the potential of containing the spread of a worm, by con-
tinually patching machines until a stable infection rate is reached. The reason is that 
both of the two worms are competing for the same target.  

4.2   Case 2: Predator Type 

It is natural to consider another type of killer-worm. We also call it predator [12]. Its 
job is to find out the worms and then kill them. Comparing with the patching type, 
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this type only pays close attention to the infectious machines. They hunt for different 
targets. From mathematical model, we know that the predator is a fast way to clear the 
worm. This would also serve as a useful stopgap measure for containment of worms 
until a patch becomes available. The patch could then be distributed by traditional 
means or by another killer-worm of patching type. In reality, the predator can be ei-
ther passive or active. Passive type waits for the worm locally while active type will 
go out and search the worm. And according to different strategy, the predator type 
may patch the victims or not. When the predator packaged with a patch, its data will 
increase and it costs more time to multiply them. However, in some case people may 
not be able to get proper patch in time to immunize the system. Hence we divide the 
predator type into two sub-types (a) Sub-type I: state transition diagram and (b) Sub-type I: 
two worms’ model. 

4.3   Case 3: Composition Type  

Based on the patching type and the predator type, it is right time to discuss a more 
complicated case. We obtain a relatively stronger killer-worm by a compositive ap-
proach. Exactly the third type composites the former two types’ functionalities. We 
call it the composition type. This type seems to be a subclass that inherits from the 
former two types as its super classes. Maybe the most perfect method is that we can 
control the killer-worm dynamically. This is left for our future work.  

5   Discussion and Future Work 

The main weakness of the results presented in this paper is that they are all based on 
simple system assumption and simulation. Real systems often display behaviors that 
are more complex and variable. In reality, all the system parameters, such as infec-
tion rate and death rate, should be evaluated based on detecting and monitoring sys-
tem for more proper input data helps to display more veracious results. In our sys-
tem, we also ignore other defense factors (such as human countermeasures, network 
capability etc.). Also, we haven’t mentioned the time delay to release the killer-
worm. It is reasonable and necessary to introduce it for we cannot unleash the killer-
worm the moment the worm epidemic breaks out. Here we take the composition type 
(see 4.3) as an example. As killer-worm is introduced some delay time, say T, after 
the outbreak.  

Other issues confronted by a person wishing to release a killer-worm onto a network 
is much more than what we have discussed in this paper. One is how the killer-worm 
gains entry into the target system. If the killer-worm exploits the same vulnerability as 
the worm, as was originally assumed and not all users on the network have given con-
sent, then the release of the killer-worm is a criminal act. So there may eventually be 
some sort of legal authority that authorizes the release of killer-worms. This is very 
easy and suitable to Intranet that has centralized administrative power. Furthermore, 
we can develop a secure infrastructure that can support the entry of authorized killer-
worm and aid in controlling the propagation of the killer-worm. Such infrastructure 
sounds alluring and abstracts us to make follow-up study in later work. 
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6   Conclusion 

The results presented in this paper demonstrate that killer-worms have the potential to 
quickly clean-up networks infected by self-propagating malicious code and also im-
munize networks from future attacks. Killer-worms have a potential for becoming a 
practical emergency patch distribution mechanism, when many machines need to be 
quickly patched in the face new a worm. Simulation techniques could be used to tune 
the killer-worm's behavior prior to release so that killer-worms are quickly eliminated 
while the only minimum amount of necessary bandwidth is consumed. Killer-worms 
can potentially provide timely control on the spread of self-propagating worms, 
thereby reducing the monetary losses due to their unchecked spread. 
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Abstract. Anycast is a new service in IPv6, and there are some open issues 
about the anycast service. In this paper, we focus on efficient and reliable as-
pects of application layer anycast. We apply the requirement based probing 
routing algorithm to replace the previous period based probing routingalgorithm 
for anycast resolvers. We employ the twin server model among the anycast 
servers, therefore, try to present a reliable service in the Internet environment. 
Our theoretical analysis shows that the proposed architecture works well, and it 
offers a more efficient routing performance and fault tolerance capability. 

1   Introduction 

With the dramatic development of computer network technologies, a lot of new applica-
tion requirements appear, and researchers are trying to develop new protocols, models 
to meet the ever increasing and changing requirements. Partridge, Mendez, and Milliken 
[9] originally proposed the idea of anycast in the network layer. They defined IP anycast 
as a service to deliver an anycast datagram to one of the members of an anycast group. 
The idea of anycast met the requirements of mirrored or replicated servers in the Inter-
net, therefore, a number of researches were quickly conducted in the area. 

At the middle of 1990s, some researchers found the limitations of network-layer 
anycast, for example, inflexibility and limited supported by current routers, hence, 
they presented the idea of application-layer anycast [1], [2], [7], focusing the research 
on anycast in the application layer. Our previous research [12] proposed a require-
ment based application layer anycast routing algorithm. Compared with the periodical 
based anycast routing algorithms [2], [7] the proposed algorithm possesses some 
advantages, therefore, we will apply an improved requirement base algorithm in this 
paper for the proposed architecture. 

Fault-tolerant distributed systems are designed to provide transparent, reliable and 
continuous service despite the failure of some of its components.  Anycast servers are 
mirrored and distributed servers in the Internet environment. As we know, the Internet 
is dynamic and unstable with possible server crashes and link failures, therefore, an 
anycast service needs reliable and continuous service guarantee for anycast users. In 
this paper, we extend the twin server model [14] from the local area network to the 
Internet environment for anycast services, and apply the queuing theory to analyze the 
changes when an anycast server failure occurs. Paper [13] has explored this issue, and 
an enforced version will be deployed in this paper. 
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The remainder of the paper is organized as follows. Section 2 introduces related work 
and background. In section 3, we present the efficient and reliable architecture for 
anycast service, and related algorithms, the periodical probing routing algorithm and 
the twin server model algorithm. We compare the performance and capability of the 
proposed algorithms in section 4. Finally, section 5 summaries the paper and dis-
cusses the future work. 

2   Related Work and Background 

A number of anycast routing algorithms [2],[8],[11],[12] have been proposed. Paper [8] 
took use of round trip time on an anycast router for server selection decision for net-
work-layer anycast. Paper [2] proposed a network status and server load mixed applica-
tion-layer anycast algorithm, but the data of anycast resolver is updated periodically 
based on periodical probing on network performance and server load. Paper [12] created 
a requirement-based probing algorithm for application-layer anycast routing.  

The critical problem of application-layer anycast is how to map an anycast query 
into one IPv4 address. Paper [2] presented 4 metrics about how anycast performs: 1) 
server response time, 2) server-to-user throughput, 3) server load, and 4) processor 
load. The paper identified four possible approaches to maintain replicated server per-
formance information in the anycast servers’ database: remote server performance 
probing; server pushing; probing for locally-maintained server performance; and  
user experience.  

The topic of fault tolerance for distributed systems has been explored for many 
years. [5] introduced the concept of unreliable failure detectors and studied how they 
can be used to solve the consensus problem in asynchronous systems with crash fail-
ures. [6] studied the quality of service (QoS) of failure detectors. The paper focused 
on two issues in terms of QoS: a) how fast the failure detector detects actual failures, 
and b) how well it avoids false detections. The paper first proposed a set of QoS met-
rics to specify failure detectors for systems with probabilistic behaviours, such as the 
detection time for how fast a detector detects crashes, and the query accuracy for how 
well a detector avoids mistakes. The paper then presented a new failure detector algo-
rithm and analyzed its QoS in terms of the proposed metrics. 

[14] researched the fault-tolerant problem in the scenario of distributed operating 
system, and tried to provide continuous services in the case of a server or even a host 
failure, without or with little impact on the whole distributed system. For each ser-
vice, two servers (twin servers) are maintained to provide the fault-tolerant service. If 
one server dies, its twin will continue its job. The background of the research is that 
the servers are located very “near”, such as in a local area network and all the twined 
servers are symmetric computers. 

Network traffic properties have been intensely studied for a quite long time. Ex-
amples of analysis of typical traffic behaviours can be found in [3],[10]. Traffic vari-
ables on an uncongested Internet wire exhibit a pervasive nonstationarity. As the rate 
of new TCP connections increases, arrival processes (packet and connection) tend 
locally toward Poisson, and time series variables (packet sizes, transferred file sizes, 
and connection round-trip times) tend locally toward independent [4]. Here the Pois-
son arrivals are given by 
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The statistical properties of the Internet congestion reveal long-tailed (lognormal) 
distribution of latencies [16]. Here the possibility of latency time TL are given by 
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Where  represents the workload of the network. Latencies are measured by per-
forming a series of experiments in which the round-trip times of ping packets are 
averaged over many sent messages between two given nodes. 

3   The Efficient and Reliable Architecture for Application-Layer 
Anycast 

In this section, we combine our previous work on anycast routing algorithm [12] and 
fault tolerance research [13] to propose an efficient and reliable architecture for appli-
cation layer anycast, shown as Figure 1. In the architecture, there is an application 
program, anycast resolver, running all the time for anycast routing services. We sup-
pose that there are N servers in the anycast group, S1, S2, …, Sn, which are distributed 
in the Internet, and there is one anycast resolver severing for the anycast group. 

As we found in paper [2] that the foundation of anycast resolver algorithms is the 
remote server performance probing based on periodical testing, we name it as periodi-
cal probing routing algorithm. Paper [2] mixed the different methods together in prac-
tical applications. There are several disadvantages for the periodical probing algo-
rithm: accuracy problem; networkload problem; completeness problem; and resolver 
server load problem.  In this paper, we employ an algorithm, requirement based prob-
ing routing algorithm, which can overcome most of the disadvantages of the periodi-
cal probing routing algorithm. The main idea of requirement based probing  routing 
algorithm is described as below. 

• A client submits an anycast request to the anycast resolver for anycast routing 
service (step 1 in Fig. 1),  

• he resolver will broadcast N probing packets, such as ping, to each member in 
the anycast group, respectively (step 2 in Fig. 1). In this case, the probed servers will 
respond for the probing requirements, respectively. If a server’s workload is heavy or 
performance is bad, then the responding will last longer than a server whose workload 
is light or performance is good. Therefore, the probing packets can not only probe the 
servers’ performance at that moment, but also the network workload at the same pe-
riod. Based on the analysis, we define that the first responsive server as the “best” 
server in the anycast group, because the responsive time represents the network per-
formance and server performance. 

• The anycast resolver delivers the IPv4 address of the “best” server to the client 
(step 3 in Fig. 1). 

• The client then tries to find the server using the traditional IPv4 procedures (step 
4 in Fig. 1).  



 An Efficient Reliable Architecture for Application Layer Anycast Service 379 

The advantages of requirement based probing routing algorithm include higher ac-
curacy, better system performance, and less workload for both network and resolvers 
than the periodical probing routing algorithm. It is also practical and easy to imple-
ment.  In section 4, we will present the performance comparison of the two categories 
of application-layer anycast routing algorithms. 
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Fig. 1. An Efficient and Reliable Architecture for Application Layer Anycast 

In order to provide transparent, high performance and reliable services, we organise 
the distributed mirrored anycast servers in pairs, and the anycast resolver takes the 
responsibility of deciding the pairs. For each server in an anycast group, say SP, we 
try to find a backup server, ST, from the other anycast servers in the same anycast 
group of SP. Once SP fails, then ST will continue the uncompleted  services  of  SP. We 
name server SP as primary server, and server ST as twin server.  For example, in Figure 
1, {S1, S2} is a pair, and S1 it the primary server, and S2 is the twin server. More details 
of this fault-tolerance model are shown as Figure 2. 
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Fig. 2. The Reliable Model for Anycast Servers 
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The Algorithm at the Primary Server ( Sender ) 
 
Ts =  the mean service time for requests of primary server; 
P  =  the pointer for the normal queue; 
 t = 0; // t is the service time for a request 
while ( True ) 
            if  ( t < 2Ts) then 
                  MessageSend (p) 
                   t = 0;  
            endif 
            if  ( t >= 2Ts ) then 
                 MessageSend (“ I am alive”); 
                  t  = 0; 
           endif  
end while. 
 
The Algorithm at the Twin Server ( Receiver) 
 
Ts =  the mean service time for requests of primary server; 
P  =  the pointer for the reserve queue; 
Td = the network delay between the two servers; 
t = 0; // t is the interval between two coming messages 
while (True) 
         if ( t < 2Ts + Td) and  (MessageReceive () <> null) then 
            p = MessageReceive (); // update the pointer 
            t = 0; 
          end if  
         if  ( 2Ts + Td <= t < 2*(2Ts + Td) and (MessageReceiver() = “ I am alive” ) then 
             t = 0; 
         endif  
           if ( t > = 2* (2Ts + Td)) and ( MessageReceive() =  null ) then 
         // suspect that the primary server is dead 
               QueueAppend (Normal Queue + Reserve Queue)     
end while 

  

List 1. The Algorithms for Reliable Anycast Servers 

For each server, there are two queues, normal queue and reserve queue, for the in-
coming requests. If there comes an anycast request for server SP, then the request will 
be stored in the normal queue of server SP, at the same time, Sp sends a copy of the 
request its twin, ST, and the copy will be stored in the reserve queue of SP. each server 
takes the requests from its normal queue and executes the requests respectively. There 
is a pointer from the normal queue of the primary server to the reserve queue of the 
twin server to indicate the progress of the execution of the requests in the primary 
server. Once a request is executed successfully by the primary server, the copy of the 
request will be deleted from the reserve queue of the twin server by moving the 
pointer. Once the twin server finds that the primary server is down, it will push the 
request(s) in the reserve queue into its normal queue, therefore, the uncompleted re-
quests of the primary server will be executed by the twin server. The procedure of the 
requests transfer is quick and transparent to the users. 
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The key issue in the reliable model is server failure detecting, therefore we propose 
a server failure detecting algorithm, shown as List 1. The purposes of the sever failure 
detecting algorithm are to synchronize the normal queue of the primary server and its 
counterpart reserve queue of the twin server, and to detect the crash failure of the 
primary server as well. 

The main idea is that the primary server sends messages to the twin server, and 
the twin server decides to trust the primary server (the primary server is alive) or 
suspect the primary server (the primary server is dead). In order to avoid a request is 
executed twice by the primary server and the twin server respectively, once a request 
is completed successfully, the primary server will send that information to the twin 
server immediately. Therefore, the frequency of that kind of message transmission is 
high. If the twin server gets one of the messages, then it is true that the primary server 
is alive. It is possible that there is no that kind of message transmission for a long 
time. For this reason, we set two timers in the primary server and the twin server 
respectively to calculate the time consuming. Once a request is processed in the pri-
mary server, the server will send a message about the pointer to the twin server, and 
the later will adjust its pointer of the reserve queue. If a request’s service time is 
longer than a given time (2Ts in this paper, Ts is the mean service time of the primary 
server), then the primary server will send a message (I am alive) to the twin server to 
hint that the primary is alive. On the other hand, if the twin server does not receive a 
message from the primary server for a long time (2*(2Ts+Td) in this paper, Td is the 
average network delay) then it will suspect the primary server and it will take the 
primary server’s uncompleted duties. 

4   Performance and Capability Analysis for the Architecture 

In this section, we will compare the performance of the requirement based routing 
algorithm with the periodical probing routing algorithm based on queuing theory and 
the pervious researches. We also analyze the capability of the twin server model in the 
Internet environment. 

4.1   Performance Comparison for Anycast Routing Algorithms 

We compare the two categories of application-layer anycast routing algorithms based 
on research of statistics characteristics of the Internet traffic and the queuing theory. 
There are some assumptions for the calculations: 

1) Customer arrival rate and the service rate are Poisson distributions.  
2) The time unit for both algorithms is 1. 
3) During the time unit of 1, there are N customers for both algorithms. 
4) There is one server in the system acting as the resolver, and the service ve-

locity, μ , can be obtained from formula (2). 
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There are two important parameters to measure the performance of a system. One 
is the average time used in the system for a customer, denoted as Tq. Another one is 
the average waiting time for all customers, denoted as Tw. For both algorithms, we 
will calculate these two parameters respectively.  We use p as the subscript for the 
periodical probing algorithm, and r as the subscript for the requirement based probing 
algorithm. 

We have obtained the result in [12] as follows, 
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Based on this, we can derive the following two conclusions: 

Conclusion 1.  
qpqr TT < , ),0( ept ∈ ,  where 
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Based on formula (4) and (6), we obtain the curves shown as Figure 3. If P locates in 
(0, pe) then 

qpqr TT < , and if p locates in (pe, 1] then 
qpqr TT > . That means when the net-

workload becomes heavy ( ↑σ ), or there are more customers ( ↑N ), or both of these 
events happen, then Pe becomes smaller. That is when the above situation(s) happen, 
in a system’s view, Tqp is less than Tqr, but in practice, we hope that Pe is close to time 
point 1, that means we hope the resolver’s database update period is only a small part 
of the whole time unit, because during [Pe, 1], resolver will focus on database updat-
ing, therefore the performance of the service is poor. Based on the analysis, generally 
speaking, in most of the time unit, (0, Pe), the performance of the requirement-based 
probing algorithm is better than that of periodical probing algorithm; only in a very 
small part of the time unit, (Pe, 1), the former performance will be worse than  
the later. 
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Fig. 3. The compare of Tqp and Tqr 

Conclusion 2: 
wpwr TT ≤  

This shows that Twr is always less than or equal to Twp, namely the average waiting 
time of the requirement-based probing algorithm is always less than or equal to that of 
the periodical probing algorithm. 

From the two conclusions, we can obtain that: in general, the requirement based 
probing routing algorithm is better than the periodical probing routing algorithm. 

4.2   Performance Analysis for the Twin Server Model 

In order to analyse the capability and performance for the twin server model, we 
model the system as Figure 4, where S1 is the primary server, and S2 is the twin server. 
Q1 and Q2 are the normal queues for S1 and S2 respectively. When S1 crashes, the 
uncompleted jobs in Q1 will be pushed into Q2 to be executed. The specifications of 
the related parameters are described below. 

μ 2
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λ2 

Clients 
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μ 1

S1 
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Q1 
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Fig. 4. The Reliable Model for Anycast Service 

λi , i = 1, 2. arrival rate of Poisson arrival. 
 μi, i = 1, 2. mean service rate for each arrival. 
Ti,  i = 1, 2. mean service time for each arrival. 
Tqi, i = 1,2.  mean time a request spends in the system. 

Here, 1=⋅ ii Tμ . The service time Ti includes two parts: the average network delay 

of traffic and the average computing delay of the server.    
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Based on the mathematics model and query theory, we have derived the following 
assertions in paper [13] 

Assertion 1. If the workloads of n computers )2( ≥n are balanced, then in a given 

period [0, T] (T is sufficiently big), the sums of the related service time Ts of each 
computer are equivalent.  
Assertion 2. If the workload of n computers )2( ≥n are balanced, then in a given pe-

riod [0, T] (T is sufficiently big), the ratios of arrival rate to the service rate for each 
computer are the same. 
Assertion 3. If the workload of n computers )2( ≥n are balanced, then in a given pe-

riod [0, T] (T is sufficiently big), the relationship between Tq, mean time a request 
spends in the system, and the arrival rate λ is reciprocal. 

Based on the previous assertions, we obtain a very important conclusion: 
Assertion 4. In our proposed fault tolerant anycast server model of Figure 4, if 
μ2>>μ1, when the primary server crashes, in the following crash processing period, 
Tq for the requests of S2 is decreased, but very close to that before the crash; Tq for the 
unfinished request(s) of S1 is dramatically increased in the viewpoint of clients. 

The conclusion of assertion 4 is applied by the anycast resolver in the proposed ar-
chitecture to choose the server pair. There are more algorithms for the twin server 
model, such as, the twin server failure broadcasting algorithm. The interested readers 
please refer to paper [13]. 

5   Remarks and Future Work 

In this paper, we proposed an efficient and reliable architecture for application layer 
anycast service. We applied the requirement based probing routing algorithm, instead 
of the periodical probing routing algorithm, and generally speaking, the employed 
algorithm is better in several aspects, such as, accuracy, network workload, and so on.  

The anycast servers are distributed and mirrored in the unstable Internet environ-
ment, therefore, a fault-tolerant mechanism is highly expected for the anycast systems. 
We extended the twin server model to propose a reliable and efficient anycast service.  

We have proved that the proposed architecture works well by modeling and math-
ematic analysis, and further, a prototype and the experiments in the Internet are the 
jobs for the future work.  
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A Distributed Approach to Estimate Link-Level
Loss Rates

Weiping Zhu

ADFA, The University of New South Wales, Australia

Abstract. Network tomography aims to obtain link-level characteris-
tics, such as loss rate and average delay of a link, by end-to-end mea-
surement. A number of methods have been proposed to estimate the loss
rate of a link by end-to-end measurement, all of them, in principle, are
based on parametric statistics to identify unknown parameters. In addi-
tion, they all used the traditional centralized data processing techniques
to complete the estimation, which is time-consuming and unscaleable.
In this paper, we put forward a distributed method to tackle the scal-
ability problem. The proposed method, instead of estimating link-level
characteristics directly, estimate path level characteristics first that can
be executed in parallel and can be achieved by a distributed system.
The path level characteristics obtained can be used to identify link-level
ones later. The proposed method has been proved to be an maximum
likelihood estimate.

1 Introduction

Link-level network characteristics, such as packet loss rate and average delay of a
link, are important to network design and performance evaluation. However, due
to technical and commercial reasons, those characteristics cannot be obtained
directly from a network. To answer this challenge, research community starts to
investigate other alternatives to obtain this information [1], [2], [3], [4], [5]. The
most interesting alternative is called network tomography that aims to obtain
network characteristics by sending probing packets from a source or a number of
sources to a number of receivers, via the networks that we are interested in its
characteristics. By observing the arrivals and their correlations at the selected
receivers attached to the networks, it can find some network characteristics.

Since all observations are carried out at the designated receivers attached
to endpoints, we only have an incomplete view of network reactions to the
probes. We then rely on statistical inference, such as maximum likelihood es-
timate (MLE), to find out the characteristics of those links, including those
cannot be directly observed. MINC is the pioneer to use the multicast-based
approach to obtain the loss rates of a tree-like network [5], [6], [7]. It depends on
a set of high-order polynomial that show the correlation of loss rates in a tree
structure. By solving those polynomials with numeric methods, the loss rates of
links can be obtained. Harfoush et al. proposed to use a unicast-based approach
to discover link-level characteristics [8]. Their simulation confirms the usefulness

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 386–395, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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of their method. Similarly, Coates and Nowak also used the packet-pair tech-
nique to estimate link-level characteristics. They used EM algorithm to estimate
the correlation between packet pairs, and then loss characteristics on links [9].
Zhu proposed to use Bayesian networks to estimate loss rates [10].

After examining probe propagation in a multicast tree, we have a insight
about the loss rates between paths and links. The insight, called hierarchical
dependency, forms the basis of a new inference method that divides the opti-
mization process into a number of independent subtasks. Instead of estimating
link loss rates directly, we can either estimate the loss rate of a path connecting
the source to an internal node or estimate the loss rates of those subtrees that
connect a node to the receivers attached to the subtrees first. It is then based on
the the path loss rates identified to find the link-level loss rates. The insight fur-
ther leads to two theorems that unveil the relationship between the loss rate of a
link and the loss rates of the two paths that connect the source to the two ends
of the link. Applying one of the two theorems on the obtained path loss rates,
we can obtain the link-level loss rates. The proposed method greatly reduces
the time spent on inference and turns the centralized processing model into a
distributed one that not only reduces the time used in inference, but also reduce
the amount of data exchanged between nodes. In fact, the complexity of a sub-
task is independent to the size of a network and equal to the complexity of the
inference of a two-level tree that makes the method scalable. More importantly,
the method is a MLE.

The rest of the paper is organized as follows. In Section 2, we present the
fundamental of statistical inference and apply it to discover loss rates by end-
to-end measurement. In Section 3, we present the hierarchical dependent insight
in details and derive the two theorems. In addition, a distributed scheme used
to identify link-level characteristics is presented. Section 4 covers the details of
traffics used in our simulations and compares the results obtained from observa-
tion with the actual data collected from the simulator. Section 5 is devoted to
concluding remark.

2 Statistical Inference

The multicast tree used to send probes to receivers can be abstracted by a
three-element tuple (V, E, Θ) as shown in Figure 1(a). The first two elements
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represent the nodes and links that have the same definitions as that in graph
theory, i.e., V = {v0, v1, ...vn} is a set of nodes, which correspond to routers and
switches in a network, E = {e1, ..., en} is a set of links that connect the elements
of V to form a network. While, Θ = {θ1, ..., θn} is a n-element vector, one for
a link to describe the network characteristics that we are interested in, and in
loss tomography the characteristics is the loss rate of a link. As a regular tree,
we assign a unique number to each link, starting from 1 to n, we also assign a
unique number to each node, starting from 0 to n. The two sets of numbers map
each other as follows: link 1 connects node 1’s parent (node 0) to node 1, link 2
connects node 2’s parent to node 2, and so on.

To find the loss rates of links, in particular for those that cannot be observed,
a loss model should be assumed, which has some unknown parameters. The model
describes the behavior of losses occurred on a link. Network tomography in this cir-
cumstance aims to determine those parameters fromsamples collectedby receivers.
If those parameters are identifiable, when we have enough samples, we should be
able to determine them correctly. A number of methods, e.g. neural net, Monte-
Carlo, Gaussian approximation, EM, etc., have been developed to identify the un-
known parameters, and all of them adopt an iterative approximating approach to
do it. Mathematically, this process can be expressed as:

sup
Θ

L(Θ) = sup
Θ

∑
y∈ΩR

n(y) log Pr(y; Θ) (1)

where R denotes the set of receivers attached to leaf nodes, and ΩR denotes the
possible observations of R. All the methods listed above aim to find a set of
parameters embedded in (1)that can maximize (1). That is equivalent to search
for a point in a n-dimensional space that can maximize (1), which can take
considerable amount of time and take the risk to get a local maximum. Apart
from those, to send all samples from receivers to a centralized server not only
takes time but also needs bandwidth.

3 Decomposition

What we consider here is whether the inference process can be decomposed into a
number of tasks that can be executed independently by different nodes. This at-
tempt depends on whether the parameters embedded in (1) can be merged and
decomposed. A merged parameter here means grouping some related parameters
together, called meta-parameter, that can be identified first; and later the original
parameters can be recovered from meta-parameters. After studying the unique-
ness ofmulticast trees, we discover two key insights fromprobe propagated in a tree
structure, namely sibling independency and hierarchical dependency. They provide
the foundation to merge and decompose the parameter space.

3.1 Virtual Link

For each internal nodes, we can construct a two level tree, which has an input
virtual link connecting the source to the node that carries probes from the source
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to the node, and a number of output virtual links, each for a subtree rooted at
the node. Each internal node has a set of receivers connected to it. For instance,
Figure 3.1 shows how the multicast tree shown in Figure 1(a) is decomposed into
three two-level trees, where node 45 (67) represents the combined observation of
node 4 (6) and 5 (7), the link between 0 and 2 (3) is the path between 0 and 2
(3) in Figure 1(a), the link between 1 and 45 (67) is a subtree in Figure 1(a).
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Fig. 1. Decomposed Figure 1

As stated, each link has a unique number, and every subtree can be named
by the number of its root link and denoted by T (i), i ∈ V . Accordingly we use
V (i) to denote the set of nodes in T (i). Let R denote the receivers attached to
the multicast tree, and then R(i) = R ∩ V (i) be the set of receivers attached to
the multicast subtree rooted at node i. In addition, let path(i) denote the links
that connect the source (node 0) to node i.

1

2 3

7

4 5

6 8 9

y y y y6 7 98

Fig. 2. A Multicast Tree and Subtrees

Every node, apart from the source, has a unique path connecting the source
to itself. Apart from leaf nodes and the source, the rest of V that have a parent
and children are grouped into a set called internal set and denoted by Int,
Int = V \ (R ∪ 0). Let |Int| represent the number of internal nodes. Node
i, (i ∈ Int), observes only those probes that are passed by path(i). Therefore,
from the viewpoint of node i, path(i) can be viewed as the single input link
that forwards probes from the source to the node. In addition to the input link,
node i, since it is not a leaf node, has a number of children, denoted by clinki,
where |clinki| denotes the number of children. Each child of node i is a subtree
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rooted at node i, and can be viewed as an output link of node i. Let clinki(j)
denote the output link that is rooted at node i, and via link j, i.e. subtree j is
a child of node i. Based on the above views, each internal node can be virtually
abstracted as a two level tree, called node view in the rest of the paper. A node
view consists of only one input link that connects the source to the node, and a
number of output links connecting the node to its receivers.

To estimate the loss rates of the input link and output links of a node, we
need to combine the observations of a subtree that corresponds to an output link
of the node. Let Ψ(k) denote the view of subtree k for a probe, which equals to:

Ψ(k) =
{

1, ∃i, i ∈ R(k), yi = 1
0, ∀i, i ∈ R(k), yi = 0 (2)

where yi corresponds to the observation of receiver i. Based on Ψ(·), we are able
to estimate the loss rates of the virtual links by running EM or other algorithms.
Let cdk represent the effect of a trial on node k. After n trials, R(k), the receivers
attached to node k, provides its observations, CD = {cd1

k, cd2
k, ..., cdn

k}. Based
on the data provided, the loss rates of the input and output links of the node
can be estimated. More importantly, these estimation can be executed in parallel
and in distributed manner.

In a distributed system, each receiver is responsible for an internal node since
|R| > |Int|. The task assigned to a receiver should consider the locality of other
receivers that form a group for an internal node. Due to the recursive nature of
the tree structure, the task can be assigned easily. Then, each receiver according
to the tasks assigned and its groups passes its observations to those nodes that
assigned the tasks. Whenever a node receives all required observations, it can
start its estimation independently.

3.2 Hierarchical Dependency

Applying EM or other methods on a node view, say i, we can obtain the loss
rates for the input link and output links of the node. To obtain the link-level loss
rates that we are interested in, we need to have a method that can compute the
link-level loss rates from the related path loss rates. Two theorems that reveal
the relationship between these two loss rates are discovered; in which let f(i)
denote the parent node of node i, and let pi denote the input loss rate for node
i, and then, pf(i) denotes the input loss rate of node f(i). Further, let li denote
the loss rate of link i that connects node f(i) to node i. li can be obtained by
the following theorem:

Theorem 1. If we have the input loss rates of node i and node f(i), pi and pf(i),
respectively, the loss rate of link i is equal to:

li =
pi − pf(i)

1 − pf(i)
(3)
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Proof. Let ei and epi denote loss events occurred on link i and path(i), respec-
tively. Based on probability addition rule, we have

P (epi) = P (ei ∪ ef(i))
= P (ei) + P (ef(i)) − P (ei ∩ ef(i))
= P (ei) + P (ef(i)) − P (ei)P (ef(i)) (4)

since ei is independent to ef(i), P (ei ∩ ef(i)) = P (ei)P (ef(i)). Then, we have

P (ei) =
P (epi) − P (ef(i))

1 − P (ef(i))

Using pi, pf(i), li to substitute P (epi), P (ef(i)), and P (ei), respectively, we
have (3).

Similarly, we have Theorem 2 to obtain the loss rates of a link from its
related output links. Let cpi(k) denote the output loss rate of subtree k which is
an output link of node i. Then, cpf(i)(i) is the loss rate of output link i, where
link i connects node f(i) to node i. Then, we have

Theorem 2. If we have the loss rates for cpi(k) and cpf(i)(i), the loss rate of
link i is equal to:

li =
cpf(i)(i) −

∏
k∈clinki

cpi(k)
1 −

∏
k∈clinki

cpi(k)
(5)

Proof. Since cpf(i)(i) = li + (1 − li)
∏

k∈clinki
cpi(k), we obtain (5) after reorga-

nizing the equation.

In fact, these two theorems are dependent, from one can obtain the other.
Thus, one should be regarded as a corollary of the other.

3.3 Distributed Algorithm

On the basis of the node view, the inference process can be decomposed into
a number of tasks that can be executed in a distributed system, the number is
equal to the number of internal nodes. For instance, Figure 3 a) shows a multicast
tree used to send probes to the receivers attached to the leaf nodes. There are
6 internal nodes, i.e. 1, 2, 3, 6, 7, and 8, each has its own view when probes are
sent from the source to the receivers. The view of node 6 can be represented by
a two level tree a shown in Figure 3 b), where Ψ(8) and Ψ(9) represent the node
based observations by R(8) = {12, 13} and R(9) = {9}, respectively.

Based on the two Theorems, we put forward a distributed algorithm that
adopts a divide-and-conquer approach to find link level loss rates, which has
three phrases as follows:
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Fig. 3. A Multicast Tree and An Internal View

Procedure main {
group observation(T, D);
path-rate estimation();
link-rate calculation();

}

1. Procedure group observation(T, D) has two inputs parameters T and D,
the former is the multicast tree used to propagate probes, the latter is the
samples collected by receivers. The procedure groups observations for each
internal node according to the tree structure and determine a receiver to do
the estimation.
This procedure can be carried out in a distributed manner from bottom up.
For a group of receivers that share the same parent, they selects a receiver to
do the estimation of the 2 level virtual tree created for the parent node. Those
unselected receivers move one level up to join other receivers to compete the
duty to estimate the path loss rates for their grand-parent. This process is
continued until it reaches the source.

2. Procedure path-rate estimation() assigns each node with its observations to
a processor to infer path loss rates. The iterative approximating procedure
used in [9] can be used here to estimate the loss rates of various pathes in
the tree.

3. Except for node 1, the results obtained by other internal nodes are the loss
rates of the corresponding paths. Therefore, after completing step 3, we can
either use Theorem 1 or Theorem 2 to derive the loss rates for all internal
links. The procedure called link-rate calculation() is used to carry out this
operation.

4 Simulation Result

To demonstrate the correctness of the formulas derived in the last section, we
conducted a series of tests on a simulation environment built on ns2 [11] that
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has 16 nodes connected by 15 links as shown in Figure 4. Link 1, 2 and 3 have
3Mbps of bandwidth, while the others have 1.5Mbps. Apart from link 1 that has
2ms as its propagation delay, all others have 10ms of propagation delay. Each
node has a FIFO queue attached to temporarily store packets. The queue length
of a leaf node is 10, while a non-leaf node has a queue with a limit of 20 packets.
The droptail policy is employed by all nodes to handle congestion, i.e. when a
queue is full, newly arrived packets were dropped. A combined TCP and UDP
traffics are added at different nodes as background traffic, where the left hand
subtree is heavily loaded, but the right one is lightly loaded. Probe packets were
periodically multicasted from node 0, the source, to the receivers attached to
the leaf nodes.

Two sets of experiments were carried out on the simulation environment,
apart from the frequency used to send probes, one has its interval as 0.01s, the
other has its interval as 0.02s. Apart from the intervals, these two set experiments
are identical. This arrangement aims to study the impact of sampling frequency
on inference accuracy. In addition, we divide time into slots, each has 5 seconds.
Based on the observations obtained in a slot, we use the formulas previously
derived to calculate the loss rate for each link. The inferred loss rate is compared
against the actual loss rate obtained from the simulator to evaluate the accuracy
of the proposed method.

Since the right subtree is lightly loaded, no loss has been observed in all time
slots. Then, zero loss rates have been assigned to all links of the right subtree.
While, the situation in the left tree is very different. Figures 5(a), 5(b) and 5(c)
shows the inferred loss rates against the actual loss rates at link 2, link 4 and
link 8, respectively, when the probing interval is set to 0.02 second. These three
figures clearly show the inferred results correctly reflect the actual loss trend of
the background traffic.

On the same traffic setting, we carried out the second round simulation by dou-
bling the number of probes sent to the receivers. The inference results against ac-
tual losses are plotted in Figures 5(d), 5(e) and 5(f). Each of these figures is a bit
different from its counterpart in the previous round, including the actual curves.
The difference is created by more probes sent into the network. Although those
extra probes only slightly increase the traffic on those links, the increase of traffic
triggers protocol actions at different points and leads to the change of loss rates
and phases. For instance, such an increase may cause TCP streams to reduce their
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(a) Link 2 loss rate (0.02s).
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(b) Link 4 loss rate (0.02s).
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(c) Link 8 loss rate (0.02s).
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(d) Link 2 loss rate (0.01s).
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(e) Link 4 loss rate (0.01s).
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(f) Link 8 loss rate (0.01s).

window sizes earlier, and due to the synchronization effect for all TCP streams be-
cause the droptail policy was used for buffer management, the estimated loss on
link 4 in the second is marginally higher than the actual one. Despite of this, the
curves plotted in the two set of figures have very strong similarity.

5 Conclusion

In this paper, we present a scheme that allow us to divide the inference task of
network tomography into a number independent subtasks that can be executed
in parallel. The advantage of this scheme relies on decomposition to achieve
its scalability, in which receivers that are geographically closely located work
together to find out the characteristics within the network connecting them.

In this paper, we present a distributed algorithm to speed up the inference
of the link-level loss rate by end-to-end measurement. The algorithm is built
on a divide-and-conquer approach with the excellent parallel nature that makes
it scalable. Our simulations show this approach is workable and accurate. Cur-
rently, we are investing methods to control the number of probes used to create
informative observations.
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Abstract. Many simulation-based performance studies of interconnection net-
works are carried out using synthetic workloads under the assumption of inde-
pendent traffic sources. We show that this assumption, although useful for some 
traffic patterns, can lead to deceptive performance results for loads beyond satu-
ration. Network throughput varies so much amongst the network nodes that av-
erage throughput does not reflect anymore network performance as a whole. 
We propose the utilization of burst synchronized traffic sources that better re-
flect the coupled behavior of parallel applications at high loads. A performance 
study of a restrictive injection mechanism is used to illustrate the different re-
sults obtained using independent and non-independent traffic sources. 

1   Introduction 

Methods to evaluate the performance of an interconnection network range from the 
construction and measurement of its hardware prototype, to the utilization of overly 
simplified simulations. During the first stages of a new interconnection project, a fast 
simulation environment is critical, because it allows researchers to test and tune their 
design. Once a good tradeoff between expected performance and cost has been at-
tained, the design can be rounded off using more detailed simulators. The evaluation 
of expensive prototypes goes just before the manufacture (and, again, evaluation) of 
the final product. In all these stages, evaluation has to be done using some kind of 
workload that resembles, with the higher possible fidelity, the actual workload that 
will be processed by the final network.  

For practical reasons, most studies are carried out using synthetic workloads, run-
ning a simulator for a large number of cycles (simulated time) to get performance re-
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sults with the network in steady state. Although this may not be realistic, we consider 
the obtained results as indicators of the level of performance the network could pro-
vide under real conditions. For some SPLASH applications such as Radix or LU, it 
has been shown to be a reasonable approach [11].  

A synthetic workload is defined by three parameters: the injection process, the spa-
tial traffic pattern and the message size [4]. This can be done in a per-node basis, al-
though very often all nodes share the same behavior. The spatial pattern determines 
the distribution of destinations for each source node. The injection process determines 
the temporal distribution (in other words, when a packet is generated). The size distri-
bution determines the message length.  

Traffic patterns include permutations such as bit-reversal or matrix transpose, uni-
form (also called random) and hot-spot. Each of them represents a worst-case sce-
nario: uniform has no locality, permutations make an uneven use of resources, and 
hot-spot models nodes that receive a higher proportion of the traffic.  

In general, we cannot assume that applications running on a parallel computer use 
fixed-size messages. However, networks often impose a maximum packet size and 
messages have to be segmented to fit in several of those packets. For this reason, most 
studies are done with fixed-size messages of 8-32 phits [2, 4, 11]. In some cases, mes-
sage length follows a bimodal distribution which reflects network workload for a cc-
NUMA system [10]. In this study, we will limit our discussion and experiments to 
fixed-size packets, although conclusions are valid for other length distributions.  

Regarding the injection process, nodes are “programmed” to inject packets using 
some probability distribution (independently of the others). Injection times usually 
follow a Poisson or Bernoulli distribution, which are smooth over large time intervals. 
These widely used workloads treat each node as an independent traffic source (ITS).  

The purpose of this paper is to show that performance results obtained with ITS for 
non-uniform traffic patterns under heavy loads process can be misleading because 
they do not reflect the way actual parallel applications make use of the communica-
tion subsystem: their processing nodes may advance tightly or loosely coupled, with 
all the possibilities in between but they are never totally uncoupled. To better illus-
trate this issue, we describe an experimental setup designed to evaluate the impact on 
network performance of a restrictive injection mechanism, and we compare the results 
obtained using ITS with those obtained using burst-synchronized traffic (BTS). 

The rest of the paper is organized as follows. Section 2 defines all the relevant pa-
rameters of our experimental setup. Section 3 presents, discuss and compare the dis-
parate results obtained using independent and non-independent traffic sources. Sec-
tion 4 summarizes the findings of this work. 

2   Evaluation Environment 

In this section we define the experimental setup used to illustrate the impact of the 
choice of synthetic workload (focusing on the injection process) on the simulation re-
sults. First, we present the interconnection network as modeled for this study. Then 
we describe the context in which the injection process is analyzed, and the rest of 
simulation parameters.   
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2.1   The Simulated Network 

For this work we use FSIN (Functional Simulator for Interconnection Networks), an 
in-house simulator, developed to simulate k-ary n-cube networks based on virtual cut-
through (VCT) router architectures.  

Cross-
bar

X-

Y+

Y-

X-

Y+

Y-

X+0

X+1

X+2

X+0

X+1

X+2

Injection
queue

Reception  

Fig. 1. Architecture of the adaptive VCT router used in the experiments 

Fig. 1 shows the architecture of an adaptive virtual cut-through (VCT) router. It 
uses three VCs per physical channel, to map a deadlock-free oblivious (dimension-
order routing) sub-network and a minimal adaptive sub-network. Each VC has a 
buffer with capacity for 8 packets (128 phits). One of the VCs is used for the escape 
sub-network, relying on Bubble Flow Control (BFC) [11] to avoid deadlock in each 
dimension. The adaptive sub-network uses the other two virtual channels. Any 
blocked packet in the adaptive sub-network can resort to an escape path to break a po-
tential deadlock cycle [6]. Such combination provides low-cost, deadlock-free adap-
tive routing.  

In order to reduce the number of figures and better focus our discussions, in this 
paper we show results for a 32x32 tori. However, conclusions are valid for other net-
work configurations. 

2.2   The Evaluation Context 

The choice of synthetic workload has a definite influence on any kind of performance 
experiment we may carry out. In order to be more specific, and to show this influence 
in a particular (but relevant) context, we describe an experimental setup that was used 
to study the advantages of implementing restrictive injection techniques to prevent 
network congestion 

Congestion control mechanisms limit injection when the network reaches a given 
level of congestion, which can be estimated locally or globally. In this paper, we ap-
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ply a local method called in-transit-priority restriction (IPR): for a given fraction P of 
cycles, priority is given to in-transit traffic; in those cycles, injection of a new packet 
is only allowed if it does not compete with packets already in the network. P may vary 
from 0 (no restriction) to 1 (absolute priority to in-transit traffic), although in this pa-
per we will consider only the two extreme cases. This method is used in IBM’s BG/L 
[1] and in the Alpha 21364 network [8]. A more detailed discussion of congestion 
control mechanisms can be found in [7].  

When studying congestion, which appears at high loads, the main figure of merit is 
the maximum sustained throughput for loads beyond saturation. However, unexpected 
results lead us to examine throughput figures in more detail and identify a significant 
level of throughput unfairness, which rends average values to be meaningless. That 
finding lead us to redefine the temporal distribution of packets for the synthetic work-
loads used in the experiments, as reported in the next section. 

2.3   Network Workload 

We have considered fixed-size packets of 16 phits. The traffic patterns used in the ex-
periments are:  

− UN: uniform traffic. Each node selects destinations randomly in a packet-by-
packet basis. 

− TR: transpose permutation. In a 2-D network, the node with coordinates (x, y) 
communicates with node (y, x). 

− SH: perfect-shuffle permutation. The node with binary coordinates (ak-1, ak-2, ..., a1, 
a0) communicates with node (ak-2, ak-3, ..., a0, ak-1)—i.e., rotate left 1 bit. 

We use two types of injection processes:  

− Normal: independent traffic sources, each one following a Bernoulli distribution 
with a parameter that depends on the applied load. This load is varied from 0 to 1 
phit/cycle/node. The simulator runs for a warm-up period of 100,000 cycles, plus a 
measurement period of 100,000 cycles. 

− Burst-synchronized: non-independent sources, to reflect the synchronized nature 
of parallel applications. The injection method is similar to that described in [2]. 
The same workload (b packets) is assigned to each source of traffic. A burst starts 
with an empty network. Nodes inject their b packets as fast as the network accepts 
them. The burst ends when all packets of all the traffic-generating nodes have been 
consumed. In the experiments, the simulator runs for 5 bursts of 1K packets. 

3   Performance for Independent and Burst-Synchronized Traffic 
Sources 

Most interconnection network simulators model the processing nodes as ITS which are 
continuously generating packets. Network performance is reported using two figures: la-
tency (time from packet generation until its delivery) and throughput, which is measured 
as the number of packets delivered in a given time interval divided by the interval length 
and the network size.  In other words, this is the average load accepted by the network 
(i.e., the network throughput), which is expected to be even amongst the network nodes.  
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In this section we will show such expectation is incorrect for non-uniform loads 
once the network has reached saturation, and we will question the validness of aver-
age throughput as the figure of merit under heavy loads. The evaluation of the impact 
that a restrictive injection mechanism (IPR) has on the performance of an adaptive 
VCT torus network is provided only to illustrate this issue. We could have selected 
different router architecture, topology or congestion-control mechanism. It would not 
matter because conclusions would be the same: throughput under non-uniform pat-
terns for loads beyond saturation varies widely amongst the network nodes.  

3.1   Network Performance Under Independent Traffic Sources 

Fig. 2 represents network performance under three different traffic patterns (UN, TR 
and SH), with and without IPR, using a typical plot of average throughput versus ap-
plied load.  

For the UN pattern, results show that utilization of a restrictive injection mecha-
nism eliminates the throughput loss for loads beyond congestion. However, we cannot 
extend this conclusion to the permutations. In fact, results indicate that restrictive in-
jection is counterproductive for TR and SH traffic under heavy load. This result was 
unexpected as non-uniform loads suffer more from congestion than UN, so we expect 
restrictive injection should be more effective, not less. 

Another indicator of network performance is channel utilization: the higher the 
channel utilization, the better, because more resources are being productive. Let us 
focus on TR traffic without/with IPR. Fig. 2 indicates that, in saturation, throughput is 
higher without IPR. However, simulation results also indicate that channel utilization 
is higher with IPR. Which figure of merit is correct? How can channel utilization in-
crease while delivering fewer packets? Does IPR increase performance, or not?  
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Fig. 2. Applied load vs. throughput (phits/cycle/node) for UN, TR and SH patterns, with-
out/with IPR 

3.2   Discussion of Performance Figures Under Independent Traffic Sources 

In [4], Dally & Towles suggested that performance of a network for a given traffic 
pattern in which the node injection rate is not the same for all nodes should be re-
ported as the lowest injection rate that matches the desired workload. 
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Following this approach, in Table 1 we report maximum, minimum and average in-
jection rates for the six configurations under study. Notice the vast differences be-
tween these values for the TR and SH permutations.  

Table 1. Maximum, minimum and average network throughput (phits/cycle/node), for applied 
loads beyond saturation, for UN, TR and SH patterns, without/with IPR 

IPR off IPR on IPR off IPR on IPR off IPR on
Max. 0,219 0,267 0,559 0,716 0,973 0,974
Min. 0,194 0,217 0,013 0,000 0,002 0,000
Avg. 0,205 0,243 0,132 0,098 0,125 0,119

UN TR SH

 

Such large variations of throughput under TR and SH permutation patterns were 
also observed in other popular IN simulators such as Flexsim [12] and the Chaos 
simulator [3] for a range of network designs. Dally & Towles [4] state that average 
and minimum rate differ in some routers due to their unfair design, citing the chaos 
router with prioritizes traffic in its internal queue over incoming or new packets as an 
example of that unfairness.  

We should note that the time a packet awaits in an injection buffer before entering 
the network depends not only on the arbitration method, but also on the local router 
state. Under UN traffic, the network load is evenly distributed, so that all nodes have 
a similar view of network status and are able to inject packets at a similar rate. How-
ever, under non-uniform loads the degree of utilization of resources (buffers, output 
channels) may vary widely from one router to another. Therefore, at high loads, nodes 
connected to busy routers1 have lower chances to inject their load than nodes in less 
used areas—a difference that causes wide variations in the number of packets injected 
by each node. In other words, the differences shown in Table 1 are not caused by an 
unfair routing or arbitration method, but by the fact that network resources are used 
unevenly by the applied workload, which is the case for all non-uniform loads. 

Let us focus again on the TR permutation. In a 32x32 network, and assuming that 
all nodes inject at the same rate, the average distance packets traverse is 16.516. In 
fact, this is what the simulator reported when network load was below its saturation 
point. For those loads the map of packets injected per node is flat (except the nodes in 
the diagonal, which do not generate traffic for themselves), as shown in Fig. 3a. 

The scenario changes drastically when saturation is reached. The simulator reflects 
this in a change in average distance (17.12) and in a very different map of injected 
packets (Fig. 3c). Note we have change nothing but the applied load. The problem is 
that some nodes can inject packets in their routers at very high rates, while others can 
hardly access the network because their routers devote most resources to passing-by 
packets. Fig. 3c shows that “lucky” nodes (those that have more opportunities to in-
ject packets) are located close to the diagonal and in a pair of bands parallel to it. It 
gives the impression that the network is unfair for TR traffic.  

We are interested to know why adding the IPR congestion control mechanism  
appears not to be beneficial in this scenario. Network response does not change below  

                                                           
1  “Busy” routers are those that are traversed by numerous in-transit packets.  
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Fig. 3. Maps of injected packets for TR traffic. Each surface point (x, y) represents the number 
of packets a node with coordinates (x, y) injected in 100.000 cycles. (a) Below saturation, no 
IPR. (b) below saturation, IPR. (c) beyond saturation, no IPR. (d) beyond saturation, IPR. 

saturation (Fig. 3b) but for loads beyond saturation network unfairness is worst as 
shown in Fig. 3d: the “lucky” area close to the diagonal shrinks, and the two parallel 
bands are narrower and taller than without IPR2. As nodes in these bands are injecting 
packets addressed to distant destinations, the average distance rises up to 23.47. In 
other words, IPR magnifies the fairness problem.  

For other non-uniform workloads results are similar. As an example, Fig. 4 shows 
the maps of injected packets for the SH pattern for loads beyond saturation, without 
and with IPR. 

In conclusion, simulations report again that the implementation of a congestion-
control mechanism is counterproductive for all traffic patterns under study—except 
for UN. Although IPR increases channel utilization, the number of packets delivered 
per cycle diminishes. This unexpected result is explained by the fact that network un-
fairness favours packets that travel longer paths.  

                                                           
2  A digression of interest: we have a collection of nodes capable of injecting more than 4000 

packets in 100.000 cycles, while some others are unable to inject a single one (they suffer 
starvation).. Any router that imposes restrictions to the injection of new packets may suffer 
from starvation. Although the adaptive router (without IPR) is starvation-free, it exhibits a 
high degree of unfairness under non-uniform traffic. 
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Fig. 4. Maps of injected packets for SH traffic beyond saturation. (a) IPR off. (b) IPR on. 

3.3   Performance of the Network Under Burst-Synchronized Traffic 

The above conclusion could be considered correct as numerous previous works using 
this simulation methodology and workload. But luckily in this case we have several 
indicators (channel utilization, average distance and unfairness) that something is 
wrong. And what we think is wrong is the synthetic workload used. 

Application processes are somehow coupled, because they work to perform a given 
task in a cooperative way. Most (if not all) applications use synchronization barriers, 
perform collective operations or use other mechanisms as described in [5] that make 
all the processes advance at a similar rate. It is true that worst-case performance for 
data exchanges is important (as shown in [9]) because it may halt progress of compu-
tation nodes, which are not able to perform additional operations, or communicate any 
further, until the data exchange has been completed. However, we cannot conceive a 
realistic scenario in which, in the same parallel application, a process is sending 
packets to its selected destination ad infinitum while other nodes do the same at a 
much smaller rate.  

We consider burst-synchronized injection as described in section 2.3 to be a better 
alternative to model the communication structure of a parallel application at heavy 
loads. We have made a complete performance analysis similar to that reflected in Fig. 
2, but using burst-synchronized traffic (BTS). Fig. 5 shows the time to complete 5 
bursts of 1K packets for the six scenarios under consideration. For comparison pur-
poses, Table 2 shows their throughput computed as the total workload delivered di-
vided by the completion time. For this workload, maps of injected packets are mean-
ingless (all nodes inject exactly the same number of packets), and the reported 
average distance traversed by packets is always the expected one3. Under burst-
synchronized workload, the use of restricting injection policies is positive for the 
three traffic patterns: the time to deliver the 5 bursts of packets is lower with IPR than 
without it. As we expected, IPR is more effective for TR, a pattern that suffers badly 
from network congestion.  

                                                           
3  In this context starvation is not an issue: if the network somehow favors some nodes, they 

will send their workload faster than others, but will eventually stop, allowing the rest of the 
nodes to progress faster, until all of them have sent their packets. 
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Fig. 5. Time to deliver 5 bursts of 1K packets for UN, TR and SH patterns, without/with IPR 

Table 2. Network throughput (phits/cycle/node) averaged for 5 bursts under UN, TR and SH 
patterns, without/with IPR 

IPR off IPR on IPR off IPR on IPR off IPR on
0,192 0,220 0,087 0,123 0,055 0,060

UN TR SH

 

The performance reported under BTS contradicts the results obtained under ITS. 
Which one is correct? As both are based on synthetic workloads, both are just ap-
proximations to the reality. But the behavior of real parallel applications at heavy 
loads is clearly closer to the burst-synchronized source model than to the independent 
source model. In fact, tests carried out with real applications show that this congestion 
control mechanism does improve throughput under heavy loads. 

4   Conclusions and Future Work 

Performance of interconnection networks is evaluated using a widely accepted set 
of synthetic workloads which model uniform, hot spot and traffic permutation pat-
terns. Each node generates packets independently following a Poisson or Bernoulli 
distribution.  

Evaluation of a congestion control mechanism using these workloads lead us to 
identify the vast differences in network throughput observed by each processing node 
at heavy non-uniform loads. This network unfairness is not caused by the mechanism 
itself but by the uneven nature of the workload. Consequently, we question the valid-
ity of average peak throughput as the figure of merit under non-uniform heavy loads 
and independent traffic sources (ITS). In fact, changing the injection model to burst 
synchronized sources (BTS), a workload closer to the pattern generated by real paral-
lel applications, leads to different conclusions about the goodness of that congestion 
control mechanism under non-uniform loads.  

In short, the ITS model fails to reflect the communication behavior of loosely cou-
pled parallel applications.  This leads to incorrect conclusions when evaluating any 
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router mechanism at loads beyond saturation.  BTS is used instead to model the syn-
chronized behavior exhibited by coupled parallel applications at high loads.  

We are conscious that further characterization of application workloads is needed 
to guide the development of synthetic workloads that reflect the communication struc-
ture (various levels of message coupling) that exist in most parallel applications.   
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Abstract. Measurement and modelling of distributions of data commu-
nication times is commonly done for telecommunication networks, but
this has not previously been done for message passing communications
on parallel computers. We have used the MPIBench program to measure
distributions of point-to-point MPI communication times for two differ-
ent parallel computers, with a low-end Ethernet network and a high-end
Quadrics network respectively. Here we present and discuss the results
of efforts to fit the measured distributions with standard probability
distribution functions such as exponential, lognormal, Erlang, gamma,
Pearson 5 and Weibull distributions.

1 Introduction

There has been a lot of research on measuring and modelling network traffic
in telephone networks, wide-area networks such as the Internet, and local area
(e.g. Ethernet) networks. However, there has been comparatively little work on
measuring and modelling message passing communications for parallel computer
networks. In particular, we are not aware of any previous work on the measure-
ment and modelling of the distribution of point-to-point communication times
for parallel computers due to the effects of contention in the communication
network. Modelling of message passing times on a parallel computer is typically
focussed on average communication times, and standard programs for bench-
marking the communications performance of message passing routines (such as
Mpptest, MPBench and SKaMPI) provide only average communication times
for point-to-point communications between two processors, which does not give
any indication of the effects of contention in the network.

We developed a new MPI communications benchmark called MPIBench [1,2],
which provides highly accurate and detailed benchmarks of the performance of
MPI message-passing routines. MPIBench can generate histograms that show the
distribution of completion times for individual MPI communication routines, not
just average times. It also takes into account contention effects by running point-
to-point communications on N processors, with processor p communicating with
processor (p+N/2) mod N. This provides greater insight into the performance of
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MPI routines and parallel programs that use MPI, since in some situations the
variance and the tail of the distribution are just as important as the average.

The histograms generated by MPIBench are a measure of the probability
distribution function (PDF) for MPI communication times. These PDFs can
be used to provide more accurate modelling and estimation of the performance
of parallel programs. Standard techniques for performance modelling of parallel
programs use average communication times, thereby ignoring the variation due
to contention. We have developed a system called the Performance Evaluating
Virtual Parallel Machine (PEVPM) [3] that samples from PDFs generated by
MPIBench to more accurately model message passing communications times,
and we have found that this provides more accurate estimates of parallel program
performance than using average communication times.

In this paper, we provide the first examination of the quantitative nature of
the observed PDFs for point-to-point (send/receive) communications on paral-
lel computers, in order to determine if and how they can be characterised by
analytical models. Good analytical models would be very useful, for modelling
the performance of parallel programs using tools such as PEVPM, and also to
provide a deeper general understanding of the performance characteristics of
message passing communication on parallel computers.

2 Analytical Models

Some example PDFs of message passing communication times that have been
measured using MPIBench are presented in Figures 1-4. Figures 1 and 2 show
results from Perseus, a commodity Linux PC cluster with a switched Fast Eth-
ernet network. Figures 3 and 4 show results from the APAC SC, an AlphaServer
SC with a Quadrics QsNet communications network. Note that the measured
distributions are quite noisy. They usually become smoother with increasing
number of measurements, although this takes correspondingly longer to run the
benchmarks. Many more examples of probability distributions of communica-
tion performance for a variety of parallel computers, data sizes and numbers of
processors can be found in Grove’s thesis [2].

Qualitatively, the distributions have a hard lower bound, usually a normal-
shaped middle and taper out with an unbounded tail. The lower bound is deter-
mined by the minimum message latency that is possible under perfect conditions.
The shape of the middle-part of the curve is determined by contention effects.
In reality, the right-hand tail does not actually extend to infinity because of the
discrete nature of the distribution and protocol timeouts, however in the ana-
lytical models, the probabilities associated with the tail become astronomically
small very quickly.

A number of common distribution functions exhibit these broad properties.
These include exponential, Erlang, gamma, Pearson 5, lognormal and Weibull
distributions [4]. Unlike the normal distribution, these distributions are asym-
metric in general and cannot be distinguished by their mean and variance alone.
In addition to mean and variance, which are also known as the first and second
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moments of a distribution, these distributions must be differentiated by their
third and fourth order moments, known as skewness and kurtosis respectively.
The skewness statistic describes the degree of symmetry of a distribution. A
positively skewed (right-skewed) distribution rises rapidly, reaches its maximum
and falls slowly with a pronounced right-tail. A negatively skewed (left-skewed)
distribution rises slowly reaches through a pronounced left-tail, reaches its max-
imum and falls rapidly. The kurtosis statistic describes the peakedness/flatness
of a distribution near its mode, relative to the normal distribution.

The distribution functions listed above are defined by at most three parame-
ters, usually known as the scale parameter, the shape parameter and the location
parameter. The scale parameter defines where the bulk of the distribution lies, or
how stretched out the distribution is. In the case of the normal distribution, the
scale parameter is the standard deviation. Unsurprisingly, the shape parameter
defines the shape of a distribution. Some distributions, for example the normal
distribution, do not have a shape parameter because they have a predefined
shape that does not change. Finally, the location parameter shifts the origin of a
distribution either left or right. Without a location parameter (or with a location
parameter of zero) all of the distributions listed above have a domain of (0,∞]
so the location parameter can be used to model the lower bound on message
latency. Determining which scale and shape parameters should be used to model
the PDF of communication performance is less clear.

Rather than blindly trying to fit observed data to known analytical distribu-
tions, it is more useful to first examine how the assumptions of those analytical
expressions mesh with the underlying traffic patterns and contention that are
fundamental to message passing programming on distributed memory parallel
computers. Historically, the most frequently used model for the time instants
at which events are observed has been the Poisson process. In particular, this
model is used in the telecommunications industry to model the interarrival and
service times of telephone calls. From these roots, it has been commonly applied
to modelling data transmission in computer networks. A Poisson process is char-
acterised by a sequence of randomly spaced events, where the arrival time of the
next event is independent of, but probabilistically like, the time of the previous
event. The Poisson distribution gives the probability that a given number of
events will occur within a certain time interval. In relation to a communication
network, when a large number of packet arrival events occur in a short period
of time (due to the inherent randomness of interarrival times) communication
buffers will become very full. Hence the time that a packet can spend waiting for
transmission can be large. With this in mind, a Poisson process provides a model
of network contention that can be used to determine the interarrival time and
service time (i.e. end-to-end latency) of message-passing operations. Interarrival
times and service times of a Poisson process are both exponentially distributed.

The Poisson process provides an attractive modelling formalism because it
has a number of properties that greatly simplify its evaluation. However it fails
as a realistic model for network traffic, and in particular message-passing traffic
for parallel programs, because the assumption of independent communications
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events is not true. Data communication is often very bursty and is self-similar
in nature [5,6,7]. Message-passing programs, due to their frequent synchronisa-
tion (either explicit or implicit), are even more so. This means that contention
between seemingly unrelated processes is not truly independent. For this rea-
son, researchers have suggested that Poisson processes are inappropriate for
modelling data communication. A number of recent studies, mostly focussed on
wide-area networks, have found that service times for data traffic are much bet-
ter modelled by heavy-tailed distributions such as Erlang, lognormal or Weibull
distributions [8,9].

The Erlang distribution [4] was initially developed to model the workings of
telephone exchanges. It was specifically designed to model the situation where
the likelihood of immediate process completion increases with the amount of
processing that has already been done. In particular it describes the waiting
time until the mth event of a process that occurs randomly over time. This makes
the Erlang distribution particularly good at modelling transmission times in the
face of contention. Erlang distributions are defined by their location parameter
x, positive integer shape factor m and scale parameter β. The case of m = 1
reduces an Erlang distribution to an exponential.

The Erlang distribution is actually a special case of the gamma distribution,
which is identical, except that the shape factor m may take on non-integer val-
ues. Also related to the gamma distribution is the Pearson 5 distribution, which
is sometimes called the inverse gamma distribution, since there is a reciprocal
relationship between a Pearson 5 random variable and a gamma random vari-
able [4]. The Pearson 5 distribution is particularly useful for modelling time
delays where some minimum delay value is almost assured and the maximum
time is unbounded and variably long [10]. This makes it an attractive candidate
for modelling message-passing time.

The lognormal distribution [4] results from the product of many independent
random variables, where overall distribution values are based on the cumulative
effect of many small perturbations in those variables. This theoretical underpin-
ning also fits well with the idea of contention, where mutually excluded access
to shared resources can increase the chance of further contention, thus causing
increasingly lengthy delays. The lognormal distribution looks like a normal curve
that has been right-skewed, and has a finite lower bound.

Both the gamma family (including Erlang and Pearson 5) and lognormal pro-
cesses provide (different) potential theoretical models for the effects of random
contention on message-passing service times. However, a lack of strict random-
ness in the underlying process being modelled (in this case contention) could
lead to negatively skewed data, which cannot be fit by either gamma family or
lognormal models. The Weibull distribution is a very versatile, general-purpose
distribution that can be used in these cases [4]. Depending on the values of the pa-
rameters, the Weibull distribution can be used to model a variety of behaviours.
For example, setting the scale parameter β = 1, the Weibull distribution reduces
to an exponential distribution; β < 1 produces a exponential-like curve, except
that it begins higher and diminishes faster. Using 1 < β < 3.6 results in a distri-
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bution that looks much like a gamma or lognormal, i.e. monotonically rising until
the mode, and then monotonically decreasing with a pronounced right-tail. For
β = 3.6 the coefficient of skewness approaches zero, and the curve approximates
a normal distribution, but with a finite lower bound. Uniquely, for β > 3.6 the
distribution is negatively skewed, i.e. most data is found in the right-hand side
of the distribution, despite a left-bounded tail.

All of these distributions are special cases of a three-parameter distribution
called the generalised gamma function [4], however this function is not often
used in modelling due to its complexity.

3 Comparison of Different Distribution Functions

The data from a broad selection of distributions generated by MPIBench were
input into a statistics program called Stat::Fit [11] and analysed to determine
which of the analytical distribution(s) listed above could best describe them.
Stat::Fit is very simple to use, in particular via its Auto::Fit function which au-
tomatically fits data to different distributions, provides an absolute measure of
each distribution’s acceptability and ranks the results. Stat::Fit uses Maximum
Likelihood Estimation (MLE) [12] for parameter estimation, which determines
the parameter values that maximise the probability of obtaining the sample
data. MLE is considered the most accurate parameter estimation method for 100
or more samples. Stat::Fit uses χ2, Kolmogorov-Smirnov and Anderson-Darling
tests to provide goodness of fit measures. Notably, the Kolmogorov-Smirnov test
provides the best metric over a wide range of distributions and the Anderson-
Darling test provides the best metric for heavy-tailed distributions [13]. Impor-
tantly, it is known that all of these tests can become too sensitive for a large
number (say more than 1000) data points and thus occasionally reject proposed
distributions that in reality provide useful fits [11].

For each investigated distribution, 500 data points were randomly selected
from the measured results from MPIBench and used for fitting. Auto::Fit MLE
and goodness of fit analyses were performed. Tables 1 and 2 show goodness of fit
results for Perseus and the APAC SC for different distribution functions for three
different message sizes and different numbers of nodes (with 1 process running

Table 1. Results of automated fits to MPIBench communications times from Perseus.
Lower values indicate better fits. F indicates that the automated fit function failed to
make an acceptable fit.

data size 128 bytes 4K bytes 16K bytes
nodes 2 16 32 average 2 16 32 average 2 16 32 average
erlang 0.293 0.160 0.101 0.180 0.78 F F F 2.59 F 141 F
exponential 0.293 0.210 0.183 0.229 68.2 F F F 62.2 F 126 F
gamma 0.262 0.16 0.101 0.174 0.78 F F F 2.45 F 66.6 F
lognormal 0.309 0.176 0.0879 0.191 0.84 54.0 69.8 41.5 2.59 30.1 8.75 13.8
pearson5 0.368 0.282 0.173 0.274 1.73 56.5 108 55.4 2.88 32.5 6.87 14.1
weibull 0.238 0.141 0.118 0.166 0.78 36.2 27.0 21.3 2.09 22.9 38.1 21.0
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Table 2. Results of automated fits to MPIBench communications times from the
APAC SC. Lower values indicate better fits. F indicates that the automated fit function
failed to make an acceptable fit.

data size 128 bytes 4K bytes 16K bytes
nodes 2 16 32 average 2 16 32 average 2 16 32 average
erlang F F F F 62.4 F 0.98 F 21.4 1.09 1.51 14.0
exponential F F F F 67.0 66.2 77.1 70.1 42.2 19.0 24.5 28.6
gamma F F F F 50.7 2.37 0.96 18.0 22.0 19.0 1.52 14.2
lognormal 0.334 0.131 0.146 0.204 54.4 2.01 0.93 19.1 24.7 5.94 1.9 10.8
pearson5 0.336 0.171 0.238 0.248 63.0 38.8 1.48 34.4 25.4 3.50 1.95 10.3
weibull 0.331 0.0961 0.095 0.174 55.6 1.66 1.01 19.4 21.2 17.7 1.95 13.6

per node). The Kolmogorov-Smirnov test was used for the smallest message size,
and the Anderson-Darling test for the other message sizes (note that the two tests
have very different fit metrics). An F indicates that the automated fit function
failed to make an acceptable fit. Examples of some fits that were obtained for
small and large message sizes for 32 processes are plotted in Figures 1-4.

Significantly, the results support a common interpretation for the behaviour
of point-to-point message-passing performance on both of the machines that were
examined. The performance distributions observed for the smallest message size
are essentially normal-shaped, although they necessarily have a bounded lower
limit. The best fit in each of these cases was provided by a Weibull distribution
with a shape parameter near 3.6 (i.e. close to normal), although lognormal and
Pearson 5 distributions also provide a reasonable approximation. Importantly,
however, the standard deviation for each of these distributions is comparatively
small, about half of the minimum message latency for a zero byte message on
the same system. These normal-shaped distributions are consistent with random
rather than contention delays, for example caused during context switching,
polling for message arrivals or physical transmission.

For larger messages where contention is more prevalent, the Pearson 5 and
lognnormal distributions provided the best fits. In comparison, Weibull (or other)
distributions could not be used because they were too heavy-tailed and lacked
the peakedness to fit the observed data well.

Most of the cases where some functions failed to give acceptable fits are distri-
butions with slightly negative skew. Weibull fits these quite well, and lognormal
and Pearson 5 are able to give acceptable fits.

4 Conclusions and Further Work

MPIBench allows, for the first time, the measurement of probability distributions
of message passing communication times on parallel computers. This provides
useful insight into the variability of communication times due to contention
effects, and also allows for more accurate modelling of the performance of parallel
programs than is achievable by just using averages of communication times.
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It is interesting to investigate what kinds of analytical functions best de-
scribe the measured distributions. This is commonly done for telecommunica-
tions networks, but to our knowledge has never been done for message passing
communications on parallel computers.

For small message sizes where contention effects should be negligible, com-
munication times follow a Weibull distribution that is close to normal but with a
bounded minimum time, indicating random rather than contention delays. The
lognormal and Pearson 5 distributions also provide reasonable fits where there
is low contention.

Increasing the message size or the number of processes increases the level
of contention and creates a more heavily skewed distribution. The Pearson 5 or
lognormal distributions best fit these results, although from preliminary studies
of additional data, Pearson 5 seems to give better results when the contention
level is high and the distributions are broader. For both the low-end (Fast Ether-
net) and high-end (QsNet) communication networks that we have examined, it
appears that the performance variation in message-passing time under a normal
contention level can be explained based on the roots of the Pearson 5 distribu-
tion; i.e. variation occurs as the result of a transmission process that has a high
chance of succeeding in minimum time, yet has a small chance of being contin-
ually delayed, in this case due to contention in the communications network.

The lognormal and Pearson 5 distributions provide the most accurate fits
over the broadest spectrum of conditions. Even in the few cases where a Weibull
distribution would provide a better fit, Pearson 5 and lognormal are an accept-
able alternative to use for modelling communications time for applications such
as PEVPM that provide performance prediction of parallel programs.

In future work, we will undertake a more detailed statistical analysis of a
wider variety of data, with different message sizes, numbers of processes, num-
bers of processes per node for clusters consisting of multi-processor nodes, and
different networks and parallel architectures, including shared memory machines.

We are working on changing MPIBench so that it can produce distributions
for each process, rather than the current approach of combining the results
from all processes. We have seen situations where distributions appear to differ
between processes, so we expect to get better fits to results from individual
processes, as well as more detailed insight into message passing performance.

We also plan to extend MPIBench so that it can automatically fit mea-
sured data to appropriate distributions (e.g. Pearson 5 and/or lognormal and/or
Weibull). This output would be particularly useful as input to systems such as
PEVPM that could use these distributions to provide more accurate predictions
of the performance of parallel programs.

It would be very useful to be able to develop a model that could estimate
the parameters of a Pearson 5 or lognormal distribution as a function of known
quantities such as the message size, the number of processes, and the latency
and bandwidth of the network. This would enable us to use PEVPM to generate
accurate estimates of the performance of parallel programs on machine configu-
rations for which we cannot run MPIBench to generate measured distributions of
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communication times. For example, we could see how a parallel program would
scale to very large numbers of processors, or how reducing the latency or increas-
ing the bandwidth of the communications network would affect the performance
of the program. This is the main goal of our future work on this project.
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Abstract. Complex and large-scale distributed systems are characterized by 
numerous interactive data communication among distributed components over 
network. This paper proposes a communication data multiplexing approach as 
an efficient message traffic reduction scheme. This approach encodes joint out-
puts of sender components into a single message and applies to a distributed 
system involving components moving and interacting in multi-dimensional 
space. For performance evaluation, this paper applies uses a projectile/missile 
case study with realistic multi-dimensional dynamics. This paper investigates 
variation of system accuracy and network bandwidth requirement, while a ratio 
of active components and a time granule are varied. Analytical and empirical 
data clearly indicate the advantages of multiplexing in saving communication 
resources in a large-scale distributed simulation. In addition, this paper dis-
cusses effectiveness and limitation of the multiplexing approach while consider-
ing the tradeoff between system accuracy and performance. 

1   Introduction 

Complex and large-scale distributed systems are characterized by numerous interactive 
data exchanges among entities distributed between computers networked together. A 
method to support the reduction of the interactive messages among entities is called a 
“message traffic reduction approach.” [1] It is the goal of a message traffic reduction 
scheme that a large-scale distributed system executes within reasonable communication 
and computation resources. Current message traffic reduction approaches are Quantiza-
tion [2], Predictive quantization [3], Multiplexing predictive quantization [4], and Inter-
est-based quantization [5]. This paper proposes a dynamic multiplexing approach as an 
efficient message traffic reduction approach applicable to simulations involving large 
numbers of moving and interacting entities in multi-dimensional space. Using the mul-
tiplexing approach, this paper introduces an effective mean of transmitting messages 
that consist of samples from a multi-dimensional space. In order to study the strengths 
and limitations of multiplexing, we investigate the dependence of simulation accuracy 
and performance on the activity of sending components. An analysis suggests optimal 
ratios of active to non-active components and time granule sizes which were confirmed 
in a realistic experimental distributed simulation of missile-to-missile interaction.  This 
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paper is organized as follows. Section 2 presents a dynamic multiplexing approach and 
suggests why it is potentially a more efficient mean of message traffic reduction while 
discussing its advantages and limitations. Section 3 discusses our experimentation with 
a projectile/missile application and evaluates the performance of the dynamic multiplex-
ing approach. Section 4 presents our conclusions.  

2   Interest-Based Quantization: Multiplexing and Predictive 

The multiplexing predictive interest-based quantization is an extension created by add-
ing a multiplexing approach to the predictive interest-based quantization. In distributed 
system with a large number of entities, there will be many entities assigned to each 
federate. Sender and receiver federates encapsulate a large number of similar compo-
nent models. In this case, the multiplexing approach is very effective. This approach 
requires two components: sender multiplexer and receiver de-multiplexer. The sender 
multiplexer gathers the messages outputted from the sender agents within a time granule 
into a large message, which is sent to the receiver de-multiplexer in the other receiver 
federate over network. The receiver de-multiplexer separates the large multiplexed 
message to the small-unmultiplexed messages and distributes the small messages to the 
proper receiver agents. As the number of sender and receiver pairs increases, through 
this multiplexing approach, tremendous communication bits are saved. 

2.1   Dynamic Multiplexing 

The multiplexed message size is constant in previous multiplexing which is called fixed 
multiplexing. This paper proposes the dynamic multiplexing in which the message size 
varies with the number of active senders. Active sender indicates a sender which has an 
output in a certain time granule. This section introduces the dynamic approach in multi-
plexing, compares it with the fixed multiplexing and analyzes the performance of dy-
namic approach with network bandwidth requirement. Fig. 1 illustrates the operation of 
the dynamic multiplexing using predictive quantization. The dynamic sender multi-
plexer only collects the encoded bits from active senders. At a given event time, the 
number of active senders varies and the number of transmitted data bits is not fixed. 
Different from fixed multiplexing, additional bits (SL) are needed to represent active 
senders. The number of data bits for an active sender is calculated by adding the addi-
tional bits (log2 Npair < SL) and the encoded bits (SQ). Usually, a is less than 1 since 
all senders are not active senders at any given event time. 

The network loading for any global state transition of a sender federate using dy-
namic multiplexing is: 

Network bandwidth requirement using dynamic multiplexing 

= SOH + a Npair ×  (SQ + SL) (bits) 
(1) 

The multiplexer collects the encoded bits and the active bits from each encoder. 
The encoded bits are the bits required to represent the message dimension alterna-
tives. Let SQ be the number of the encoded bits. Then by: 

))(,3,2,1(7.13log 2 DimensionsofNumberDDDSQ =×=×=  (2) 
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Fig. 1. Dynamic multiplexing with the predictive quantization (SOH : the number of overhead 
bits for a packet;  SQ: the quantized and encoded data bit size;  SL: the encoded data bit size for 
sender ID; Npair : the number of pair components; a: the ratio of active components) 

For example, if a message has three-dimensional values in the predictive quantiza-
tion, five bits (log2 3

3   < 5 = SQ ) are required to represent the message dimension 
alternatives. The active bit indicates whether a sender is active or inactive. An active 
sender is one that has a boundary crossing at a given event time and generates an 
output event. A receiver de-multiplexer checks the active bit of each sender and sends 
the encoded bits of active senders to the respective decoders. In fixed multiplexing, 
for any global state transitions of a sender federate at any given event time, the net-
work loading is fixed and calculated by: 

Network bandwidth requirement for fixed multiplexing  

= SOH + Npair ×  (SQ + 1) (bits) 
(3) 

However, the bits assigned for inactive senders can be wasted in fixed multiplex-
ing. The fixed receiver de-multiplexer knows which sender sends certain encoded bits 
since the bit stream order in the multiplexed bits with fixed size follows a fixed order-
ing of the senders. Therefore, the additional bits representing which sender sends are 
not needed.  

2.2   Performance Analysis 

In order to analyze the performance of the dynamic multiplexing with predictive in-
terest-based quantization, we investigate three performance factors: a) Network 
bandwidth requirement (e.g. number of bits required) for N component pairs; b) Re-
duction ratio to the number of bits needed for the non-multiplexing, non-predictive 
quantization with N component pairs; c) Reduction ratio to the number of bits needed 
for the non-multiplexing, non-predictive quantization with actual data bit sizes and 
1000 component pairs. The reduction ratio specified by: 

Reduction Ratio =  
B

A
 (4) 
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A: # bits needed for the non-multiplexing and non-predictive quantization 
B: # bits needed for the dynamic multiplexing with predictive interest-based 

quantization 

The analysis is given in Table 1 where we consider all six combinations of quanti-
zation (non-predictive and predictive) and multiplexing (fixed and dynamic).  

Table 1. Analysis with six combinations of quantization (non-predictive and predictive) and 
multiplexing (fixed and dynamic), ( SOH : the number of overhead bits for a packet (160 bits);  
SD: the non-quantized data bit size (64*3 bits for double precision real numbers for three 
dimensions); SQ: the quantized and encoded data bit size (5 bits for three dimensions (log2 3

3   < 
5 = SQ ));  SL: the encoded data bit size  for sender ID (10 bits for 1000 Npair (log2 1000   < 10 = 
SQ )); Npair : the number of pair components (1000), a: the ratio of active components), Ratio 
with value (Npair =1000, SOH=160 bits, SD=64*3bits, SQ= 5 bits, SL= 10 bits). 

Scheme 
# bits required for 

Npair (a<1) 
Ratio to Non-predictive quan-

tization for large Npair (a<1) 

Ratio with 
value 

Comb #1 aNpair (SOH  + SD) 1 1 
Comb #2 aNpair (SOH  + SQ) (SOH + SD) /  (SOH  + SQ) 2.172 
Comb #3 (SOH+Npair(SD+1)) a(SOH  + SD) /(SD  + 1) 1.851 a 
Comb #4 (SOH+Npair(SQ+1)) a(SOH+SD) /(SQ+1) 58.823 a 
Comb #5 (SOH+aNpair(SD+SL)) (SOH  + SD) / (SD  + SL) 1.754 
Comb #6 (SOH+aNpair(SQ+SL)) (SOH  + SD) / (SQ  + SL) 29.412 

The combinations in Table 1 are defined as following: Comb #1: Non-predictive 
quantization; Comb #2: Predictive quantization and Non-multiplexing; Comb #3: 
Fixed multiplexing and Non-predictive quantization; Comb #4: Fixed multiplexing 
and Predictive quantization; Comb #5: Dynamic multiplexing and Non-predictive 
quantization; Comb #6: Dynamic multiplexing and Predictive quantization. The pre-
dictive quantization without multiplexing performs 2.172 times reduction in network 
load relative to non-predictive quantization. In the multiplexing non-predictive quan-
tization scheme, the reduction ratio (approx. 1.851 a) is performed by combining the 
actual double value outputs into one message. Greater advantage is obtained from the 
multiplexing predictive quantization, which combines the encoded data bit size (5 bits 
for three dimensional data of message and 10 bits for sender ID) per component into 
one message. When the fixed multiplexing predictive quantization scheme is used, in 
order to make the reduction ratio higher above 29.412 times, at least 50 (%) active 
components are required. For the dynamic multiplexing predictive quantization, the 
reduction ratio is 29.412. 

3   Experimentation and Performance Evaluation 

The projectile/missile application [6] with the geocentric-equatorial coordinate system is 
used to evaluate the performance of the dynamic multiplexing approach. The projectile 
is a ballistic flight and accounts for gravitational effects, drag, and motion of rotation of 
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the earth relative to it. A missile is assigned a projectile, and it follows its projectile until 
it hits its projectile. To evaluate the accuracy of the dynamic multiplexing approach, we 
use the previously developed basic system which is considered the standard system in 
which no error occurs. The system with the dynamic multiplexing approach includes 
two federates: projectile and missile. Each federate is assigned to each different com-
puter and the experimental computers are connected in LAN environment. The dynamic 
multiplexing system works on the DEVS/GDDM Environment [7]. 

 

Fig. 2. (a) Transmitted data bits, (b) System execution time 

In order to evaluate actual system execution performance of the dynamic multiplex-
ing interest-based quantization scheme, we compared passed data bits and system 
execution time of a non-predictive quantization system, a predictive quantization 
system and a dynamic multiplexing predictive quantization system.  
Fig. 2 (a) shows the transmitted data bits of those three systems while the numbers of 
component pairs are varied. As the number of component pairs increases, the trans-
mitted data bits of the non-predictive and predictive quantization systems increase 
significantly, and the dynamic multiplexing predictive quantization system tremen-
dously reduces the transmitted data bits. In two non-multiplexing systems, the predic-
tive quantization system shows the more reduction of transmitted data bits than that of 
the non-predictive quantization system. Fig. 2 (b) illustrates the variation of system 
execution time of those three systems in varying number of component pairs. In the 
dynamic multiplexing system, the system execution time increases slowly and propor-
tionally to the transmitted data bits, as the number of component pairs increases. 

4   Conclusion 

This paper proposed a dynamic multiplexing approach as an efficient message traffic 
reduction scheme. Especially, the approach is applied to the predictive interest-based 
quantization and is more applicable to a system involving distributed components 
moving and interacting in multi-dimensional space. To evaluate the performance, we 
realized the dynamic multiplexing approach with the predictive interest-based quanti-
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zation. We compared the dynamic approach to the fixed approach, analyzed the  
advantages and limitations, and experimented. Those approaches were applied to the 
projectile/missile application with realistic multi-dimensional dynamics and evaluated 
with the network bandwidth requirement. The analytical and experimental results 
showed that the dynamic multiplexing was very effective in saving the inter-federate 
data transmission and actual system execution time in distributed system. 
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Abstract. To realize the requirement of next mobile communication, the 
adaptive allocation schema of power and bit is presented by using discrete 
wavelet packet transform (DWPT). The subcarrier modulation and rate 
allocation method is used for OFDM-DS/CDMA system. According to the 
downlink channel feedback bit error rate (BER) acquired from uplink channel, 
an optimal wavelet packet multicarrier modulation allocation is established. For 
the given BER and QoS, the transmitting power is minimum. The system 
realizes the high frequency spectrum efficiency. The result shows that the 
adaptive wavelet packet algorithm not only has the fast convergence rate, but 
also achieves minimum complexity. The allocation proposed has better 
performance compared with traditional OFDM system. It is valuable that the 
system can adaptively adjust the power and bit rate to achieve minimum total 
transmission power in high rate and efficiency. 

1   Introduction 

Along with the development of the next generation mobile communications, 
multimedia and broadband, the wireless communication system requires advanced 
rate transmission, fast processing ability so as to improve communication reliability 
and efficiency. Because of frequency selection Rayleigh fading produced by 
multipath [1], slow fading of obstruct, and space fading. The wireless channel have 
time-variable properties [2]-[4]. Now, there are different kinds of multi-carrier 
orthogonal transform to be proposed to get over this defect, such as DCT multi-carrier 
modulation based on discrete cosine transform, DFT discrete Fourier transform, and 
DWT discrete wavelet transform multi-carrier. The paper proposed a kind of discrete 
orthogonal wavelet multi-carrier modulation. Because of orthogonal parallel 
multiplexing communication mode, orthogonal wavelet will not lead to the noise 
increasing as well as obtain parallel processing efficient. The wavelet packet 
transform could supply a group wavelet packet multi-carrier schema. This idea can 
divide the channel into series orthogonal subband by using super resolution wavelet 
packet. Each subband is flat fading. Adaptive DWPT is able to adjust the transmission 
schema to receiver SNR and channel properties. Different user adopts their own bit 
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rates, modulation grade and communication qualities. The subcarrier bandwidth is 
less than channel correlative bandwidth. Finally, the multipath effect is reduced for 
each subcarrier. Each subband has flat faded and ICI is down.  

The wavelet packet modulation (WPM) stresses the fact that wavelet packet bit and 
power allocation has two advantages over others. The frequency selection MIMO 
fade channel becomes group of flat fading sub-channel by WPM. The signal spectrum 
enables overlapping, and higher spectrum efficiency is obtained. Moreover, we can 
adaptively adjust the bit and power allocation in each subcarrier according to SNR 
and subchannel state. WPM has super resolution property in time-frequency domain. 
The processes of modulation, filter and demodulation are the signal decomposition 
and reconstruction process of wavelet packet. The subchannel with better SNR 
employs higher modulation grade transferring more bits/symbol. The subchannel with 
high interference uses lower modulation grade transferring little bits/symbol. The 
paper adopts indefinite searching way to realize less calculation amount and achieve 
better spectrum efficient and robust based on optimum algorithm [5]-[10]. IWPT and 
WPT implementations are used as specific modulation and de-modulation. 

2   Signal Model 

2.1   Subcarriers Modulation Model Based on Orthogonal Wavelet Packet 

Wavelet packet modulation process has ability to process time variant signal. The 
window function size can be adjusted. By IWPT, input bit can be transformed into 
time frequency domain symbol as well as it can be reconstructed in time-domain by 
WPT. we can obtain clear resolution wherever the signals are high or low time 
frequency domain. The transmitter data can ideally be decomposed by wavelet packet.  

Multicarrier modulation system and subband bit and power allocation are shown in 
detail as Fig.1. In the transmitter, the signal of user is through serial/parallel transform 
and modulated by QAM. Data is decomposed into different subchannel by wavelet 
packet. Then the signal is sampled, filtered and reconstructed to run p/s transform. In 
addition, the signal time sequence is  spread by frequency synthesizer using wavelet 
PN pseudorandom code.  Finally, it is transmitted by D/A shaped smooth filter. 

 The subcarrier bit allocation system chart is shown as Fig.1. Suppose that system 
has k users, each user data rate is Rk bit/symbol. In the transmitter, the data streams 
are assigned to different subcarrier by each user. If the subcarrier bandwidth is 
smaller than the correlation bandwidth of channel, the channel is mutually 
independent. We can use the subcarrier bit algorithm to determinate transmitter 
modulation system. According to the allocated bit in each subcarrier, the modulation 
constellation size is decided.  The power of each channel is determined by 
communication SNR and modulated mode. The M dimensions receiver vector 

nHUR += , T
Mnnnn ],...,,[ 21= , the n-th user 

nU  is distributed to different subcarrier 

with bit scheme. H is the channel response and n is  noise. It is assumed that )(kPn
is 

power in m-th transmitter antenna
)k(P)k(U)k(UP

N

1n
n

T

=

== . The transmitter signal 

)()( 2 RLUtf ∈=  can be decomposed by the wavelet modulation degree. 



424 R. Ren and S. Zhu 

The )(xΦ and )(xψ  are wavelet scale and wavelet function respectively. Signal space 

)(2 RL  is orthogonally divided into subspaces
jW , ......)( 21012

2 ⊕⊕⊕⊕⊕⊕=⊕= −−
∈

WWWWWWRL j
Zj

. 

For the signal )()( 2 RLUtf ∈= , the )(tf can be decomposed in wavelet packet base 

in unique way. Considered that base )()(0 tt φψ = , )()(1 tt ψψ = . 

 

Fig. 1. The adaptive wavelet packet modulation system of bit and power allocation 

The orthogonal wavelet packet is defined  

−=
k

lkl ktpt )2()(2 ψψ                −=+
k

lkl ktqt )2()(12 ψψ  
(1) 

where 
kk qp ,  is decomposed sequence. )()()(1 tgtftf lll +=+  is expressed as 

)2()( ktctf j

k

j
kj −= φ        )2()( ktdtg j

k

j
kj −= ψ    j=0,1,2,…       

(2) 

    Orthogonal scale function is )(tφ and )(tψ is wavelet function. The data streams 

Utf =)(  can be expressed in the base of )(2 tlψ and )(12 tl+ψ , where }{ nψ is the wavelet 

function. For Zn∈ , 
)(2 RL

clos  is signal space. 
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The decomposition and modulation algorithm is shown as Fig.2. 
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 The reconstruction and de modulation algorithm is 
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where nj
ld 2, and 12, +nj

ld  are the decomposition coefficient. 

 

(a)                      (b)                      (c) 

 

Fig. 2. The modulated and demodulated 
processing of wavelet packet 

 
(a) mode 1(WPM)      (b)  mode 2(OFDM) 

Fig. 3. WPM and OFDM packet structure 

The sub-carrier bit and power allocation algorithm object is what the total power 
of the all sub-carriers of every user are minimum in definite QoS and data rate. The 
input data stream is modulated by QAM and decomposed by orthogonal wavelet 
packet. The adaptive WPM allocation has better time frequency domain 
performance compared with traditional OFDM system shown as Fig. 2 (a)(b)(c) and 
Fig. 3(a)(b). 

2.2   Adaptive Algorithm of Wavelet Packet with Bit and Power Allocation 

Multi bit rates and adaptive power allocation are realized by Lagrangian optimal 
algorithm. The constraint condition is total power and transmitter bits/symbol rate. 
The wavelet packet decomposition and reconstruction are changed with channel QoS 
and receiver SNR.  

Each subcarrier }:)2(2{
2

2 Zlltkj
m

kj
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ψ has their own allocation of power and bit 

rate. With the increase of the subcarrier number, the bandwidth is smaller than 
channel correlation bandwidth. The Rayleigh fading is reduced and can be thought to 
be a flat fading channel with smaller ICI. 

We adopts water-filling algorithm and adaptive power and bit rate allocation. it can 
achieve minimum transmission power and the maximum channel capacity of Shannon 
theory. Ordinary, the suboptimum non-precision searching algorithm is accepted. 
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Considering that per symbol emit total bit B, the whole bit is allocated for each 
subcarrier by wavelet packet modulated. Subcarrier bit allocation is optimized to 
make transmitter power to be minimum. The object function is total bit of all 
subcarriers
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 , }k,...,1{k∈ , ck,n is bits/symbol, bk,n is gain. 

The adaptive algorithm flow is shown as following. 
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where wi  is weigh coefficient, iμ is step. r (t) is receiver’s data, power or bit rate. 

Supposing object function is 
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Zbm ∈ , m=1,2,…,M. Pm is the lowest transmitter power in each subcarrier, where bm 

is m-th subcarrier bits/symbol. The bit and power in sub-carrier is adaptively decided 

by downlink feedback SNR and BER of receiver. Let ))SNR(1(logb m2
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ν is regulative coefficient, (SNR)m is m-th subchannel SNR. The allocation bit and 
power can be derived by ν , bm bits/symbol is modulated by MQAM and MPSK. 

In addition, the cost function J is solved by optimum non-precision algorithm.  
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(1) Initialization user bit 

allocation ck,n=0, 0k =λ ;(2) Calculation bk,n, choice modulation grade with bk,n.  (3) 

Calculation kλ and summation bk,n, if it doesn’t reach the user set rate, recirculation. 

3   The Simulation and Result 

In mobile downlink environment, the simulation parameters of WPM is 4QAM, 
16QAM, 64QAM constellation, subband number 16, and Rayleigh channel adopting  
binary Haar wavelet.  It is assumed that the wavelet packet sizes are 32 samples per 
packet, and system has randomly interference on the base-band system. Under four 
interferences source, two paths, same noise in each packet signal, the OFDM channel 
fading is become flat in each subband, whereas, the WPM subband are not affected in 
WPM packet. Using 16QAM, it is shown as in Fig.4 that the BER of adaptive WPM 
packet is close to 16QAM curve. The adaptive WPM BER is 4.5 dB is better than 
WPM. The WPM BER reduces further than OFDM. The performance of simulation 
illuminates adaptive WPM have advantage of others such as WPM, and OFDM. 
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Based on definite QoS and BER, adaptive WPM with bit and power algorithm has 
merits over equal bit method, optimum OFDM-TDMA and OFDM-CDMA. The 
result of bit error order is described as follows. Under same BER, WPM adaptive bit 
and power allocation is 3 dB better than OFDM-CDMA. The bit SNR WPM-CDMA 
is 10 dB better than WPM-TDMA, and 25 dB than equal bit OFDM-TDMA. Above 
all, the WPM-CDMA method significantly out performs the traditional OFDM and 
equal power allocation. 

Table 1. Simulation specifications 

Frequency                      5GHz 

Wavelet species            Haar and 
Daubechies 
wavelet 

Number of subcarriers       16                   

Constellation              4QAM,16QAM, 
64QAM 

Channel bandwidth        20MHz           

Sample per packet              32      

Mobile speed                 100Km/hour 

Channel distribution      Rayleigh  

Interferences source          4 

Path number                       2  

 

Fig. 4. BER performance in interference environment 
based on  adaptive WPM, WPM, and OFDM 

 

4   Conclusion 

The paper proposed an adaptive WPM bit and power allocation model for downlink 
channel wireless mobile system to solve the ICI and ISI. The parallel algorithm has 
inferior iterative times, minor calculation and better global convergence. The results 
have shown that the schema obtains major SNR gain per bit. Furthermore, the 
adaptive wavelet packet achieves bandwidth utilizing effectively in high and low 
frequency. According to the channel SNR, BER and QoS, the bit rate, power 
allocation and wavelet packet coefficient weigh are adaptive to be adjusted to channel 
quality. The simulation indicates that WPM parallel algorithm is validated and has 
fast speed compared with OFDM. The WPM schema is feasible plan in 
communication system.  
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Abstract. Designing a simple but powerful low-level communication li-
brary for Java HPC environments is an important task. We introduce
new low-level communication library for Java HPC, called mpjdev. The
mpjdev API is designed with the goal that it can be implemented portably
on network platforms and efficiently on parallel hardware. Unlike MPI
which is intended for the application developer, mpjdev is meant for li-
brary developers. Application level communication may be implemented
on top of mpjdev. The mpjdev API itself might be implemented on
top of Java sockets in a portable network implementation, or-on HPC
platforms-through a JNI (Java Native Interface) to a subset of MPI.

1 Introduction

HPJava [1] is an environment for scientific and parallel programming using Java.
It is based on an extended version of the Java language. HPJava incorporates
all of the Java language as a subset. This means any ordinary Java class can be
invoked from an HPJava program without recompilation. Moreover, a translated
and compiled HPJava program is a standard Java class file that can be executed
by a distributed collection of Java Virtual Machines.

Locally held elements of multiarrays and distributed arrays can be accessed
using some special syntax provided by HPJava. HPJava does not provide any
special syntax for accessing non-local elements. Non-local elements can only be
accessed by making explicit library calls. This policy in the HPJava language,
attempts to leverage successful library-based approaches to SPMD parallel com-
puting. This idea is in very much in the spirit of MPI, with its explicit point-
to-point and collective communications. HPJava raises the level of abstraction a
� Correspondence author.
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notch, and adds excellent support for development of libraries that manipulate
distributed arrays. But it still exposes a multi-threaded, non-shared-memory,
execution model to programmer. Advantages of this approach include flexibility
for the programmer, and ease of compilation, because the compiler does not have
to analyze and optimize communication patterns.

Java version of Adlib APIs
Other application−level

mpjdev

Pure Java

MPJ and

(e.g. IBM SP3, Sun HPC)
Parallel Hardware

Native MPI

Networks of PCs
SMPs or

Fig. 1. An HPJava communication stack

The mpjdev [2] [3] API is designed with the goal that it can be implemented
portably on network platforms and efficiently on parallel hardware. Unlike MPI
which is intended for the application developer, mpjdev is meant for library
developers. Application level communication libraries like the Java version of
Adlib (or MPJ [1]) may be implemented on top of mpjdev. The mpjdev API
itself might be implemented on top of Java sockets in a portable network imple-
mentation, or-on HPC platforms-through JNI (Java Native Interface) to a subset
of MPI. The positioning of the mpjdev API is illustrated in Figure 1. Currently
not all the communication stack in this figure is implemented. The Java version
of Adlib, the pure Java implementation on SMPs, and native the MPI implemen-
tation are developed and included in the current HPJava or mpiJava releases.
The rest of the stack may be filled in the future.

2 Communications API

In MPI there is a rich set of communication modes. Point-to-point commu-
nication and collective communication are two main communication modes of
MPI. Point-to-point communication support blocking and non-blocking com-
munication modes. Blocking communication mode includes one blocking mode
receive, MPI RECV, and four different send communication modes. Block-
ing send communication modes include standard mode, MPI SEND, syn-
chronous mode, MPI SSEND, ready mode, MPI RSEND, and buffered
mode, MPI BSEND. Non-blocking communication mode also uses one
receives, MPI IRECV and the same four modes as blocking send: stan-
dard, MPI ISEND, synchronous, MPI ISSEND, ready, MPI IRSEND,
and buffered, MPI IBSEND. Collective communication also includes vari-
ous communication modes. It has characteristic collective modes like broad-
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public class Comm {

public void size() { ... }
public void id() { ... }
public void dup() { ... }
public void create(int [] ids) { ... }
public void free() { ... }

public void send(Buffer buf, int dest, int tag) { ... }
public Status recv(Buffer buf, int src, int tag) { ... }
public Request isend(Buffer buf, int dest, int tag) { ... }
public Request irecv(Buffer buf, int dest, int tag) { ... }

public static String [] init(String[] args) { ... }
public static void finish() { ... }

. . .
}

Fig. 2. The public interface of mpjdev Comm class

cast, MPI BCAST, gather, MPI GATHER, and scatter, MPI SCATER.
Global reduction operations are also included in collective communication.

The mpjdev API is much simpler. It only includes point-to-point commu-
nications. Currently the only messaging modes for mpjdev are standard block-
ing mode (like MPI SEND, MPI RECV) and standard non-blocking mode
(like MPI ISEND, MPI IRECV), together with a couple of ”wait”
primitives.

The communicator class, Comm, is very similar to the one in MPI but it
has a reduced number of functionalities. It has communication methods like
send(), recv(), isend(), and irecv(), and defines constants ANY SOURCE,
and ANY TAG as static variables. Figure 2 shows the public interface of
Comm class.

We can get the number of processes that are spanned by this communicator
by calling size() (similar to MPI COMM SIZE). Current id of process relative
to this communicator is returned by id() (similar to MPI COMM RANK).

The two methods send() and recv() are blocking communication modes.
These two methods block until the communication finishes. The method send()
sends a message containing the contents of buf to the destination described by
dest and message tag value tag.

The method recv() receives a message from matching source described by
src with matching tag value tag and copies contents of message to the receive
buffer, buf. The receiver may use wildcard value ANY SOURCE for src and
ANY TAG for tag instead specifying src and tag values. These indicate that
a receiver accepts any source and/or tag of send. The Comm class also has
the initial communicator, WORLD, like MPI COMM WORLD in MPI and
other utility methods. The capacity of receive buffer must be large enough to
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public class Request {
public Status iwait() { ... }

public Status iwaitany(Request [] reqs) { ... }
. . .

}

Fig. 3. The public interface of Request class

accept these contents. It initializes the source and tag fields of the returned
Status class which describes a completed communication.

The functionalities of send() and recv() methods are same as standard
mode point–to–point communication of MPI (MPI SEND and MPI RECV).
A recv() will be blocked until the send if posted. A send() will be blocked until
the message have been safely stored away. Internal buffering is not guaranteed
in send(), and the message may be copied directly into the matching receive
buffer. If no recv() is posted, send() is allowed to block indefinitely, depending
on the availability of internal buffering in the implementation. The programmer
must allow for this–this is a low-level API for experts.

The other two communication methods isend() and irecv() are non-blocking
versions of send() and recv(). These are equivalent to MPI ISEND and
MPI IRECV in MPI. Unlike blocking send, a non-blocking send returns imme-
diately after its call and does not wait for completion. To complete the communi-
cation a separate send complete call (like iwait() and iwaitany() methods in the
Request class) is needed. A non-blocking receive also work similarly. The wait()
operations block exactly as for the blocking versions of send() and recv() (e.g.
the wait() operation for an isend() is allowed to block indefinitely if no match-
ing receive is posted). The method dup() creates a new communicator the span-
ning the same set of processes, but with a distinct communication context. We can
also create a new communicator spanning a selected set of processes selected us-
ing the create() method. The ids of array ids contain a list of ids relative to this
communicator. Processes that are outside of the group will get a null result. The
new communicator has a distinct communication context. By calling the free()
method, we can destroy this communicator (likeMPI COMM FREEinMPI).
This method is called usually when this communicator is no longer in use. It frees
any resources that used by this communicator.

We should call static init() method once before calling any other methods
in communicator. This static method initializes mpjdev and makes it ready to
use. The static method finish() (which is equivalent of MPI FINALIZE) is
the last method should be called in mpjdev.

The other important class is Request (Figure 3). This class is used for non-
blocking communications to ensure completion of non-blocking send and receive.
We wait for a single non-blocking communication to complete by calling iwait()
method. This method returns when the operation identified by the current class
is complete. The other method iwaitany() waits for one non-blocking commu-
nication from a set of requests reqs to complete. This method returns when one
of the operations associated with the active requests in the array reqs has com-
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pleted. After completion of iwait() or iwaitany() call, the source and tag fields
of the returned status object are initialized. One more field, index, is initialized
for iwaitway() method. This field indicates the index of the selected request in
the reqs array.

3 Message Format

This section describes the message format used by mpjdev. The specification
here doesn’t define how a message vector which contained in the Buffer object
is stored internally-for example it may be as a Java byte [] array or it may
be as a C char [] array, accessed through native methods. But this section
does define the organization of data in the buffer. It is the responsibility of the
user to ensure that sufficient space is available in the buffer to hold the desired
message. Trying to write too much data to a buffer causes an exception to be
thrown. Likewise, trying to receive a message into a buffer that is too small will
cause an exception to be thrown. These features are (arguably) in the spirit
of MPI.

A message is divided into two main parts. The primary payload is used to
store message elements of primitive type. The secondary payload is intended to
hold the data from object elements in the message (although other uses for the
secondary payload are conceivable). The size of the primary payload is limited
by the fixed capacity of the buffer, as discussed above. The size of the secondary
payload, if it is non-empty, is likely to be determined ”dynamically”-for example
as objects are written to the buffer.

The message starts with a short primary header, defining an encoding scheme
used in headers and primary payload, and the total number of data bytes in the
primary payload. Only one byte is allocated in the message to describe the
encoding scheme: currently the only encoding schemes supported or envisaged
are big-endian and little-endian. This is to allow for native implementations of
the buffer operations, which (unlike standard Java read/write operations) may
use either byte order. A message is divided into zero or more sections. Each
section contains a fixed number of elements of homogeneous type. The elements
in a section will all have identical primitive Java type, or they will all have
Object type (in the latter case the exact classes of the objects need not be
homogeneous within the section).

Each section has a short header in the primary payload, specifying the type
of the elements, and the number of elements in the section. For sections with
primitive type, the header is followed by the actual data. For sections with object
type, the header is the only representation of the section appearing in the primary
payload–the actual data will go in the secondary payload. After the primary
payload there is a secondary header. The secondary header defines the number
of bytes of data in the secondary payload. The secondary header is followed in
the logical message by the secondary payload. The mpjdev specification says
nothing about the layout of the secondary payload. In practice this layout will
be determined by the Java Object Serialization specification.
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4 Discussion

We have explored enabling parallel, high-performance computation–in particular
development of scientific software in the network-aware programming language,
Java. Traditionally, this kind of computing was done in Fortran. Arguably, For-
tran is becoming a marginalized language, with limited economic incentive for
vendors to produce modern development environments, optimizing compilers for
new hardware, or other kinds of associated software expected by today’s pro-
grammers. Java looks like a promising alternative for the future.

Java introduces implementation issues for message-passing APIs that do not
occur in conventional programming languages. One important issue is how to
transfer data between the Java program and the network while reducing over-
heads of the Java Native Interface. As contribution toward new low-level APIs,
we developed a low-level Java API for HPC message passing, called mpjdev. The
mpjdev API is a device level communication library. This library is developed
with HPJava in mind, but it is a standalone library and could be used by other
systems. We discussed message buffer and communication APIs of mpjdev and
also format of a message. To evaluate current communication libraries, we did
various performance tests. We developed small kernel level applications and a full
application for performance test. We got reasonable performance on simple ap-
plications without any serious optimization. We also evaluated a communication
performance of the high- and low-level libraries for future optimization.
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Abstract. This paper describes an object-oriented design and efficient imple-
mentation of 3G-324M protocol stack for real-time multimedia transmission. In 
particular, we discuss the implementations of 324M class hierarchical structure 
that includes classes H.245 (control) and H.223 (multiplexing) protocols. Our 
implementation is efficient and has been tested in a realistic 3G infrastructures 
in Hong Kong as well as in some China industries for optimizations of process-
ing and transmission of real-time video, audio and data.  

1   Introduction 

The mobile communication market has grown with an explosive rate recent years. 
The number of mobile subscribers worldwide increased from 300 million in 1997 to 
800 million in 2001 [1]. With wider bandwidth of third-generation (3G) and increas-
ing number of multimedia service categories, it can be seen that the number of sub-
scribers is and will be having a high-speed increase, especially, when 3G is launched 
in China in the near future. 

3G wireless multimedia communications are particularly referred to as Interna-
tional Mobile Telecommunications 2000 (IMT-2000) that has been deployed and de-
veloped substantially. ITU-T H.324 [2] is an umbrella protocol defined by Interna-
tional Telecommunications Union (ITU) to enable multimedia communication over 
low-bit rate terminals (in the following, we will drop “ITU-T” from the prefix of 
standard names for simplicity). H.324 and several mobile specific annexes are usually 
referred to as H.324M (M stands for mobility). The 3rd Generation Partnership Pro-
ject (3GPP) is a body that comprises wireless infrastructure, handset and service pro-
viders throughout the world. 3GPP has adopted the H.324M with some modifications 
in codecs and error handling requirements to create the 3G-324M standard for circuit-
switched 3G networks. In order to support the enhanced and delay sensitive video 
services among heterogeneous terminals, 3G video phones or terminals are required 
to support 3G-324M protocol stack. 3G-324M currently operates with WCDMA air 
interface, but can also operate on other 3G technologies because the 3G-324M call 
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setup is able to reuse the underlined air interface protocol that the hand-held device 
uses. We have developed and implemented an efficient mobile multimedia transmis-
sion protocol stack based on 3G-324M standards using C++. This paper discusses 
some efficient techniques and experiences of implementations for 3G-324M protocol 
stack, especially about object-oriented approaches. Our implementations have been 
tested in a realistic heterogeneous 3G communication environment in Hong Kong in-
frastructure and some China industries for transmission of real-time video, audio and 
data and its performance is satisfactory.  

The paper is structured into 5 sections. Sec. 2 introduces the 3G-324M protocol 
stack. Object-oriented design, implementations and optimizations of control protocol 
H.245 and data transmission multiplexing protocol H.223 in 3G-324M are discussed in 
Sec. 3. Sec. 4 gives the performance analysis of the implementations. We summarize 
our major results and experience and point out the future directions in Sec. 5.  

2   H.324 and 3G-324M 

The whole protocol stack of 3G-324M is shown in Fig. 1. ITU-T H.324 is a standard 
made by ITU-T for low bit rate multimedia communications, while H.245 and H.223 
are two main parts under H.324 and have given specific descriptions about the proce-
dures of message transformation and data transmission multiplexing. However, H.324 
is originally defined for multimedia communication operated in Public Switched Te-
lephony Networks (PSTN), some of the specifications of this standard are not quite 
appropriate for the mobile terminals with low processing capability and power-
constraints.  

Video I/O
Equipment

User Data
Applications

Audio I/O
Equipment

Video Codec
H.263, [MPEG-4, H.261 ...]

Data Protocols
[V.14, LAPM, ...]

Audio Codec
3G-AMR, [G.723.1] Receive 

Path Delay

H.245 CCSRL NSRP[LA
PM/V.42]

System
Control

Call Set-up

 
Fig. 1. 3G-324M Protocol Stack 

H.324 and its annex C are referred to as H.324M for mobile terminals. Thus 
H.324M is also an “umbrella standard” in respect with other standards which specify 
mandatory and optional video and audio codecs, the messages to be used for call set-
up, control and tear-down (H.245 [3]) and the way that audio, video, control and other 
data are multiplexed and demultiplexed (H.223 [4]). H.324M terminals offering audio 
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communication will support G.731.1 audio codec [10]. Video communication offered 
in H.324M terminals will support H.263 [8] and H.261 [9] video codecs. H.324M 
terminals offering multimedia data conferencing should also support T.120 protocol 
[7]. In addition, other video and audio codecs and data protocols can optionally be 
used via negotiation through exchange of the H.245 control messages. Note that the 
differences between 3G-324M and H.324M mainly lie in codecs (voice by AMR- 
Adaptive Multi Rate Speech Codec, and video by H.263 or MPEG-4) and error han-
dling requirements (H.223 Annex A and Annex B as mandatory) [14]. Therefore, 3G-
324M inherits H.324M basically but must use AMR for speech codec. The AMR 
speech coder consists of the multi-rate speech coder, a source controlled rate scheme 
including a voice activity detector and a comfort noise generation system, and an er-
ror concealment mechanisms to combat the effects of transmission errors and lost 
packets [13]. 

3   OO Designs and Implementations of 3G-324M Protocol Stack 

3.1   Object Class Structure of 3G-324 Protocol  

In the 3G-324M protocol stack, the most upper-level interface is the H.324 class. The 
system structure is illustrated in the following skeleton codes. The functions illus-
trated here will be detailed in the subsequent sections. 

class H324  
{ private: 
 H245* h245;   //pointer to H245 entity 
 H223* h223;   //pointer to H223 entity 
public: 
 void Start();   //This function starts the execution of H324. 
 BOOL StartH245();  //This function starts the execution of H245. 
 BOOL HandleVideo(BYTE* data, int size); //Interface for video and audio 

handling. 
 BOOL HandleAudio(BYTE* data, int size); 
 H324();             //construction and destruction functions 
 H324(CDialog* dlg); 
 virtual ~H324(); 
} 

Class H.324 holds a pointer to a H245 object and also a pointer to a H223 object. 
Therefore, H223 and H245 objects can be regarded as the composition classes within 
class H324. Similar to the design of class H324, classes H223 and H245 should pro-
vide the interface of method invocations for other classes as the H245 object has to 
send the H.245 control messages through H223 object whereas H223 object must also 
forward the receive the control messages in responding to the H245 object. Thus 
H223 object maintains a pointer to the H245 objects in the instance variable m_pH245 
and class H245 also maintains an interface to H223 using a pointer. For efficiency of 
implementation, the interface inherits class H245_SE rather than H245 as an instance 
(data) member within H245. 
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3.2   Hierarchy Class H.245 

H.245 standard has been defined to be independent of the underlying transport 
mechanism, but is intended to be used with a reliable transport layer, which provides 
guaranteed delivery of correct data. H.245 specifies syntax and semantics of terminal 
control messages as well as the procedures for in-band negotiation at the start or dur-
ing communication. The messages cover receiving and transmitting capabilities as 
well as mode preference, logical channel signaling and control. The message syntax is 
defined using ASN.1 formatted data [12] and is transformed into bit-stream based on 
an ASN.1 encoding standard of Packed Encoding Rules (PER) [11].  

H.245 defines a general message type MultimediaSystemControlMessage 
(MSCM). Four major types of special messages are defined in MSCM as request, re-
sponse, command and indication. A request message results in a specific action and 
requires an immediate response. A response message responds to a request message. 
A command message requires an action but no explicit response. An indication mes-
sage contains information that does not require action or response. Messages with 
various types are transformed into MSCM for uniform processing.  

 

Fig. 3. Hierarchical class structure of H.245 

In H.245, object Signaling Entity (SE) is referred to as a procedure that is responsi-
ble for special functions. It is designed as a state machine and changes its current state 
upon reaction to an event occurrence. With the SE objects, H.245 class hierarchy is il-
lustrated in Fig. 3 in which all H245 procedures are packaged in H245 class. It has a 
member variable of H245_MESSAGE which provides message definitions and opera-
tions. A member variable of X691 is used for PER encoding/decoding and 9 member 
variables derived from H245_SE, each of which stands for one signaling entity object 
in H.245. There is also a pointer referring to upper layer protocol H.324. The class hi-
erarchy can be further illustrated below: 

H245_MESSAGE Class defines all the H245 messages and corresponding encod-
ing/decoding functions.  

H245_SE and H245_*SE: H245_SE is an abstract class and specifies the basic fea-
tures and functions of a signaling entity object. H245_*SE implements H245_SE, real-
izing the procedures of individual signaling entities. Therefore, all subclasses 
H245_*SE inherit H245_SE class. In summary, SE object maps to the following  
SE objects: 
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H245_MSDSE MasterSlaveDetermination  
H245_CESE  CapabilityExchange    
H245_LCSE  LogicalChannel   

In addition, Class H245_SE includes some functions used in each signaling entity 
and inherited by the SE classes as shown below: 

class H245_SE  public H245 
{ … 
public: 
void h245_receive_primitive();  // check primitive event 
BOOL h245_send_message(void *msg,int len); // send message to the peer 
H245_SE();      // constructor 
virtual ~H245_SE();  // destructor 
}; 

In each individual SE class, there are some structures, defining SE primitives and 
status used in this SE. For example, in a CESE, the structure below stands for 
TRANSFER.indications and records the primitive parameters as defined in H245 
standard. 

typedef struct H245_PRIMITIVE_DATA_TRANSFER_INDICATION 

{ 
 ObjectID          protocolIdentifier; 
 MultiplexCapability  multiplexCapability;  
 _setof13    *capabilityTable; 
 _setof14    *capabilityDescriptors; 
} H245_PRIMITIVE_DATA_TRANSFER_INDICATION; 

With the hierarchical design of the message processing, the implementation of the 
protocol stack is very clear and efficient. 

3.3   Class H.223  

H.223 class provides low delay and overhead by using segmentation, reassembly and 
combination of information from different logical channels into a single packet. It 
performs the multiplexing of multimedia data into bit-streams before transmission to 
an air-interface. H.223 consists of Multiplex (MUX) Layer and Adaptation Layer 
(AL). AL is actually an interface for upper-layer applications and deals with different 
sources separately. The MUX layer performs the actual multiplexing. In this layer, 
data traffic from different sources can be multiplexed into one packet according to 
some rules which are exchanged by two terminals during the initialization of commu-
nication.  H223 class is designed to hold the following functions: (1) Provide sending 
and receiving interface for video transmission, such as send/receive closing flags to 
accomplish the level-setup procedure of H324 class and control messages for H245 
class etc. (2) An interface to the multimedia devices or functions for handling the cap-
tured video/audio data, performing multiplexing, send them to the peer terminal, and 
demultiplexing the video/audio data from the received data stream and forward them 
to the upper-layer multimedia devices. The following figure shows the general struc-
ture of class H223. 
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Fig. 5. Class H223 and major instance variables 

The pointer m_pH245 points to H245 object with the interface to notify H245 ob-
ject of incoming H.245 control messages. The pointer m_vCap, ponting to the Video-
Capturer class, indicates the interface to manage the operations (such as initialization, 
start/stop of capturing, etc.) of the video capturing device. Pointers m_aRec and 
m_aPly separately point to classes AudioRecorder and AudioPlayer to provide the in-
terface for managing the audio devices.  

4   Conclusions 

In our implementation, object oriented approach is used for efficient control and 
modularization of overall protocol stack. Therefore, the complex structure of the im-
plementation is reduced. We have discussed the point-to-point multimedia transmis-
sion implementation for the 3G terminals. With the key technologies used mentioned 
above, our implementation has gained a satisfactory performance. Currently we are 
implementing the multipoint multimedia transmission using in the applications of 
video conferencing or group meeting. The implementations of video-conferencing in 
3G terminals can be a major challenge as multipoint communications require more re-
sources, facing the 64kbps for a single streaming in current 3G setting in Hong Kong.  
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Abstract. This paper proposes efficient techniques to reconfigure a
multi-processor array, which embedded in a 6-port switch lattice in
the form of a rectangular grid. It has been shown that the proposed
architecture with 6-port switches eliminate gate delays and notably
increase the harvest when compared with one using 4-port switches. A
new rerouting algorithm combines the latest techniques to maximize
harvest without increase in reconfiguration time. Experimental results
show that the new reconfiguration algorithm consistently outperforms
the most efficient algorithm proposed in literature.
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algorithm.

1 Introduction

The mesh-connected processor array has a regular and modular structure and
allows fast parallel implementation of most signal and image processing algo-
rithms. In this paper, the original array after manufacturing is called a host
array which may contain faulty elements. A degradable sub-array of the host
array, which contains no faulty element, is called a target array or logical array.
The rows (columns) in the host array and target array are called physical rows
(columns) and logical rows (columns), respectively. we consider the following
reconfiguration problem:

Given an m×n mesh-connected host array H , integers r and c, find a m′×n′

fault-free subarray T under the row and column rerouting scheme[4] such that
m′ ≥ r and n′ ≥ c.

In this paper, we focus on the design and analysis of efficient heuristic algo-
rithms for the problem since it is NP-complete[2]. Many related research results
have been presented. Recently, [2] studied the problems under different routing
constraints. [3] and [4] proposed the greedy algorithms and [5] improved the run-
ning time of the reconfigurationalgorithms in [4], without loss of performance. The
algorithms in [2-5] are based on the array connected by 4-port switches, and each
processor has two internal bypass links. In order to increase the harvest and to
minimize gate delays, we combine one 4-port switch and one bypass link to form

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 442–446, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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one 6-port switch. Unlike the old architecture, the new one supports rerouting two
neighboring elements lying in same physical row into same logical column to obtain
higher harvest. At the same time, there are no extra gate delay in bypass function
due to the introduction of a bypass link within the 6-port switch. In reconfigura-
tion algorithm, we present a new rerouting algorithm based on the architecture.
The time complexity of the new algorithm is controlled in the same order as that
of the algorithm in [4], and the performance improves significantly.

2 Architecture and Hardware Overhead

In old architecture (Fig.1, left), there is an extra two-gate delay when row (
column ) bypass needed, and two neighboring elements lying in same physical
row cannot be rerouted into same logical column. If the element is faulty, it is
highly probable that the internal bypass links are also faulty.

column rerouting channelrow rerouting channel

column rerouting switchrow rerouting switch

bypass

switch

 

Fig. 1. 4 × 4 arrays linked by 4-port switches and by 6-port switches, respectively

We propose a new switch model to replace the 4-port switch model. The new
model combines one 4-port switch and one bypass link to form one 6-port switch,
which consists of pass gates to establish all possible connection pair among the
six input rails. In other words, any pair combination of the six ports can be used
to establish a pair wise connection. The only restriction is that no port can be
connected to more than 1 port. Internal bypass links through elements are not
involved as an element can be bypassed through tracks that run externally. This
ensures that gate delays are avoided when a faulty element is bypassed. Unlike
old architectures, the proposed architecture (Fig.1 right) is capable of allocating
two neighboring fault-free elements on the same physical row into same logical
column. The new architecture overcomes the drawbacks of previous approaches,
be it at the expense of a small increase in hardware.

In order to fully address the likely increase in the chip area, we deduce a
reasonable estimate on the likely penalty when the 4-port switches are replaced
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with 6-port switches. Our analysis is based on the area complexity of about 1700
gates for a 4-port switch with an 8-bit bus [6]. In [6], the entire hardware cost
(in gates) of the m × m mesh array can be given as

G(m, p) = 1700m(m − 1) + (2160 + p)m2 + 3480m
= (3860 + p)m2 + 1780m.

The ratio of the switching circuits to the mesh array is formulated by

Oswitch(m, p) = G(m, 0)/G(m, p),

where p is the number of the gates for one processor. For an m × m mesh array
connected by 4-port switches,

Oswitch(m, p) = (3860m + 1780)/((3860 + p)m + 1780).

Assuming that the area of a 6-port switch is about 50% more than that for the
4-port switch, the ratio for the case of 6-port switch is given as 1.5(3860m +
1780)/((3860+ p)m + 1780). Now, assuming the gate count for a processor (i.e.,
p) to be 50000 gates, the chip area increases by a mere 3.59% for a 256 × 256
array with 6-port switches. Hence, following the traditional approach cited in the
literature [1-5], it is reasonable to ignore the additional area incurred by switches,
especially, for the case of that one processor is several orders of magnitude larger
than the switch.

3 Algorithms

The most efficient algorithm under the constraints of row and column rerouting
is the algorithm in [4], denoted as RCRT in this paper. The greedy algorithm
is based on the old architecture. The crucial procedure, called GCR, is used for
finding a target array that contains a set of selected logical rows. We improve
GCR in this section.

Suppose v is not available as it is faulty. Its upper (lower) neighbor is defined
as the element er(i, j), where i = row(v) − 1 (row(v) + 1), and j = col(v).
Let Adj(u) = {v : v ∈ Ri+1 and |col(u) − col(v)| ≤ 1}, where the elements in
Adj(u) are ordered in increasing column numbers for each u ∈ Ri. Our algorithm,
denoted as New GCR, attempts to connect the element u to the leftmost element
v of Adj(u) that has not been previously examined. In GCR[4], if this step fails
in doing so, a logical column containing the current element u cannot be formed
and backtracking occurs. But in New GCR, the upper (lower) neighbor of v
will be examined to compensate v whenever possible. The upper neighbor of v is
examined first. If the upper neighbor of v is not available, then the lower neighbor
is examined. New GCR backtracks to the previous element p, connected to u,
only if the local compensation fails. It then attempts to connect p to the leftmost
element of Adj(p) − {u} that has not been previously examined.

Fig.2 outlines New GCR and shows an running example for comparison be-
tween GCR and New GCR. Following the analysis for GCR, it can be deduced
that the running time of New GCR is linear.
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Input: the host arrary H and the logical rows R0, R1, …, Rk-1 

Output: the target array with n columns. 
Procedure New_GCR(H, R0, R1, …, Rk-1,  n ) 
begin 
     Unmark each u in R0, R1, …, Rk-1;  pred(u):=nil;   n:=0;    
     while there are unmarked elements in R0  do 
     begin 
             cur0 := the leftmost unmarked element  in R0 , 
               find the initial cur in R0;   mark  cur; 
             repeat 
                  if  there are unmarked elements in Adj(cur)  
                  then begin 
                          v:= leftmost unmarked element in Adj(cur); 
                          compensate  v with its neighbor; 
                          if  ( v is fault-free ) and  (   
                                     row(cur)<row(v) or  ( 
                                           row(cur)=row(v) and 
                                           col(pred(cur)) ≠ col(v)  )  )                 
                          then  begin   pred(v):=cur;   cur:=v;  mark v end 
                          else    Restore the changed elements  
                                    into their original state; 

            end /* of if */ 
                  else  if cur ∉ R1   then  cur:=pred(cur); /*  backtrack to p */ 
             until (cur∈ Rk-1 )  or  (cur∈ R0); 
              if  (cur∈ Rk-1 )  then  n:=n+1; /* new logical column  obtained */ 
      end; /* of while*/ 
end. 
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11 22 23 24

31 33 34

43 44

41 51 52

62 53 63

14

3221

42

6461

54

Running result of New_GCR

11 12

21 22

31 32

42

51

62

41

61

52

Running result of GCR

 

Fig. 2. The formal description of New GCR and running example, in which GCR
produces a 6 × 2 target array while New GCR can produces one of 6 × 4

We can obtain New RCRT by replacing GCR in RCRT[4] with New GCR.
The time complexity of New RCRT is the same as that of RCRT as the time
complexity of New GCR is the same as that of GCR. The further improvement
for New RCRT is to employ the techniques in [5]. Assume that New GCR termi-
nates at the logical row Rβ in the previous iteration. Unlike RCRT, New RCRT
can directly uses Rβ as the row to be excluded in the current iteration. In fact,
the row Rβ should be excluded with higher priority than Rγ in the current it-
eration. If γ �= β, it is the row Rβ , not Rγ , that stops RCRT from constructing
a larger size submesh. Moreover, the implementation of this method of selecting
Rβ can be embedded into New GCR.

4 Experimental Results and Conclusions

We implemented New RCRT and RCRT in C on a personal computer—Intel
Pentium-III 500 MHz. The average performance comparisons of both algorithms
are shown in Fig.3, where harvest and degradation[4] for a range of faults are
highlighted. It can be see that the average harvest of New RCRT is greater
than 95% and the average degradation is less than 14% for each type of random
instances. In conclusion,the proposed architecture overcomes the drawback of
previously reported ones to provide better harvest through improved connectiv-
ity. Rerouting via internal bypass links is avoided to eliminate gate delays. New
techniques to enhance the performance of the new algorithm have been pro-
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Fig. 3. Average harvest and degradation comparisons, 20 random instances with fault
size 0.1%, 1% and 10% (shown in x axis) for different sized arrays

posed to benefit from the new architecture. Experimental results show that the
proposed approach is superior to other alternatives reported in the literature.
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